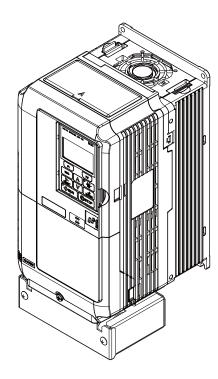


YASKAWA AC Drive-A1000


High Performance Vector Control Drive **Technical Manual**

Type: CIMR-AU□A _____

Models: 200 V Class: 0.4 to 110 kW (3/4 to 175 HP ND)

400 V Class: 0.4 to 630 kW (3/4 to 1000 HP ND) 600 V Class: 0.75 to 185 kW (1 to 250 HP ND)

To properly use the product, read this manual thoroughly and retain for easy reference, inspection, and maintenance. Ensure the end user receives this manual.

Receiving

Mechanical Installation

Electrical Installation

Start-Up Programming & Operation

Parameter Details

Troubleshooting

Periodic Inspection & Maintenance

Peripheral Devices & Options

Specifications

Parameter List

MEMOBUS/Modbus Communications

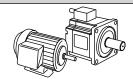
Standards Compliance

Quick Reference Sheet

Quick Reference

Easily Set Parameters for Specific Applications

Preset parameter defaults are available for setting up applications. *Refer to Application Selection on page 198*.



Run a Motor One Frame Larger

This drive can operate a motor one frame size larger when running variable torque loads such as fans and pumps. *Refer to C6-01: Drive Duty Mode Selection on page 275*.

Drive a Synchronous PM Motor

The drive can operate synchronous PM motors. Refer to Subchart A-3: Operation with Permanent Magnet Motors on page 196.

Perform Auto-Tuning

Automatic tuning sets motor parameters. Refer to Auto-Tuning on page 201.

Maintenance Check Using Drive Monitors

Use drive monitors to check if fans, capacitors, or other components require maintenance. Refer to Performance Life Monitors Maintenance Monitors on page 481.

Fault Display and Troubleshooting

Refer to Drive Alarms, Faults, and Errors on page 418 and Refer to Troubleshooting without Fault Display on page 466.

Standards Compliance

Refer to European Standards on page 750 and Refer to UL and CSA Standards on page 760 <1>.

<1> CE marking applies to 200 V class and 400 V class models only.

This Page Intentionally Blank

Table of Contents

	QU	ICK REFERENCE	3
i.	PRI	EFACE & GENERAL SAFETY	17
••	i.1	Preface	
	1. 1		
		Applicable DocumentationSymbols	
		Terms and Abbreviations	
		Trademarks	
	i.2	General Safety	20
		Supplemental Safety Information	20
		Safety Messages	
		General Application Precautions	
		Motor Application Precautions	
		Drive Label Warning ExampleWarranty Information	
		·	
1.	RE	CEIVING	29
	1.1	Section Safety	30
	1.2	General Description	
		A1000 Model Selection	
		Control Mode Selection	32
	1.3	Model Number and Nameplate Check	35
		Nameplate	35
	1.4	Drive Models and Enclosure Types	40
	1.5	Component Names	42
		IP20/NEMA Type 1 Enclosure	
		IP00/Open Type Enclosure	
		Front Views	50
2.	ME	CHANICAL INSTALLATION	51
	2.1	Section Safety	52
	2.2	Mechanical Installation	54
		Installation Environment	
		Installation Orientation and Spacing	
		Instructions on Installation Using the Eye Bolts	56
		Digital Operator Remote Usage	
		Exterior and Mounting Dimensions	62

	2.3	Flange Type Enclosure (NEMA 12 Backside) Dimensions & Heat Loss	72
		Flange Type Models 2A0004 to 2A0012, 4A0002 to 4A0005, and 5A0003 and 5A0004	72
		Flange Type Models 2A0018 and 2A0021, 4A0007 to 4A0011, and 5A0006 and 5A0009	
		Flange Type Models 2A0030 and 2A0040, 4A0018 and 4A0023, and 5A0011	
		Flange Type Model 4A0031	
		Flange Type Models 2A0056, 4A0038, and 5A0017 and 5A0022	
		Flange Type Models 2A0069 and 2A0081, 4A0044, and 5A0027 and 5A0032	
		Flange Type Models 2A0110 and 4D0058	
		Flange Type Models 2A0138, 4□0072, and 5A0041 and 5A0052Flange Type Models 4□0088 and 4□0103	
		Flange Type Models 2A0169 and 2A0211, 4□0139 and 4□0165, and 5A0062 to 5A0099	
		Flange Type Models 2A0250 and 2A0211, 4⊟0139 and 4⊟0103, and 5A0002 to 5A0099	
		Flange Type Models 2A0360 and 2A0415, 4D0250 to 4D0362, and 5A0192 and 5A0242	
		Flange Type Model 4A0414	
		Flange Type Models 4A0515 and 4A0675	
		Flange Type Models 4A0930 and 4A1200	
2			
ა.		ECTRICAL INSTALLATION	
	3.1	Section Safety	
	3.2	Standard Connection Diagram	
	3.3	Main Circuit Connection Diagram	141
		Three-Phase 200 V Class Models 2A0004 to 2A0081	
		Three-Phase 400 V Class Models 4A0002 to 4A0044	444
		Three-Phase 600 V Class Models 5A0003 to 5A0032	141
		Three-Phase 200 V Class Models 2A0110, 2A0138 Three-Phase 400 V Class Models 4A0058, 4A0072	
		Three-Phase 600 V Class Models 5A0041, 5A0052	141
		Three-Phase 200 V Class Models 2A0169 to 2A0211	171
		Three-Phase 400 V Class Models 4A0088 to 4A0139	
		Three-Phase 600 V Class Models 5A0062 to 5A0099	142
		Three-Phase 200 V Class Models 2A0250 to 2A0415	
		Three-Phase 400 V Class Models 4A0165 to 4A0675	
		Three-Phase 600 V Class Models 5A0125 to 5A0242	
		Three-Phase 400 V Class Models 4A0930, 4A1200	
		12-Phase Rectification	
	3.4	Terminal Block Configuration	
	3.5	Terminal Cover	147
		Models 2A0004 to 2A0081, 4A0002 to 4A0044, 5A0003 to 5A0032 (IP20/NEMA Type 1	
		Enclosure)	147
		Models 2A0110 to 2A0250, 4A0208 to 4A1200, and 5A0125 to 5A0242 (IP00/Open Type	440
	0.0	Enclosure)	
	3.6	Digital Operator and Front Cover	
		Removing/Reattaching the Digital Operator	
	o -	Removing/Reattaching the Front Cover	
	3.7	Top Protective Cover	
		Removing the Top Protective Cover	
	. -	Reattaching the Top Protective Cover	
	3.8	Main Circuit Wiring	
		Main Circuit Terminal Functions	
		Protecting Main Circuit Terminals	154

		Main Circuit Wire Gauges and Tightening Torque	
	3.9	Control Circuit Wiring	
	0.0	Control Circuit Connection Diagram	
		Control Circuit Terminal Block Functions	
		Terminal Configuration	
		Wiring the Control Circuit Terminal	
		Switches and Jumpers on the Terminal Board	169
	3.10	Control I/O Connections	
		Sinking/Sourcing Mode for Digital Inputs	
		Sinking/Sourcing Mode Selection for Safe Disable Inputs	
		Using the Pulse Train Output	
		Terminal A2 Input Signal Selection	
		Terminal A3 Analog/PTC Input Selection Terminal AM/FM Signal Selection	
		MEMOBUS/Modbus Termination	
		Terminal DM+ and DM- Output Signal Selection	
	3 11	Connect to a PC	
		External Interlock	
	0	Drive Ready	
	3.13	Wiring Checklist	
4.	STA	RT-UP PROGRAMMING & OPERATION	179
•		Section Safety	
	4.2	Using the Digital Operator	
		Keys and Displays	
		LCD Display	
		ALARM (ALM) LED Displays	
		LO/RE LED and RUN LED Indications	183
		Menu Structure for Digital Operator	185
	4.3	The Drive and Programming Modes	186
		Navigating the Drive and Programming Modes	186
		Changing Parameter Settings or Values	
		Verifying Parameter Changes: Verify Menu	
		Simplified Setup Using the Setup Group	
		Switching Between LOCAL and REMOTE	
	4.4	Start-Up Flowcharts	
		Flowchart A: Basic Start-Up and Motor Tuning	
		Subchart A-1: Simple Motor Setup Using V/f Control	
		Subchart A-2: High Performance Operation Using OLV or CLV	
	4.5	Powering Up the Drive	
	1.0	Powering Up the Drive and Operation Status Display	
	4.6	Application Selection	
		Setting 1: Water Supply Pump Application	
		Setting 2: Conveyor Application	
		Setting 3: Exhaust Fan Application	
		Setting 4: HVAC Fan Application	200
		Setting 5: Compressor Application	

	4.7	Auto-Tuning	201
		Types of Auto-Tuning	201
		Before Auto-Tuning the Drive	204
		Auto-Tuning Interruption and Fault Codes	
		Auto-Tuning Operation Example	
		T1: Parameter Settings during Induction Motor Auto-Tuning	
		Parameter Settings during PM Motor Auto-Tuning: T2	
		Parameter Settings during Inertia and Speed Control Loop Auto-Tuning: T3	
	4.8	No-Load Operation Test Run	
		No-Load Operation Test Run	215
	4.9	Test Run with Load Connected	217
		Test Run with the Load Connected	217
	4.10	Verifying Parameter Settings and Backing Up Changes	218
		Backing Up Parameter Values: o2-03	218
		Parameter Access Level: A1-01	
		Password Settings: A1-04, A1-05	218
		Copy Function	219
	4.11	Test Run Checklist	220
5.	PAF	RAMETER DETAILS	223
		A: Initialization	
	• • •	A1: Initialization	
		A2: User Parameters	
	5.2	b: Application	
	0.2	b1: Operation Mode Selection	
		b2: DC Injection Braking and Short Circuit Braking	
		b3: Speed Search	
		b4: Delay Timers	
		b5: PID Control	
		b6: Dwell Function	
		b7: Droop Control (CLV, CLV/PM)	
		b8: Energy Saving	
		b9: Zero Servo	
	5.3	C: Tuning	263
		C1: Acceleration and Deceleration Times	
		C2: S-Curve Characteristics	
		C3: Slip Compensation	265
		C4: Torque Compensation	
		C5: Automatic Speed Regulator (ASR)	270
		C6: Carrier Frequency	275
	5.4	d: Reference Settings	278
		d1: Frequency Reference	278
		d2: Frequency Upper/Lower Limits	280
		d3: Jump Frequency	
		d4: Frequency Reference Hold and Up/Down 2 Function	
		d5: Torque Control	
		d6: Field Weakening and Field Forcing	
		d7: Offset Frequency	
	5.5	E: Motor Parameters	293

	E1: V/f Pattern for Motor 1	. 293
	E2: Motor 1 Parameters	. 297
	E3: V/f Pattern for Motor 2	. 300
	E4: Motor 2 Parameters	. 301
	E5: PM Motor Settings	. 303
5.6	F: Option Settings	306
	F1: PG Speed Control Card Settings	
	F2: Analog Input Card Settings	
	F3: Digital Input Card Settings	. 310
	F4: Analog Monitor Card Settings	. 311
	F5: Digital Output Card Settings	. 312
	F6 and F7: Communication Option Card	. 312
	CC-Link Parameters	
	MECHATROLINK Parameters	
	PROFIBUS-DP Parameters	
	CANopen Parameters	
	BACnet Parameters	
	DeviceNet Parameters	
	Modbus TCP/IP Parameters	
	PROFINET Parameters	
	EtherNet/IP Parameters	
5.7	H: Terminal Functions	
	H1: Multi-Function Digital Inputs	
	H2: Multi-Function Digital Outputs	
	H3: Multi-Function Analog Inputs	
	H4: Multi-Function Analog Outputs	
	H5: MEMOBUS/Modbus Serial Communication	
- ^	H6: Pulse Train Input/Output	
5.8	L: Protection Functions	
	L1: Motor Protection	
	L2: Momentary Power Loss Ride-Thru	
	L3: Stall Prevention	
	L4: Speed Detection	
	L5: Fault RestartL6: Torque Detection	
	L7: Torque Limit	
	L8: Drive Protection	
	L9: Drive Protection 2	
5.9	n: Special Adjustments	
0.5	n1: Hunting Prevention	
	n2: Speed Feedback Detection Control (AFR) Tuning	
	n3: High Slip Braking (HSB) and Overexcitation Braking	
	n5: Feed Forward Control	
	n6: Online Tuning	
	n8: PM Motor Control Tuning	
5 10	o: Operator Related Settings	
5.10	o1: Digital Operator Display Selection	
	o2: Digital Operator Keypad Functions	
	o3: Copy Function	
	o4: Maintenance Monitor Settings	
	q: DriveWorksEZ Parameters	

		r: DriveWorksEZ Connection Parameters	
		T: Motor Tuning	
	5.11	U: Monitor Parameters	
		U1: Operation Status Monitors	
		U2: Fault Trace	
		U3: Fault HistoryU4: Maintenance Monitors	
		U5: PID Monitors	
		U6: Operation Status Monitors	
		U8: DriveWorksEZ Monitors	
6.	TRO	DUBLESHOOTING	409
	6.1	Section Safety	
	6.2	Motor Performance Fine-Tuning	
		Fine-Tuning V/f Control and V/f Control with PG	
		Fine-Tuning Open Loop Vector Control	
		Fine-Tuning Closed Loop Vector Control	414
		Fine-Tuning Open Loop Vector Control for PM Motors	
		Fine-Tuning Advanced Open Loop Vector Control for PM Motors	
		Fine-Tuning Closed Loop Vector Control for PM Motors	
	~ ~	Parameters to Minimize Motor Hunting and Oscillation	
	6.3	Drive Alarms, Faults, and Errors	
		Types of Alarms, Faults, and Errors	
	0.4	Alarm and Error Displays	
	6.4	Fault Detection	
	٥.	Fault Displays, Causes, and Possible Solutions	
	6.5	Alarm Detection	
		Alarm Codes, Causes, and Possible Solutions	
	6.6	Operator Programming Errors	
		Operator Programming Error Codes, Causes, and Possible Solutions	
	6.7	Auto-Tuning Fault Detection	457
		Auto-Tuning Codes, Causes, and Possible Solutions	457
	6.8	Copy Function Related Displays	462
		Tasks, Errors, and Troubleshooting	462
	6.9	Diagnosing and Resetting Faults	464
		Fault Occurs Simultaneously with Power Loss	464
		If the Drive Still has Power After a Fault Occurs	464
		Viewing Fault Trace Data After Fault	
		Fault Reset Methods	
	6.10	Troubleshooting without Fault Display	
		Common Problems	
		Cannot Change Parameter Settings	466
		Motor Does Not Rotate Properly after Pressing RUN Button or after Entering External Run	467
		Command Motor is Too Hot	
		Drive Does Not Allow Selection of the Desired Auto-Tuning Mode	
		oPE02 Error Occurs When Lowering the Motor Rated Current Setting	
		Motor Stalls during Acceleration or Acceleration Time is Too Long	
		Drive Frequency Reference Differs from the Controller Frequency Reference Command	

		Excessive Motor Oscillation and Erratic Rotation	
		Deceleration Takes Longer Than Expected with Dynamic Braking Enabled	
		Ground Fault Circuit Interrupter (GFCI) Trips During Run	
		Connected Machinery Vibrates When Motor Rotates	
		PID Output Fault	
		Insufficient Starting Torque	
		Motor Rotates after the Drive Output is Shut Off (Motor Rotates During DC Injection Braking)	472
		Output Frequency is Not as High as Frequency Reference	
		Sound from Motor	
		Unstable Motor Speed when Using PM	
		Motor Does Not Restart after Power Loss	473
7.	PEF	RIODIC INSPECTION & MAINTENANCE	. 475
	7.1	Section Safety	476
	7.2	Inspection	478
		Recommended Daily Inspection	478
		Recommended Periodic Inspection	479
	7.3	Periodic Maintenance	481
		Replacement Parts	481
	7.4	Drive Cooling Fans	483
		Number of Cooling Fans	
		Cooling Fan Component Names	
		Cooling Fan Replacement: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032	
		Cooling Fan Replacement: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052 Cooling Fan Replacement: 4A0088 and 4A0103	
		Cooling Fan Replacement: 2A0169 to 2A0415, 4A0139 to 4A0362, and 5A0062 to 5A0242	
		Cooling Fan Replacement: 4A0414	
		Cooling Fan Replacement: 4A0515 and 4A0675	
		Cooling Fan Replacement: 4A0930 and 4A1200	
		Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives	508
	7.5	Replacing the Air Filter	509
		Air Filter Replacement	509
	7.6	Drive Replacement	511
		Serviceable Parts	511
		Terminal Board	
		Replacing the Drive	512
8.	PEF	RIPHERAL DEVICES & OPTIONS	. 515
	8.1	Section Safety	516
	8.2	Drive Options and Peripheral Devices	518
	8.3	Connecting Peripheral Devices	520
	8.4	Option Installation	521
		Prior to Installing the Option	
		PG Option Installation Example	
	8.5	Installing Peripheral Devices	
		Dynamic Braking OptionsInstalling a Molded Case Circuit Breaker (MCCB) or Ground Fault Circuit Interrupter (GFCI)	
		Installing a Magnetic Contactor at the Power Supply Side	

		Connecting an AC Reactor or DC Link Choke	536
		Connecting a Surge Absorber	
		Connecting a Noise Filter	
		Installing Input Fuses	
		Attachment for External Heatsink MountingInstalling a Motor Thermal Overload (oL) Relay on the Drive Output	
	005		
Α.		ECIFICATIONS	
		Heavy Duty and Normal Duty Ratings	
	A.2	Power Ratings	
		Three-Phase 200 V Class Drive Models 2A0004 to 2A0030	
		Three-Phase 200 V Class Drive Models 2A0040 to 2A0211	
		Three-Phase 200 V Class Drive Models 2A0250 to 2A0415	
		Three-Phase 400 V Class Drive Models 4A0002 to 4A0031	
		Three-Phase 400 V Class Drive Models 4A0038 to 4A0103 Three-Phase 400 V Class Drive Models 4A0208 to 4A1200	
		Three-Phase 600 V Class Drive Models 5A0003 to 5A0032	
		Three-Phase 600 V Class Drive Models 5A0041 to 5A0099	
		Three-Phase 600 V Class Drive Models 5A0125 to 5A0242	
	A.3	Drive Specifications	556
	A.4	Drive Watt Loss Data	558
	A.5	Drive Derating Data	560
		Single-Phase Derating	560
		Carrier Frequency Derating	
		Temperature Derating	
		Altitude Derating	572
B.	PAF	RAMETER LIST	573
	B.1	Understanding Parameter Descriptions	574
		Control Modes, Symbols, and Terms	574
	B.2	Parameter Groups	575
		Parameter Differences for Drive Models 4A0930 and 4A1200	576
	B.3	A: Initialization Parameters	578
		A1: Initialization	578
		A2: User Parameters	579
	B.4	b: Application	580
		b1: Operation Mode Selection	
		b2: DC Injection Braking and Short Circuit Braking	581
		b3: Speed Search	582
		b4: Timer Function	
		b5: PID Control	
		b6: Dwell Function	
		b7: Droop Control	
		b8: Energy Savingb9: Zero Servo	
	B 5	C: Tuning	
	٥.٥	C1: Acceleration and Deceleration Times	
		C2: S-Curve Characteristics	
		C3: Slip Compensation	
		C4: Torque Compensation	592

C6: Carrier Frequency. B.6 d: References		C5: Automatic Speed Regulator (ASR)	
d1: Frequency Reference 597 d2: Frequency Upper/Lower Limits 559 d3: Jump Frequency 599 d4: Frequency Reference Hold and Up/Down 2 Function 599 d5: Torque Control 600 d6: Field Weakening and Field Forcing 601 d7: Offset Frequency 601 B.7 E: Motor Parameters 603 E1: Vf Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: Vf Pattern for Motor 2 606 E4: Motor 2 Parameters 606 E3: Vf Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B. F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-R3, PG-R3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (AI-A3) 613 F5: Digital Output Card (AI-A3) 614 F6: Communication Option Card (SI-B3, SI-E3, SI-E3, SI-E13, SI-N3, SI-P3, SI-S3, SI-T3, SI-N3, SI-P3, SI-S3, SI-T3, SI-N3, SI-P3, SI-S3, SI-T3, SI-N3, SI-P3, SI-S3, SI-T3, SI-N3, SI-P3, SI-S3 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EN3, SI-EP3) 618		·	
d2: Frequency Upper/Lower Limits 599 d3: Jump Frequency. 599 d4: Frequency Reference Hold and Up/Down 2 Function. 599 d5: Torque Control 600 d6: Field Weakening and Field Forcing. 601 d7: Offset Frequency. 601 B.7 E: Motor Parameters. 603 E1: Vf Pattern for Motor 1 603 E2: Motor 1 Parameters. 605 E3: Vf Pattern for Motor 2 605 E4: Motor 2 Parameters. 605 E4: Motor 2 Parameters. 607 E5: PM Motor Settings. 608 B.8 F: Options. 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F1: PG Speed Control Card (Al-A3). 613 F3: Digital Output Card (DI-A3). 613 F3: Digital Output Card (DI-A3). 613 F6: Communication Option Card (SI-B3, SI-C3, SI-E33, SI-E73, SI-R3, S	B.6		
d3: Jump Frequency, Reference Hold and Up/Down 2 Function 599 d4: Frequency Reference Hold and Up/Down 2 Function 599 d5: Torque Control 600 d6: Field Weakening and Field Forcing 601 d7: Offset Frequency 601 B.7 E: Motor Parameters 603 E1: Vif Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: Vif Pattern for Motor 2 606 E4: Motor 2 Parameters 605 E3: Vif Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settlings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (D-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-E3, SI-C3, SI-E3, SI-E13, SI-N3, SI-P3, SI-S3, SI-T3, SI-N3, SI-P3,			
d4: Frequency Reference Hold and Up/Down 2 Function 599 d5: Torque Control 600 d6: Field Weakening and Field Forcing 601 d7: Offset Frequency 601 B.7 E: Motor Parameters 603 E1: V/f Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: V/f Pattern for Motor 2 605 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DI-A3) 613 F6: Communication Option Card (SI-B3, SI-C3, SI-E33, SI-E73, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 615 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Analog Inputs 625			
d5: Torque Control 600 d6: Field Weakening and Field Forcing 601 d7: Offset Frequency 601 B.7 E: Motor Parameters 603 E1: V/F Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: V/F Pattern for Motor 2 606 E4: Motor 2 Parameters 606 E3: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (A1-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (A0-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-E33, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Unputs 620 H3: Multi-Function Digital Duptus 620 H3: Multi-Function Digital Outputs <t< td=""><td></td><td></td><td></td></t<>			
d6: Field Weakening and Field Forcing. 601 d7: Offset Frequency. 601 B.7 E: Motor Parameters 603 E1: V/f Pattern for Motor 1. 603 E2: Motor 1 Parameters 605 E3: V/f Pattern for Motor 2. 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options. 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (AI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DI-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 615 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 629 H3: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L			
d7: Offset Frequency 601 B.7 E: Motor Parameters 603 E1: W/F Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: W/F Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (DI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Digital Outputs 625 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output. 634 B.10 L: Protection Function 635 L2: Mome			
B.7 E: Motor Parameters 603 E1: V/f Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: V/f Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (Al-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DI-A3) 614 F6: Communication Option Card (SI-B3, SI-E3, SI-E3, SI-E73, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-BM, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 620 H3: Multi-Function Analog Inputs 625 H3: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output. 634 B.10 L: Protection Function 635 L3: Momentary Power Loss Ride-Thru. 637 L3: Speed Detection 640			
E1: Wf Pattern for Motor 1 603 E2: Motor 1 Parameters 605 E3: Wf Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F5: Digital Output Card (DO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Digital Outputs 625 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Speed Detection 640 L6: Fau	D 7	•	
E2: Motor 1 Parameters 605 E3: Vf Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 640 L5: Fault Restar	В.7		
E3: V/f Pattern for Motor 2 606 E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 614 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-BM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Digital Outputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Limit <td></td> <td></td> <td></td>			
E4: Motor 2 Parameters 607 E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (Al-A3) 613 F3: Digital Input Card (DI-A3) 613 F5: Digital Output Card (DO-A3) 613 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Digital Outputs 625 H4: Analog Outputs 632 H5: Pulse Train Input/Output 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 643 L7: Torque Limit 642 <td></td> <td></td> <td></td>			
E5: PM Motor Settings 608 B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 615 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 629 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L3: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 </td <td></td> <td></td> <td></td>			
B.8 F: Options 610 F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 629 H4: Analog Outputs 629 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640			
F1: PG Speed Control Card (PG-B3, PG-X3, PG-R3, PG-F3) 610 F2: Analog Input Card (AI-A3) 613 F3: Digital Input Card (DI-A3) 613 F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-V3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 622 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 629 H5: MEMOBUS/Moblus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 636 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n5: Feed Forward C			
F2: Analog Input Card (AI-A3). 613 F3: Digital Input Card (DI-A3). 613 F4: Analog Monitor Card (AO-A3). 613 F5: Digital Output Card (DO-A3). 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3). 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3). 618 B.9 H Parameters: Multi-Function Terminals. 620 H1: Multi-Function Digital Inputs. 620 H2: Multi-Function Digital Outputs. 625 H3: Multi-Function Analog Inputs. 625 H4: Analog Outputs. 632 H5: MEMOBUS/Modbus Serial Communication. 633 H6: Pulse Train Input/Output. 634 B.10 L: Protection Function. 635 L2: Momentary Power Loss Ride-Thru. 637 L3: Stall Prevention. 638 L4: Speed Detection. 640 L5: Fault Restart. 640 L6: Torque Detection. 643 L9: Drive Protection. 643 L9: Drive Protection. 643 L9: Drive Protection. 646 n1: Hunting Prevention. 646 n2: Speed Feedback Detection Contro	B.8	·	
F3: Digital Input Card (DI-A3). 613 F4: Analog Monitor Card (AO-A3). 613 F5: Digital Output Card (DO-A3). 614 F6: Communication Option Card (SI-B3, SI-C3, SI-E3, SI-T3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3). 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3). 618 B.9 H Parameters: Multi-Function Terminals. 620 H1: Multi-Function Digital Inputs. 620 H2: Multi-Function Digital Outputs. 625 H3: Multi-Function Analog Inputs. 629 H4: Analog Outputs. 632 H5: MEMOBUS/Modbus Serial Communication. 633 H6: Pulse Train Input/Output. 634 B.10 L: Protection Function. 635 L1: Motor Protection. 635 L2: Momentary Power Loss Ride-Thru. 637 L3: Stall Prevention. 638 L4: Speed Detection. 640 L5: Fault Restart. 640 L6: Torque Limit. 642 L8: Drive Protection. 643 L9: Drive Protection. 643 L9: Drive Protection. 645 L9: Drive Protection. 646 n2: Speed Feedback Detection Control (AFR) Tuning. </td <td></td> <td></td> <td></td>			
F4: Analog Monitor Card (AO-A3) 613 F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 629 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 L1: Motor Protection Function 635 L2: Momentary Power Loss Ride-Thru 635 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed			
F5: Digital Output Card (DO-A3) 614 F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Cont			
F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-Y3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 625 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor C		· ,	
SI-T3, SI-W3) 615 F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning			614
F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3) 618 B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 625 H2: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			645
B.9 H Parameters: Multi-Function Terminals 620 H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648 n8: PM Motor Control Tuning 648		•	
H1: Multi-Function Digital Inputs 620 H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648 n8: PM Motor Control Tuning 648	п Λ		
H2: Multi-Function Digital Outputs 625 H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 2 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648	В.9		
H3: Multi-Function Analog Inputs 629 H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648 n8: PM Motor Control Tuning 648		· ·	
H4: Analog Outputs 632 H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
H5: MEMOBUS/Modbus Serial Communication 633 H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648		e i	
H6: Pulse Train Input/Output 634 B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
B.10 L: Protection Function 635 L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
L1: Motor Protection 635 L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648	D 40	·	
L2: Momentary Power Loss Ride-Thru 637 L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648	D. IU		
L3: Stall Prevention 638 L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
L4: Speed Detection 640 L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648		·	
L5: Fault Restart 640 L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
L6: Torque Detection 641 L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648		·	
L7: Torque Limit 642 L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
L8: Drive Protection 643 L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648		·	
L9: Drive Protection 2 645 B.11 n: Special Adjustment 646 n1: Hunting Prevention 646 n2: Speed Feedback Detection Control (AFR) Tuning 646 n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648		·	
B.11 n: Special Adjustment. 646 n1: Hunting Prevention. 646 n2: Speed Feedback Detection Control (AFR) Tuning. 646 n3: High Slip Braking (HSB) and Overexcitation Braking. 647 n5: Feed Forward Control. 648 n6: Online Tuning. 648 n8: PM Motor Control Tuning. 648			
n1: Hunting Prevention646n2: Speed Feedback Detection Control (AFR) Tuning646n3: High Slip Braking (HSB) and Overexcitation Braking647n5: Feed Forward Control648n6: Online Tuning648n8: PM Motor Control Tuning648	R 11		
n2: Speed Feedback Detection Control (AFR) Tuning646n3: High Slip Braking (HSB) and Overexcitation Braking647n5: Feed Forward Control648n6: Online Tuning648n8: PM Motor Control Tuning648	D. 1 1		
n3: High Slip Braking (HSB) and Overexcitation Braking 647 n5: Feed Forward Control 648 n6: Online Tuning 648 n8: PM Motor Control Tuning 648			
n5: Feed Forward Control		· · · · · · · · · · · · · · · · · · ·	
n6: Online Tuning			
n8: PM Motor Control Tuning648			
· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	B.12		

		o1: Digital Operator Display Selection	652
		o2: Digital Operator Keypad Functions	
		o3: Copy Function	
		o4: Maintenance Monitor Settings	
	B.13	DriveWorksEZ Parameters	
		q: DriveWorksEZ Parameters	
		r: DriveWorksEZ Connection Parameters	
	B.14	· T: Motor Tuning	
		T1: Induction Motor Auto-Tuning	
		T2: PM Motor Auto-Tuning	
	D 45	T3: ASR and Inertia Tuning	
	B.15	U: Monitors	
		U1: Operation Status Monitors	
		U2: Fault TraceU3: Fault History	
		U4: Maintenance Monitors	
		U5: PID Monitors	
		U6: Operation Status Monitors	
		U8: DriveWorksEZ Monitors	
	B.16	Control Mode Dependent Parameter Default Values	671
		A1-02 (Motor 1 Control Mode) Dependent Parameters	
		E3-01 (Motor 2 Control Mode) Dependent Parameters	
		V/f Pattern Default Values	
	B.18	Defaults by Drive Model and Duty Rating ND/HD	677
	B.19	Parameters Changed by Motor Code Selection (for PM Motors)	694
		Yaskawa SMRA Series SPM Motor	
		Yaskawa SSR1 Series IPM Motor (For Derated Torque)	
		Yaskawa SST4 Series IPM Motor (For Constant Torque)	703
C.	MEI	MOBUS/MODBUS COMMUNICATIONS	713
	C.1	MEMOBUS/Modbus Configuration	714
		Communication Specifications	
	C.3	•	
		Network Cable Connection	
		Wiring Diagram for Multiple Connections	
		Network Termination	
	C.4	MEMOBUS/Modbus Setup Parameters	719
		MEMOBUS/Modbus Serial Communication	719
	C.5	Drive Operations by MEMOBUS/Modbus	722
		Observing the Drive Operation	722
		Controlling the Drive	722
	C.6	Communications Timing	723
		Command Messages from Master to Drive	
		Response Messages from Drive to Master	
	C.7	Message Format	
		Message Content	
		Slave Address Function Code	

		DataError Check	
	C.8	Message Examples	
		Reading Drive MEMOBUS/Modbus Register Contents	
		Loopback Test	
		Writing to Multiple Registers	727
	C.9	MEMOBUS/Modbus Data Table	728
		Command Data	
		Monitor Data	
		Broadcast Messages	
		Fault Trace Contents	
	C 10) Enter Command	
	C. IC		
		Enter Command Types Enter Command Settings when Upgrading the Drive	
	C 11		
	U. 1 I	Communication Errors	
		Slave Not Responding	
	C 10	1 3	
	C. 12	2 Self-Diagnostics	
D.	STA	ANDARDS COMPLIANCE	747
	D.1	Section Safety	748
	D.2	European Standards	750
		CE Low Voltage Directive Compliance	750
		EMC Guidelines Compliance	754
	D.3	UL and CSA Standards	760
		UL Standards Compliance	760
		CSA Standards Compliance	
		Drive Motor Overload Protection	
		Precautionary Notes on External Heatsink (IP00/Open Type Enclosure)	
	D.4	Safe Disable Input Function	
		Specifications	
		Precautions	
		Using the Safe Disable Function	779
E.	QUI	ICK REFERENCE SHEET	783
	E.1	Drive and Motor Specifications	784
		Drive Specifications	
		Motor Specifications	
	E.2	Basic Parameter Settings	786
		Basic Setup	
		V/f Pattern Setup	
		Motor Setup	
		Multi-Function Digital Inputs	
		Pulse Train Input/Analog Inputs	
		Multi-Function Digital Outputs	
	_ ^	Monitor Outputs	
	E.3	User Setting Table	788

NDEX797

i

Preface & General Safety

This section provides safety messages pertinent to this product that, if not heeded, may result in fatality, personal injury, or equipment damage. Yaskawa is not responsible for the consequences of ignoring these instructions.

i.1	PREFACE	18
i.2	GENERAL SAFETY	20

i.1 Preface

Yaskawa manufactures products used as components in a wide variety of industrial systems and equipment. The selection and application of Yaskawa products remain the responsibility of the equipment manufacturer or end user. Yaskawa accepts no responsibility for the way its products are incorporated into the final system design. Under no circumstances should any Yaskawa product be incorporated into any product or design as the exclusive or sole safety control. Without exception, all controls should be designed to detect faults dynamically and fail safely under all circumstances. All systems or equipment designed to incorporate a product manufactured by Yaskawa must be supplied to the end user with appropriate warnings and instructions as to the safe use and operation of that part. Any warnings provided by Yaskawa must be promptly provided to the end user. Yaskawa offers an express warranty only as to the quality of its products in conforming to standards and specifications published in the Yaskawa manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS OFFERED. Yaskawa assumes no liability for any personal injury, property damage, losses, or claims arising from misapplication of its products.

This manual is designed to ensure correct and suitable application of A1000-Series Drives. Read this manual before attempting to install, operate, maintain, or inspect a drive and keep it in a safe, convenient location for future reference. Be sure you understand all precautions and safety information before attempting application.

◆ Applicable Documentation

The following manuals are available for A1000 series drives:

A1000 Series AC Drive Technical Manual (SIEPC71061641)

This manual provides detailed information on parameter settings, drive functions, and MEMOBUS/Modbus specifications. Use this manual to expand drive functionality and to take advantage of higher performance features. This manual is available for download on our documentation website, www.yaskawa.com.

A1000 Series AC Drive Quick Start Guide (TOEPC71061641)

Read this guide first. This guide is packaged together with the product and contains basic information required to install and wire the drive. It also gives an overview of fault diagnostics, maintenance, and parameter settings. The purpose of this guide is to prepare the drive for a trial run with an application and for basic operation. This manual is available for download on our documentation website, www.yaskawa.com.

Symbols

Note: Indicates a supplement or precaution that does not cause drive damage.

Indicates a term or definition used in this manual.

Terms and Abbreviations

- Drive: Yaskawa A1000-Series Drive
- BCD: Binary Coded Decimal
- H: Hexadecimal Number Format
- IGBT: Insulated Gate Bipolar Transistor
- kbps: Kilobits per Second
- MAC: Media Access Control
- Mbps: Megabits per Second
- PG: Pulse Generator
- r/min: Revolutions per Minute
- V/f: V/f Control
- V/f w/PG: V/f Control with PG
- OLV: Open Loop Vector Control
- CLV: Closed Loop Vector Control
- OLV/PM: Open Loop Vector Control for PM
- AOLV/PM: Advanced Open Loop Vector Control for PM
- CLV/PM: Closed Loop Vector Control for PM
- PM motor: Permanent Magnet Synchronous motor (an abbreviation for IPM motor or SPM motor)
- IPM motor: Interior Permanent Magnet Motor (e.g., Yaskawa SSR1 Series and SST4 Series motors)
- SPM motor: Surface mounted Permanent Magnet Motor (e.g., Yaskawa SMRA Series motors)

Trademarks

- BACnet is a trademark of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE).
- CANopen is a trademark of CAN in Automation (CiA).
- CC-Link is a trademark of CC-Link Partner Association (CLPA).
- DeviceNet is a trademark of Open DeviceNet Vendor Association, Inc. (ODVA).
- EtherCAT is a trademark of Beckhoff Automation GmbH, Germany.
- EtherNet/IP is a trademark of Open DeviceNet Vendor Association, Inc. (ODVA).
- LonWorks is a trademark of Echelon Corporation.
- MECHATROLINK-I, MECHATROLINK-II, and MECHATROLINK-III are trademarks of MECHATROLINK Members Association (MMA).
- Modbus is a trademark of Schneider Electric.
- PROFIBUS-DP is a trademark of PROFIBUS International (PI).
- PROFNET is a trademark of PROFIBUS International (PI).
- Other companies and product names mentioned in this manual are trademarks of those companies.

i.2 General Safety

Supplemental Safety Information

General Precautions

- The diagrams in this manual may be indicated without covers or safety shields to show details. Replace the covers or shields before operating the drive and run the drive according to the instructions described in this manual.
- Any illustrations, photographs, or examples used in this manual are provided as examples only and may not apply to all products to which this manual is applicable.
- The products and specifications described in this manual or the content and presentation of the manual may be changed without notice to improve the product and/or the manual.
- When ordering a new copy of the manual due to damage or loss, contact your Yaskawa representative or the nearest Yaskawa sales office and provide the manual number shown on the front cover.
- If nameplate becomes worn or damaged, order a replacement from your Yaskawa representative or the nearest Yaskawa sales office.

A WARNING

Read and understand this manual before installing, operating or servicing this drive. The drive must be installed according to this manual and local codes.

The following conventions are used to indicate safety messages in this manual. Failure to heed these messages could result in serious or fatal injury or damage to the products or to related equipment and systems.

A DANGER

Indicates a hazardous situation, which, if not avoided, will result in death or serious injury.

A WARNING

Indicates a hazardous situation, which, if not avoided, could result in death or serious injury.

WARNING! may also be indicated by a bold key word embedded in the text followed by an italicized safety message.

A CAUTION

Indicates a hazardous situation, which, if not avoided, could result in minor or moderate injury.

CAUTION! may also be indicated by a bold key word embedded in the text followed by an italicized safety message.

NOTICE

Indicates a property damage message.

NOTICE: may also be indicated by a bold key word embedded in the text followed by an italicized safety message.

Safety Messages

A DANGER

Heed the safety messages in this manual.

Failure to comply will result in death or serious injury.

The operating company is responsible for any injuries or equipment damage resulting from failure to heed the warnings in this manual.

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply will result in death or serious injury.

Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

A WARNING

Sudden Movement Hazard

System may start unexpectedly upon application of power, resulting in death or serious injury.

Clear all personnel from the drive, motor and machine area before applying power. Secure covers, couplings, shaft keys and machine loads before applying power to the drive.

When using DriveWorksEZ to create custom programming, the drive I/O terminal functions change from factory settings and the drive will not perform as outlined in this manual.

Unpredictable equipment operation may result in death or serious injury.

Take special note of custom I/O programming in the drive before attempting to operate equipment.

Electrical Shock Hazard

Do not attempt to modify or alter the drive in any way not explained in this manual.

Failure to comply could result in death or serious injury.

Yaskawa is not responsible for any modification of the product made by the user. This product must not be modified.

Do not allow unqualified personnel to use equipment.

Failure to comply could result in death or serious injury.

Maintenance, inspection, and replacement of parts must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Make sure the protective earthing conductor complies with technical standards and local safety regulations.

Because the leakage current exceeds 3.5 mA in models 4A0414 and larger, IEC/EN 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor or a protective earthing conductor with a cross-section of at least 10 mm² (Cu) or 16 mm² (Al) must be used. Failure to comply may result in death or serious injury.

Always use appropriate equipment for Ground Fault Circuit Interrupters (GFCIs).

The drive can cause a residual current with a DC component in the protective earthing conductor. Where a residual current operated protective or monitoring device is used for protection in case of direct or indirect contact, always use a type B GFCI according to IEC/EN 60755.

Fire Hazard

Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

A WARNING

Install adequate branch circuit protection according to applicable local codes and this Installation Manual. Failure to comply could result in fire and damage to the drive or injury to personnel.

The device is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 240 Vac maximum (200 V class) and 480 Vac maximum (400 V class), and 600 Vac maximum (600 V class) when protected by branch circuit protection devices specified in this document.

Crush Hazard

Do not use this drive in lifting applications without installing external safety circuitry to prevent accidental dropping of the load.

The drive does not possess built-in load drop protection for lifting applications.

Failure to comply could result in death or serious injury from falling loads.

Install electrical and/or mechanical safety circuit mechanisms independent of drive circuitry.

A CAUTION

Crush Hazard

Do not carry the drive by the front cover.

Failure to comply may result in minor or moderate injury from the main body of the drive falling.

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Do not perform a withstand voltage test on any part of the drive.

Failure to comply could result in damage to the sensitive devices within the drive.

Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment.

Do not connect or operate any equipment with visible damage or missing parts.

If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices.

Contact your supplier if the cause cannot be identified after checking the above.

Do not restart the drive immediately operate the peripheral devices if a fuse is blown or a GFCI is tripped.

Check the wiring and the selection of peripheral devices to identify the cause. Contact your supplier before restarting the drive or the peripheral devices if the cause cannot be identified.

Do not expose the drive to halogen group disinfectants.

Failure to comply may cause damage to the electrical components in the drive.

Do not pack the drive in wooden materials that have been fumigated or sterilized.

Do not sterilize the entire package after the product is packed.

General Application Precautions

■ Selection

Installing a Reactor

Use an AC reactor or DC link choke in the following situations:

- to suppress harmonic current.
- to smooth peak current that results from capacitor switching.
- when the power supply is above 600 kVA.
- when the drive is running from a power supply system with thyristor converters.

Note: A DC link choke is built in to drive models 2A0110 to 2A0415, 4A0058 to 4A1200, and 5A0041 to 5A0242.

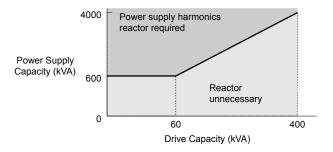


Figure i.1 Installing a Reactor

Drive Capacity

For specialized motors, make sure that the motor rated current is less than the rated output current for the drive.

When running more than one motor in parallel from a single drive, the capacity of the drive should be larger than [total motor rated current \times 1.1].

Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

Emergency Stop

During a drive fault condition, the output shuts off but the motor does not stop immediately. A mechanical brake may be required when it is necessary to stop the motor faster than the ability of the Fast Stop function of the drive.

Options

NOTICE: The B1, B2, \ominus , \oplus 1, \oplus 2, and \oplus 3 terminals are used to connect optional drive-specific compatible devices only. Connecting non-Yaskawa-approved devices to these terminals may damage the drive.

Repetitive Starting/Stopping

Laundry machines, punching presses, and other applications with frequent starts and stops often approach 150% of their rated current values. Heat stress generated from repetitive high current will shorten the life span of the IGBTs.

Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. It is beneficial to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive to help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.

Installation

Enclosure Panels

Keep the drive in a clean environment by installing the drive in an enclosure panel or selecting an installation area free of airborne dust, lint, and oil mist. Be sure to leave the required space between drives to provide for cooling, and take proper measures so the ambient temperature remains within allowable limits and keep flammable materials away from the drive. Yaskawa offers protective designs for drives that must be used in areas subjected to oil mist and excessive vibration. Contact Yaskawa or your Yaskawa agent for details.

Installation Direction

NOTICE: Install the drive upright as specified in the manual. Refer to Mechanical Installation on page 54 for more information on installation. Failure to comply may damage the drive due to improper cooling.

■ Settings

Motor Code

When using OLV/PM, set the proper motor code to parameter E5-01 before performing a trial run.

Upper Limits

NOTICE: The drive is capable of running the motor up to 400 Hz. Be sure to set the upper limit for the frequency of the drive to prevent the possible danger of accidentally operating equipment at higher than rated speed. The default setting for the maximum output frequency is 60 Hz.

DC Injection Braking

NOTICE: Excessive current during DC Injection Braking and excessive duration of DC Injection Braking can cause motor overheat.

Acceleration/Deceleration Times

Acceleration and deceleration times are affected by the amount of torque generated by the motor, the load torque, and the inertia moment. Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is in operation. Install one of the available braking options or increase the capacity of the drive for faster acceleration and deceleration.

■ General Handling

Wiring Check

NOTICE: Do not connect power supply lines to output terminals U/T1, V/T2, or W/T3. Failure to comply will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning on the power and also check for short circuits on the control terminals, which may damage the drive.

Selecting a Circuit Breaker or Circuit Interrupter

Yaskawa recommends installing a Ground Fault Circuit Interrupter (GFCI) to the power supply side. The GFCI should be designed for use with AC drives (e.g., Type B according to IEC/EN 60755).

Select a Molded Case Circuit Breaker (MCCB) or GFCI with a rated current 1.5 to 2 times higher than the drive rated current to avoid nuisance trips caused by harmonics in the drive input current. *Refer to Installing a Molded Case Circuit Breaker (MCCB) or Ground Fault Circuit Interrupter (GFCI) on page 535* for more information.

NOTICE: Prevent Equipment Damage. Install a fuse and a GFCI in models 4A0930 and 4A1200. Failure to comply may result in serious damage to the facilities if the drive is defective. Refer to Wiring Fuses for Models 4A0930 and 4A1200 on page 153 for details.

Magnetic Contactor Installation

WARNING! Fire Hazard. Shut off the drive with a magnetic contactor (MC) when a fault occurs in any external equipment such as braking resistors. Refer to Installing a Magnetic Contactor at the Power Supply Side on page 535. Failure to comply may cause resistor overheating, fire, and injury to personnel.

NOTICE: To get the full performance life out of the electrolytic capacitors and circuit relays, refrain from switching the drive power supply off and on more than once every 30 minutes. Frequent use can damage the drive. Use the drive to stop and start the motor.

Inspection and Maintenance

WARNING! Electrical Shock Hazard. Capacitors in the drive do not immediately discharge after shutting off the power. Wait for at least the amount of time specified on the drive before touching any components after shutting off the power. Failure to comply may cause injury to personnel from electrical shock.

WARNING! Electrical Shock Hazard. When a drive is running a PM motor, voltage continues to be generated at the motor terminals after the drive is shut off while the motor coasts to stop. Take the precautions described below to prevent shock and injury:

- In applications where the machine can still rotate after the drive has fully stopped a load, install a switch to the drive output side to disconnect the motor and the drive.
- · Do not allow an external force to rotate the motor beyond the maximum allowable speed or to rotate the motor when the drive has been shut off.
- · Wait for at least the time specified on the warning label after opening the load switch on the output side before inspecting the drive or performing any maintenance.
- · Do not open and close the load switch while the motor is running.
- · If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.

WARNING! Burn Hazard. Because the heatsink can get very hot during operation, take proper precautions to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down. Failure to comply may cause burn injury to personnel.

Wiring

Yaskawa recommends using ring terminals on all drive models. Drive models 2A0069 to 2A0415 and 4A0058 to 4A1200 require the use of use ring terminals for UL/cUL compliance. Use only the tools recommended by the terminal manufacturer for crimping.

Transporting the Drive

NOTICE: Never steam clean the drive. During transport, keep the drive from coming into contact with salts, fluorine, bromine, phthalate ester, and other such harmful chemicals.

Motor Application Precautions

■ Standard Induction Motors

Low-Speed Range

The cooling fan of a standard motor should sufficiently cool the motor at the rated speed. As the self-cooling capability of such a motor reduces with the speed, applying full torque at low speed will possibly damage the motor. Reduce the load torque as the motor slows to prevent motor damage from overheat. *Figure i.2* shows the allowable load characteristics for a Yaskawa standard motor. Use a motor designed specifically for operation with a drive when 100% continuous torque is needed at low speeds.

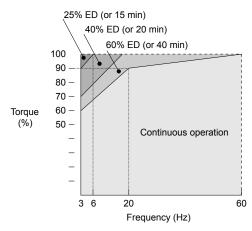


Figure i.2 Allowable Load Characteristics for a Yaskawa Motor

Insulation Tolerance

NOTICE: Consider motor voltage tolerance levels and motor insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

High-Speed Operation

NOTICE: Problems may occur with the motor bearings and dynamic balance of the machine when operating a motor beyond its rated speed. Contact the motor or machine manufacturer.

Torque Characteristics

Torque characteristics differ compared to operating the motor directly from line power. The user should have a full understanding of the load torque characteristics for the application.

Vibration and Shock

The drive allows selection of high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation.

- Take particular caution when adding a variable speed drive to an application running a motor from line power at a constant speed. If resonance occurs, install shock-absorbing rubber around the base of the motor and enable the Jump frequency selection to prevent continuous operation in the resonant frequency range.
- Mechanical resonance can occur with long motor shafts and in applications such as turbines, blowers, and fans with high inertia loads. Use Closed Loop Vector Control when these applications experience mechanical resonance problems.

Audible Noise

The audible noise of the motor varies based on the carrier frequency setting. However, drive current derating may be required. When using a high carrier frequency, audible noise from the motor is comparable to the motor noise generated when running from line power.

■ Synchronous Motors

- Contact Yaskawa or a Yaskawa agent when planning to use a synchronous motor not endorsed by Yaskawa.
- Use a standard induction motor when running multiple synchronous motors simultaneously. A single drive does not have this capability.

i.2 General Safety

- A synchronous motor may rotate slightly in the opposite direction of the Run command at start depending on parameter settings and rotor position.
- The amount of generated starting torque differs depending on the control mode and motor type. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.
 - Contact Yaskawa or a Yaskawa agent when planning to use a motor that does not fall within these specifications:
- In Open Loop Vector Control for PM motors, braking torque is less than 125% when running between 20% and 100% speed, even with a braking resistor. Braking torque drops to less than 50% when running at less than 20% speed.
- In Open Loop Vector Control for PM motors, the allowable load inertia moment is approximately 50 times higher than the motor inertia moment.
 - Contact Yaskawa or a Yaskawa agent for questions concerning applications with a larger inertia moment.
- When using a holding brake in Open Loop Vector Control for PM motors, release the brake prior to starting the motor. Failure to set the proper timing can cause speed loss.
- To restart a coasting motor rotating over 200 Hz while in V/f Control, first use the Short Circuit Braking function to bring
 the motor to a stop. Short Circuit Braking requires a special braking resistor. Contact Yaskawa or a Yaskawa agent for
 details.
- To restart a coasting motor rotating below 200 Hz, use the Speed Search function if the motor cable is not too long. If the motor cable is relatively long, stop the motor using Short Circuit Braking.
- If oC (Overcurrent), STo (Pull-Out Detection), or LSo (LSo Fault) occur, retry Speed Search and use the Short Circuit Braking function when starting to adjust the motor.

Specialized Motors

Multi-Pole Motor

The rated current of a multi-pole motor differs from that of a standard motor, so be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. The motor will coast to stop if a regen overvoltage (ov) fault occurs or if overcurrent (oC) protection is triggered.

Submersible Motor

The rated current of a submersible motor is greater than that of a standard motor, so select the drive capacity accordingly. Use a motor cable large enough to avoid decreasing the maximum torque level from voltage drop caused by a long motor cable.

Explosion-Proof Motor

The motor and the drive must be tested together to be certified as explosion-proof. The drive is not designed for explosion-proof areas.

When attaching an encoder to an explosion-proof motor, make sure the encoder is also explosion-proof. Use an insulating signal converter to connect the encoder signal lines to the speed feedback option card.

Geared Motor

Make sure that the gear and the lubricant are rated for the desired speed range to avoid gear damage when operating at low speeds or very high speeds. Consult with the manufacturer for applications that require operation outside the rated speed range of the motor or gear box.

Single-Phase Motor

Variable speed drives are not designed to operate with single phase motors. Using capacitors to start the motor causes excessive current to flow and can damage drive components. A split-phase start or a repulsion start can burn out the starter coils because the internal centrifugal switch is not activated. The drive is for use with three-phase motors only.

Motor with Brake

Take caution when using the drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels, so be sure to install a separate power supply for the motor brake. Note that motors with built-in brakes tend to generate a fair amount of noise when running at low speeds.

■ Notes on Power Transmission Machinery

Installing an AC drive in machinery that was previously connected directly to the power supply will allow the machine to operate at variable speeds. Continuous operation outside of the rated speeds can wear on lubrication material in gear boxes and other power transmission parts. Make sure that lubrication is sufficient within the entire speed range to avoid machine damage. Note that operation above the rated speed can increase the noise generated by the machine.

Drive Label Warning Example

Always heed the warning information listed in *Figure i.3* in the position shown in *Figure i.4*.

- Risk of electric shock.
- Read manual before installing.
 Wait 5 minutes for capacitor discharge after disconnecting power supply.
- To conform to **(**\$\iff\$ requirements, make sure to ground the supply neutral for 400V class.
- After opening the manual switch between the drive and motor, please wait 5 minutes before inspecting, performing maintenance or wiring the drive.

Hot surfaces

 Top and Side surfaces may become hot. Do not touch.

Figure i.3 Warning Information Example

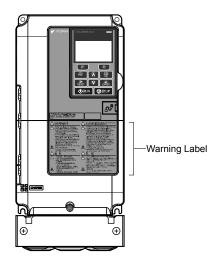


Figure i.4 Warning Information Position

Warranty Information

■ Restrictions

The drive is not designed or manufactured for use in devices or systems that may directly affect or threaten human lives or health.

Customers who intend to use the product described in this manual for devices or systems relating to transportation, health care, space aviation, atomic power, electric power, or in underwater applications must first contact their Yaskawa representatives or the nearest Yaskawa sales office.

WARNING! Injury to Personnel. This product has been manufactured under strict quality-control guidelines. However, if this product is to be installed in any location where failure of this product could involve or result in a life-and-death situation or loss of human life or in a facility where failure may cause a serious accident or physical injury, safety devices must be installed to minimize the likelihood of any accident.

i.2 General Safety

This Page Intentionally Blank

Receiving

This chapter explains how to inspect the drive upon receipt, and gives an overview of the different enclosure types and components.

1.1	SECTION SAFETY	30
1.2	GENERAL DESCRIPTION	31
1.3	MODEL NUMBER AND NAMEPLATE CHECK	35
1.4	DRIVE MODELS AND ENCLOSURE TYPES	40
1.5	COMPONENT NAMES	42

1.1 Section Safety

A CAUTION

Do not carry the drive by the front cover or the terminal cover.

Failure to comply may cause the main body of the drive to fall, resulting in minor or moderate injury.

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

A motor connected to a PWM drive may operate at a higher temperature than a utility-fed motor and the operating speed range may reduce motor cooling capacity.

Ensure that the motor is suitable for drive duty and/or the motor service factor is adequate to accommodate the additional heating with the intended operating conditions.

1.2 General Description

◆ A1000 Model Selection

Refer to *Table 1.1* for drive selection depending on the motor power and Normal Duty (ND) or Heavy Duty (HD) rating.

Note: The models and capacities in shown here are based on standard settings and operation conditions. Higher carrier frequencies and higher ambient temperatures require derating.

Table 1.1 A1000 Models

	1	hree-Phase	200 V Clas	Three-Phase 600 V Class								
		uty Rating	Normal D			Three-Phase uty Rating	Normal D			ıty Rating	Normal Duty Rating	
Motor Power HP	Drive Model	Rated Output Current (A)	Drive Model	Rated Output Current (A) <3>	Drive Model	Rated Output Current (A)	Drive Model	Rated Output Current (A) <3>	Drive Model	Rated Output Current (A)	Drive Model	Rated Output Current (A) <3>
0.75	2A0004	3.2 <1>	2A0004	3.5	4A0002	1.8 <1>	4A0002	2.1	-	-	_	_
1	2A0006	5 <1>	2A0006	6	_	_	_		5A0003	1.7	_	_
2	2A0008	6.9 <1>	2A0008	8	4A0004	3.4 <1>	4A0004	4.1	5A0004	3.5	5A0003	2.7
	2A0010	8 <1>	_	_	_	_	_	_	_	_	_	-
	-	-	_	-	4A0005	4.8 <1>	_	-	_	-	_	-
3	2A0012	11 <1>	2A0010	9.6	4A0007	5.5 <1>	4A0005	5.4	5A0006	4.1	5A0004	3.9
	2A0018	14 < 1 >	2A0012	12	-	-	4A0007	6.9	-	-	-	-
_		-	_	-	4A0009	7.2 <1>	_	-	_	_	_	-
5	2A0021	17.5 < 1>	2A0018	17.5	4A0011	9.2 <1>	4A0009	8.8	5A0009	6.3	5A0006	6.1
7.5	2A0030	25 <1>	2A0021	21	4A0018	14.8 <1>	4A0011	11.1	5A0011	9.8	5A0009	9
10	2A0040	33 <1>	2A0030	30	4A0023	18 <1>	4A0018	17.5	5A0017	12.5	5A0011	11
15	2A0056	47 < 1 >	2A0040	40	4A0031	24 <1>	4A0023	23	5A0022	17	5A0017	17
20	2A0069	60 <1>	2A0056	56	4A0038	31 <1>	4A0031	31	5A0027	22	5A0022	22
25	2A0081	75 <1>	2A0069	69	_	_	4A0038	38	5A0032	27	5A0027	27
25.20	_	_	_	-	4A0044	39 <1>	_	-	-	-	-	-
25-30	-	_	_	_	4A0058	45 <1>	_	_	5A0041	32	_	_
30	2A0110	85 <1>	2A0081	81	_	_	4A0044	44	_	-	5A0032	32
40	2A0138	115 <1>	2A0110	110	4A0072	60 <1>	4A0058	58	5A0052	41	5A0041	41
50	2A0169	145 <2>	2A0138	138	-	-	4A0072	72			5A0052	52
50.60	-	-	-	-	4A0088	75 <1>	-	-	5A0062	52	_	-
50-60	-	-	_	-	4A0103	91 < <i>1</i> >	_	-	5A0077	62	_	-
60	2A0211	180 <2>	2A0169	169	_	_	4A0088	88	_	-	5A0062	62
75	2A0250	215 <2>	2A0211	211	4A0139	112 <2>	4A0103	103	5A0099	77	5A0077	77
100	2A0312	283 <2>	2A0250	250	4A0165	150 <2>	4A0139	139	5A0125	99	5A0099	99
125	2A0360	346 <2>	2A0312	312	-	-	4A0165	165	5A0145	130	5A0125	125
125-150	_	_	-	_	4A0208	180 <2>	-	_	-	_	-	_
150	2A0415	415 <2>	2A0360	360	4A0250	216 <2>	4A0208	208	5A0192	172	5A0145	145
175	-	-	2A0415	415	-	-	_	-	-	-	-	-
200	_	_	_	-	4A0296	260 <2>	4A0250	250	5A0242	200	5A0192	192
250	-	-	-	-	4A0362	304 <2>	4A0296	296	-	-	5A0242	242
300	-	_	_	_	4A0414	370 <2>	4A0362	362	-	_	-	-
350	-	_	_	_	4A0515	450 <3>	4A0414	414	-	_	-	-
400-450	_	_	_	_	_	_	4A0515	515	_	_	_	_

	7	Three-Phase	200 V Clas	s	T	hree-Phase	400 V Clas	s	Three-Phase 600 V Class				
Motor	Heavy Duty Rating		Normal Duty Rating		Heavy Duty Rating		Normal Duty Rating		Heavy Duty Rating		Normal Duty Rating		
Power HP	Drive Model	Rated Output Current (A)	Drive Model	Rated Output Current (A) <3>	Drive Model	Rated Output Current (A)	Drive Model	Rated Output Current (A) <3>	Drive Model	Rated Output Current (A)	Drive Model	Rated Output Current (A) <3>	
400-450- 500	_	-	-	_	4A0675	605 <3>	-	-	-	-	_	_	
500-550	_	-	-	-	-	-	4A0675	675	-	-	-	_	
650	-	_	-	_	4A0930	810 <3>	_	-	-	_	_	_	
750	-	_	_	-	-	-	4A0930	930	-	-	-	_	
900	-	_	_	_	4A1200	1090 <3>	_	_	_	_	_	_	
1000	_	_	_	_	_	_	4A1200	1200	_	_	_	_	

<1> These values assume the carrier frequency is not set higher than 8 kHz.

Note: Current derating is required when setting the carrier frequency higher. Refer to Carrier Frequency Derating on page 567 for details.

Control Mode Selection

Table 1.2 gives an overview of the A1000 control modes and their various features.

Table 1.2 Control Modes and their Features

Motor	Туре		Induction	n Motors		Vector control for PM motors Vector control for IPM motors Vector control for PM motors PM IPM PM - - - YES YES YES - YES YES			Comments
Contro	Control Mode		V/f w/PG	OLV	CLV	OLV/PM	AOLV/PM	CLV/PM	-
Parameter Setting		A1-02 = 0	A1-02 = 1	A1-02 = 2	A1-02 = 3	A1-02 = 5	A1-02 = 6	A1-02 = 7	Default Setting is OLV control (A1-02 =2)
Basic Description		V/f control	V/f control using motor speed feedback	Open Loop Vector control	Closed Loop Vector control	Vector control	Vector control	Closed Loop Vector control for PM motors	-
	Motor Type	IM	IM	IM	IM	PM	IPM	PM	_
	Multi Motor	YES	_	-	_	_	_	-	-
	Motor data unknown	YES	_	_	_	_	_	_	-
	High Speed Accuracy	-	YES	YES	YES	YES	YES	YES	-
Type of Applications	High Speed Response	-	_	YES	YES	_	YES	YES	-
	Zero Speed Control	_	_	_	YES	_	YES	YES	-
	Torque Control Operation	-	_	ı	YES	_	_	YES	-
	Torque Limit Operation	_	_	YES	YES	-	-	YES	_
PG Opti	PG Option Card		PG-B3 or PG-X3	ı	PG-B3 or PG-X3	_	_	PG-X3	-

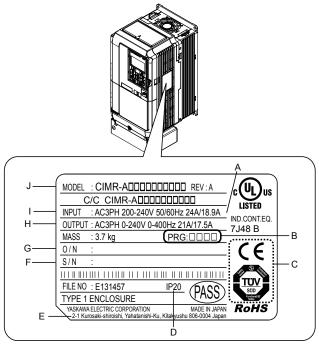
<2> These values assume the carrier frequency is not set higher than 5 kHz.

<3> These values assume the carrier frequency is set to 2 kHz.

Motor	Туре		Induction	n Motors		Permar	nent Magnet Mot	tors <1>	Comments
	Speed Control Range	1:40	1:40	1:200	1:1500	1:20	1:20 1:100	1:1500	May fluctuate with characteristics and motor temperature. May fluctuate with characteristics and motor temperature. Enabled for 1:100 when n8-57, High Frequency Injection, is set to 1 (Enabled).
	Speed Accuracy	±2 to 3%	±0.03%	±0.2%	±0.02%	±0.2%	±0.2%	±0.02%	Speed deviation when operating at constant speed may fluctuate with characteristics and motor temperature.
Control Characteristics	Speed Response	3 Hz (approx.)	3 Hz (approx.)	10 Hz	50 Hz	10 Hz	10 Hz	50 Hz	Max. frequency of a speed reference signal that the drive can follow may fluctuate with characteristics and motor temperature.
	Starting Torque	150% at 3 Hz	150% at 3 Hz	200% at 0.3 Hz	200% at 0 r/min	100% at 5% speed	100% at 5% speed 200% at 0 r/min	200% at 0 r/min	Starting torque may fluctuate with characteristics and motor temperature. Performance may differ by capacity. 200% at 0 r/min enabled when n8-57, High Frequency Injection, is set to 1 (Enabled).
Application-	Auto-Tuning	Energy Saving Tuning Line to line resistance	Energy Saving Tuning Line to line resistance	Rotational Stationary Line to line resistance	Rotational Stationary Line to line resistance ASR Inertia	Stationary Stator resistance	Stationary Stator resistance	Stationary Stator resistance ASR Inertia Encoder offset Back EMF Constant	Automatically adjusts parameter settings that concern electrical characteristics of the motor.
Specific	Torque Limit	-	-	YES	YES	-	YES	YES	Sets the maximum torque for the motor to protect the load and connected machinery.
	Torque Control	-	-	-	YES	_	_	YES	Allows direct control of motor torque for tension control and other such applications.

1.2 General Description

Motor Type			Induction	n Motors		Permar	Comments		
	Droop Function	-	-	-	YES	-	-	YES	-
	Zero Servo Control	-	_	_	YES	_	_	YES	Locks the rotor position.
	Speed Search	YES	YES	YES	-	YES	YES	YES	Bi-directional speed detection of a coasting motor to restart it without stopping.
	Energy-Saving Control	YES	YES	YES	YES	_	YES (IPM motors only)	YES (IPM motors only)	Saves energy by always operating the motor at its maximum efficiency.
	High Slip Braking	YES	YES	-	-	-	-	-	Increases motor loss to allow for faster deceleration than normal without a braking resistor. Effectiveness may vary based on motor characteristics.
Application- Specific	Feed Forward Control	-	-	-	YES	-	-	YES	Improves speed accuracy when the load changes by compensating effects of the system inertia.
	Kinetic Energy Buffering	YES	YES	YES	YES	YES	YES	YES	Decelerates the drive to allow it to ride through a momentary power loss and continue operation.
	Over- excitation Deceleration	YES	YES	YES	YES	_	-	-	Provides fast deceleration without using a braking resistor.
	Inertia Tuning, ASR Tuning	-	-	-	YES	_	-	YES	Provides automatic Speed Control and Feed Forward function tuning.
	Overvoltage Suppression	YES	YES	YES	YES	YES	YES	YES	Prevents overvoltage by increasing speed during regeneration.
	High Frequency Injection	-	_	_	_	_	YES (IPM motor)	_	Greatly increases the speed control range of an IPM motor.

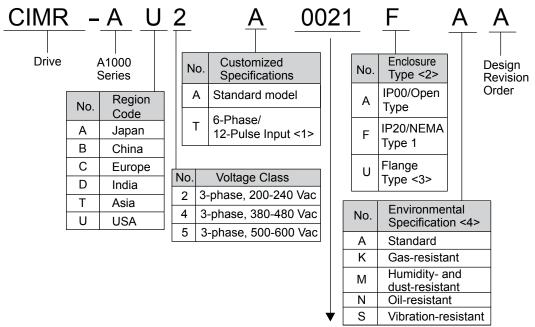

<1> PM motor control modes are not available on 600 V class drives, models 5A \(\sigma \square\$ \)

1.3 Model Number and Nameplate Check

Please perform the following tasks after receiving the drive:

- Inspect the drive for damage.
 - If the drive appears damaged upon receipt, contact the shipper immediately.
- Verify receipt of the correct model by checking the information on the nameplate.
- If you have received the wrong model or the drive does not function properly, contact your supplier.

◆ Nameplate



- A Normal Duty Amps / Heavy Duty Amps
- B Software version
- C CE and TÜV Certification <1>
- D Enclosure type
- E Address <2>

- F Serial number
- G-Lot number
- H Output specifications
- I Input specifications
- J AC drive model

Figure 1.1 Nameplate Information Example

- <1> Certification is model-dependent. Refer to Standards Compliance on page 747 for details.
- <2> The address of the head office of Yaskawa Electric Corporation (responsible for product liability) is shown on the nameplate.

Refer to the tables below

- <1> Refer to manual TOEP C710616 50 for information on 12-pulse models.
- <2> Refer to Drive Models and Enclosure Types on page 40 for differences regarding enclosure protection types and component descriptions.
- <3> Provides method of mounting drive with backside (heatsink) external to enclosure, with NEMA 12 integrity.
- <4> Drives with these specifications do not guarantee complete protection for the environmental conditions indicated.

■ Three-Phase 200 V

Table 1.3 Model Number and Specifications (200 V)

Normal Duty (ND)			
Normal Duty (ND) C6-01 = 1			
Max. Motor Capacity kW (HP)	Rated Output Current A		
0.75 (0.75)	3.5		
1.1 (1)	6.0		
1.5 (2)	8.0		
2.2 (3)	9.6		
3.0 (3)	12		
3.7 (5)	17.5		
5.5 (7.5)	21		
7.5 (10)	30		
11 (15)	40		
15 (20)	56		
18.5 (25)	69		
22 (30)	81		
30 (40)	110		
37 (50)	138		
45 (60)	169		
55 (75)	211		
75 (100)	250		
90 (125)	312		
110 (150)	360		
110 (175)	415		
	C6-01 = 1 Max. Motor Capacity kW (HP) 0.75 (0.75) 1.1 (1) 1.5 (2) 2.2 (3) 3.0 (3) 3.7 (5) 5.5 (7.5) 7.5 (10) 11 (15) 15 (20) 18.5 (25) 22 (30) 30 (40) 37 (50) 45 (60) 55 (75) 75 (100) 90 (125) 110 (150)		

Heavy Duty (HD) C6-01 = 0			
Drive Model	Max. Motor Capacity kW (HP)	Rated Output Current A	
2A0004	0.4 (0.75)	3.2	
2A0006	0.75 (1)	5	
2A0008	1.1 (2)	6.9	
2A0010	1.5 (2)	8	
2A0012	2.2 (3)	11	
2A0018	3.0 (3)	14.0	
2A0021	3.7 (5)	17.5	
2A0030	5.5 (7.5)	25	
2A0040	7.5 (10)	33	
2A0056	11 (15)	47	
2A0069	15 (20)	60	
2A0081	18.5 (25)	75	
2A0110	22 (30)	85	
2A0138	30 (40)	115	
2A0169	37 (50)	145	
2A0211	45 (60)	180	
2A0250	55 (75)	215	
2A0312	75 (100)	283	
2A0360	90 (125)	346	
2A0415	110 (150)	415	

Note: Refer to Drive Models and Enclosure Types on page 40 for differences regarding enclosure protection types and descriptions of drive components.

■ Three-Phase 400 V

Table 1.4 Model Number and Specifications (400 V)

Table 1.4 Wodel Nu		
Normal Duty (ND) C6-01 = 1		
Drive Model	Max. Motor Capacity kW (HP)	Rated Output Current A
4A0002	0.75 (0.75)	2.1
4A0004	1.5 (2)	4.1
4A0005	2.2 (3)	5.4
4A0007	3.0 (3)	6.9
4A0009	3.7 (5)	8.8
4A0011	5.5 (7.5)	11.1
4A0018	7.5 (10)	17.5
4A0023	11 (15)	23
4A0031	15 (20)	31
4A0038	18.5 (25)	38
4A0044	22 (30)	44
4A0058	30 (40)	58
4A0072	37 (50)	72
4A0088	45 (60)	88
4A0103	55 (75)	103
4A0139	75 (100)	139
4A0165	90 (125)	165
4A0208	110 (150)	208
4A0250	132 (200)	250
4A0296	160 (250)	296
4A0362	185 (300)	362
4A0414	220 (350)	414
4A0515	250 (400-450)	515
4A0675	355 (500-550)	675
4A0930	500 (750)	930
4A1200	630 (1000)	1200

Heavy Duty (HD) C6-01 = 0			
Drive Model	Max. Motor Capacity kW (HP)	Rated Output Current A	
4A0002	0.4 (0.75)	1.8	
4A0004	0.75 (2)	3.4	
4A0005	1.5 (3)	4.8	
4A0007	2.2 (3)	5.5	
4A0009	3.0 (5)	7.2	
4A0011	3.7 (5)	9.2	
4A0018	5.5 (7.5)	14.8	
4A0023	7.5 (10)	18	
4A0031	11 (15)	24	
4A0038	15 (20)	31	
4A0044	18.5 (25-30)	39	
4A0058	22 (25-30)	45	
4A0072	30 (40)	60	
4A0088	37 (50-60)	75	
4A0103	45 (50-60)	91	
4A0139	55 (75)	112	
4A0165	75 (100)	150	
4A0208	90 (125-150)	180	
4A0250	110 (150)	216	
4A0296	132 (200)	260	
4A0362	160 (250)	304	
4A0414	185 (300)	370	
4A0515	220 (350)	450	
4A0675	315 (400-450-500)	605	
4A0930	450 (650)	810	
4A1200	560 (900)	1090	

Note: Refer to Drive Models and Enclosure Types on page 40 for differences regarding enclosure protection types and descriptions of drive components.

■ Three-Phase 600 V

Table 1.5 Model Number and Specifications (600 V)

	Table 1.5 Wodel No		
Normal Duty (ND) C6-01 = 1			
Max. Motor Capacity kW (HP)	Rated Output Current A		
1.5 (2)	2.7		
2.2 (3)	3.9		
3.7 (5)	6.1		
5.5 (7.5)	9		
7.5 (10)	11		
11 (15)	17		
15 (20)	22		
18.5 (25)	27		
22 (30)	32		
30 (40)	41		
37 (50)	52		
45 (60)	62		
55 (75)	77		
75 (100)	99		
90 (125)	125		
110 (150)	145		
160 (200)	192		
185 (250)	242		
	Normal Duty (ND) C6-01 = 1 Max. Motor Capacity kW (HP) 1.5 (2) 2.2 (3) 3.7 (5) 5.5 (7.5) 7.5 (10) 11 (15) 15 (20) 18.5 (25) 22 (30) 30 (40) 37 (50) 45 (60) 55 (75) 75 (100) 90 (125) 110 (150) 160 (200)		

Heavy Duty (HD) C6-01 = 0			
Drive Model	Max. Motor Capacity kW (HP)	Rated Output Current A	
5A0003	0.75 (1)	1.7	
5A0004	1.5 (2)	3.5	
5A0006	2.2 (3)	4.1	
5A0009	3.7 (5)	6.3	
5A0011	5.5 (7.5)	9.8	
5A0017	7.5 (10)	12.5	
5A0022	11 (15)	17	
5A0027	15 (20)	22	
5A0032	18.5 (25)	27	
5A0041	22 (25-30)	32	
5A0052	30 (40)	41	
5A0062	37 (50-60)	52	
5A0077	45 (50-60)	62	
5A0099	55 (75)	77	
5A0125	75 (100)	99	
5A0145	90 (125)	130	
5A0192	110 (150)	172	
5A0242	160 (200)	200	

Note: Refer to Drive Models and Enclosure Types on page 40 for differences regarding enclosure protection types and descriptions of drive components.

1.4 Drive Models and Enclosure Types

Two types of enclosures are offered for A1000 drives:

- IP20/NEMA Type 1 enclosure models mount to an indoor wall or in an enclosure panel.
- IP00/Open Type enclosure models are designed for installation in an enclosure panel that serves to protect personnel from injury caused by accidentally touching live parts.

Table 1.6 describes drive enclosures and models.

Table 1.6 Drive Models and Enclosure Types

	Enclosure Types Enclosure Type		
Voltage Class	IP20/NEMA Type 1 Enclosure <1> Drive Model	IP00/Open Type Enclosure Drive Model	
	2A0004F	<1>	
	2A0006F	<1>	
	2A0008F		
	2A0010F	<1>	
	2A0012F	<1>	
	2A0018F	<1>	
	2A0021F		
	2A0030F		
	2A0040F	<1>	
Three-Phase	2A0056F	<1>	
200 V Class	2A0069F		
	2A0081F	<1>	
	2A0110F	<1>	
	2A0138F	<1>	
	2A0169F		
	2A0211F	<1>	
	<⊅>	2A0250A	
	<⊅>	2A0312A	
	<⊅>	2A0360A	
	<3>	2A0415A	
	4A0002F	<1>	
	4A0004F	<1>	
	4A0005F		
	4A0007F	<1>	
	4A0009F		
	4A0011F	<1>	
Three-Phase 400 V Class	4A0018F		
	4A0023F		
	4A0031F		
	4A0038F		
	4A0044F		
	4A0058F	<i></i>	
	4A0072F	<1>	

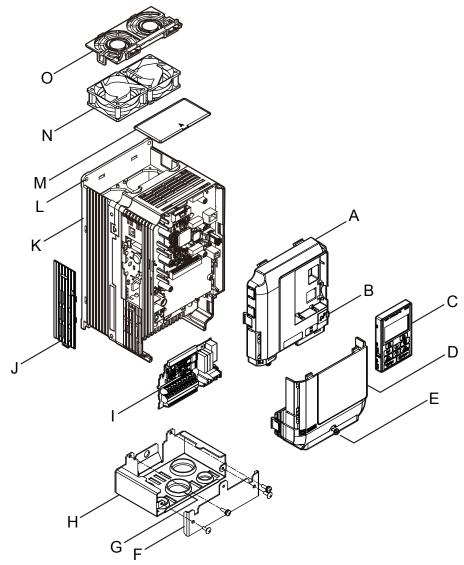
	Enclosure Type	
Voltage Class	IP20/NEMA Type 1 Enclosure <1> Drive Model	IP00/Open Type Enclosure Drive Model
	4A0088F	>
	4A0103F	<1>
	4A0139F	<1>
	4A0165F	<1>
	<2>	4A0208A
	<2>	4A0250A
hree-Phase 00 V Class	<⊅>	4A0296A
	<2>	4A0362A
	<₃>	4A0414A
	<⊅	4A0515A
	<⊅	4A0675A
	<>>	4A0930A
	<>>	4A1200A
	5A0003F	<1>
	5A0004F	
	5A0006F	<1>
	5A0009F	<1>
	5A0011F	<1>
	5A0017F	
	5A0022F	
	5A0027F	<1>
Three-Phase	5A0032F	<1>
600 V Class	5A0041F	
	5A0052F	<1>
	5A0062F	<1>
	5A0077F	<1>
	5A0099F	<1>
	<⊅>	5A0125A
	<⊅>	5A0145A
	<2>	5A0192A
	<2>	5A0242A

<1> Removing the top protective cover from a IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while retaining IP20 conformity.

<2> Customers may convert these models to IP20/NEMA Type 1 enclosures using an IP20/NEMA Type 1 Kit. Refer to IP20/NEMA Type 1 Kit Selection on page 71 to select the appropriate kit.

<3> Contact a Yaskawa representative for IP20/NEMA Type 1 Kit availability for these models.

1.5 Component Names


This section gives an overview of the drive components described in this manual.

Note: 1. Refer to Using the Digital Operator on page 181 for a description of the operator keypad.

2. The drive may have no cooling fans or up to two cooling fans depending on the model.

◆ IP20/NEMA Type 1 Enclosure

■ Three-Phase AC 200 V Models 2A0004F to 2A0081F Three-Phase AC 400 V Models 4A0002F to 4A0044F Three-Phase AC 600 V Models 5A0003F to 5A0032F

A - Front cover

B – USB port (type-B)

C - Digital operator

D - Terminal cover

E - Terminal cover screw

F - Conduit bracket front cover

G-Rubber bushing

H - Conduit bracket

I - Terminal board

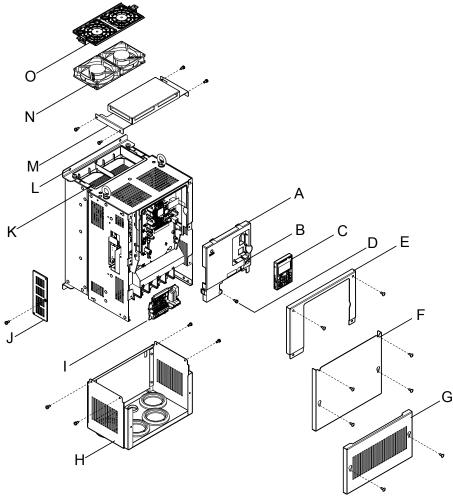
J – Optional 24 V DC power supply

connector cover

K – Heatsink

L - Mounting hole

M-Top protective cover

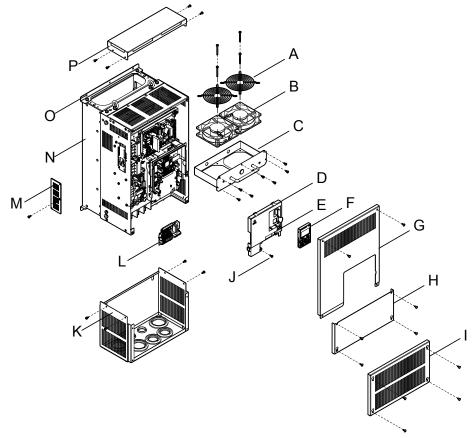

N – Cooling fan <1>

O-Fan finger guard <1>

Figure 1.2 Exploded View of IP20/NEMA Type 1 Components (Model 2A0030F)

<1> Drive models 2A0018, 2A0021, 4A0007 to 4A0011, 5A0006F, and 5A0009F have a single cooling fan. Drive models 2A0004 to 2A0012, 4A0002 to 4A0005, 5A0003F, and 5A0004F do not have a cooling fan or a fan finger guard.

Three-Phase AC 200 V Models 2A0110F, 2A0138F Three-Phase AC 400 V Models 4A0058F to 4A0103F Three-Phase AC 600 V Models 5A0041F, 5A0052F

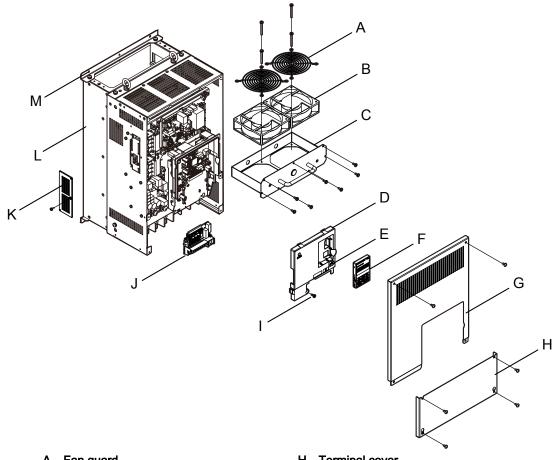


- A Front cover
- B USB port (type-B)
- C Digital operator
- D Front cover screw
- E Drive cover
- F Terminal cover
- G Conduit bracket front cover
- H Conduit bracket

- I Terminal board
- J Optional 24 V DC power supply connector cover
- K Heatsink
- L Mounting hole
 M Top protective cover
- N Cooling fan
- O-Fan finger guard

Figure 1.3 Exploded View of IP20 Enclosure Components (Model 2A0110F)

■ Three-Phase AC 200 V Models 2A0169F, 2A0211F Three-Phase AC 400 V Models 4A0139F to 4A0165F Three-Phase AC 600 V Models 5A0062F to 5A0099F

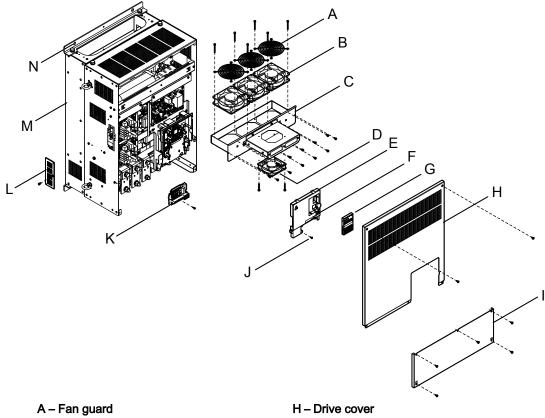

- A Fan guard
- B Cooling fan
- C Fan bracket
- D Front cover
- E USB port (type-B)
- F Digital operator
- G Drive cover
- H Terminal cover

- I Conduit bracket front cover
- J Front cover
- K Conduit bracket
- L Terminal board
- M Optional 24 V DC power supply connector cover
- N Heatsink
- O-Mounting hole
- P Top protective cover

Figure 1.4 Exploded View of IP20/NEMA Type 1 Enclosure Components (Model 4A0165F)

IP00/Open Type Enclosure

Three-Phase AC 200 V Models 2A0250A, 2A0312A Three-Phase AC 400 V Model 4A0208A Three-Phase AC 600 V Models 5A0125A, 5A0145A



- A Fan guard
- B Cooling fan
- C Fan bracket
- D Front cover
- E USB port (type-B)
- F Digital operator
- G Drive cover

- H Terminal cover
- I Front cover screw
- J Terminal board
- K Optional 24 V DC power supply connector cover
- L Heatsink
- M Mounting hole

Figure 1.5 Exploded view of IP00/Open Type Enclosure Components (Model 4A0208A)

■ Three-Phase AC 200 V Models 2A0360A, 2A0415A Three-Phase AC 400 V Models 4A0250A to 4A0362A Three-Phase AC 600 V Models 5A0192A, 5A0242A

- B Cooling fan
- C Fan bracket
- D Circulation fan <1>
- E Front cover
- F USB port (type-B)
- G Digital operator

- I Terminal cover
- J Front cover screw
- K Terminal board
- L Optional 24 V DC power supply connector cover
- M Heatsink
- N Mounting hole

Figure 1.6 Exploded view of IP00/Open Type Enclosure Components (Model 4A0362A)

<1> Drive models 2A0360, 2A0415, and 4A0362 have a built-in circulation fan.

■ Three-Phase AC 400 V Model 4A0414A

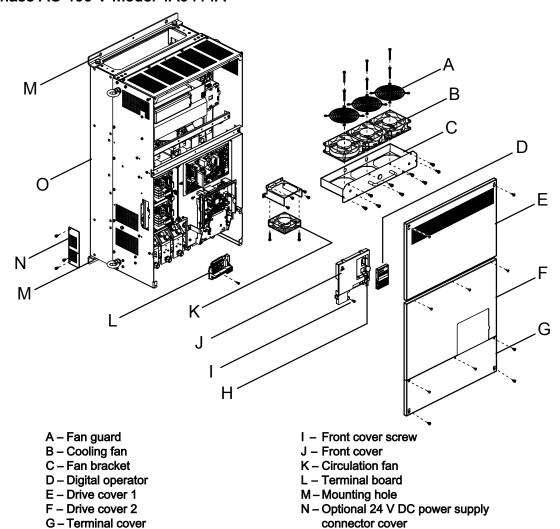


Figure 1.7 Exploded view of IP00/Open Type Enclosure Components (Model 4A0414A)

O - Heatsink

H – USB port (type-B)

■ Three-Phase AC 400 V Models 4A0515A, 4A0675A

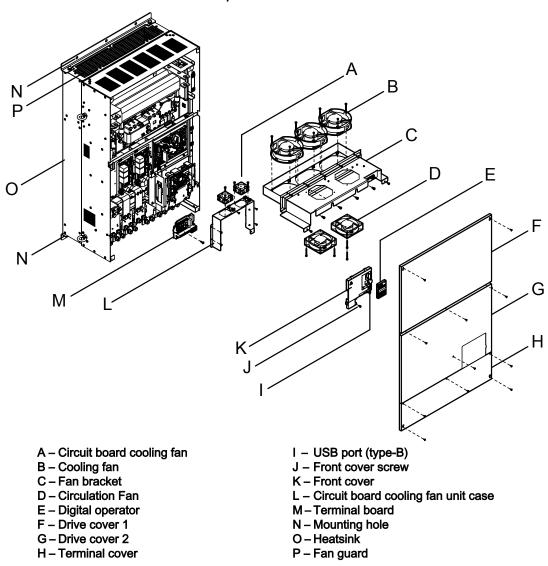
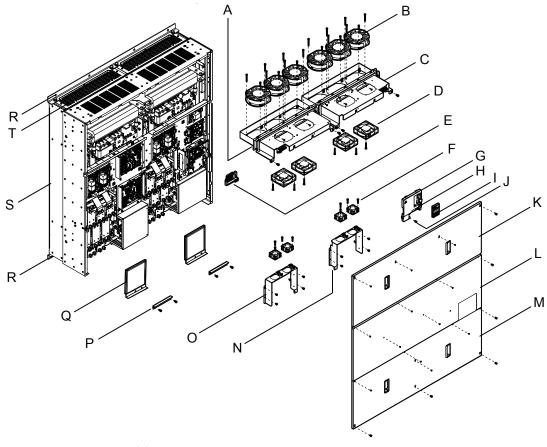



Figure 1.8 Exploded view of IP00/Open Type Enclosure Components (Model 4A0675A)

■ Three-Phase AC 400 V Models 4A0930A, 4A1200A

A - Fan unit case (L)

B - Cooling fan

C - Fan unit case (R)

D - Circulation Fan

E – Terminal board

F - Circuit board cooling fan

G - Front cover

H – USB port (type-B)

I - Digital operator

J – Front cover screw

K - Drive cover 1

L – Drive cover 2

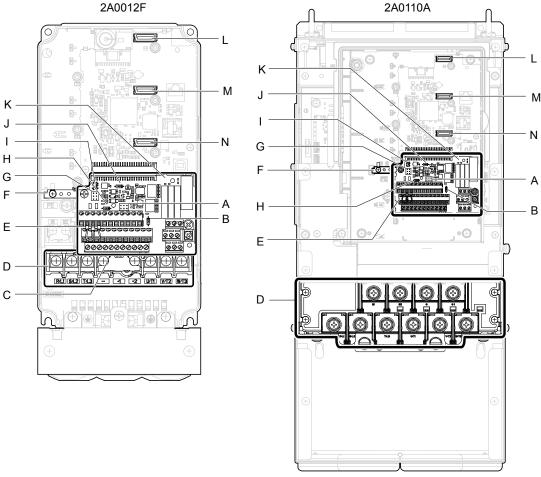
M-Terminal cover

N - Circuit board cooling fan unit case (R)

O - Circuit board cooling fan unit case (L)

P – Blind cover

Q - Filter case


R - Mounting hole

S - Heatsink

T – Fan guard

Figure 1.9 Exploded view of IP00/Open Type Enclosure Components (Model 4A0930A)

♦ Front Views

- A Jumper S5 (*Refer to Terminal AM/FM*Signal Selection on page 173)
- B DIP switch S4 (*Refer to Terminal A3*Analog/PTC Input Selection on page 172)
- C Protective cover to prevent miswiring
- D Main circuit terminal (*Refer to Wiring* the Main Circuit Terminal on page 163)
- E Terminal board connector
- F Ground terminal
- G Sink/source jumper S3 (*Refer to Sinking/Sourcing Mode for Digital Inputs on page 170*)

- H DIP switch S2 (*Refer to MEMOBUS/ Modbus Termination on page 173*)
- I Slide switch S6 (*Refer to Terminal DM* + and DM- Output Signal Selection on page 173)
- J DIP switch S1 (Refer to Terminal A2 Input Signal Selection on page 172)
- K Terminal board (*Refer to Control Circuit Wiring on page 164*)
- L Option card connector (CN5-C)
- M Option card connector (CN5-B)
- N Option card connector (CN5-A)

Figure 1.10 Front View of Drives

Mechanical Installation

This chapter explains how to properly mount and install the drive.

2.1	SECTION SAFETY	52
2.2	MECHANICAL INSTALLATION	54
2.3	FLANGE TYPE ENCLOSURE (NEMA 12 BACKSIDE) DIMENSIONS & HEAT	
	LOSS	

2.1 Section Safety

A WARNING

Fire Hazard

Provide sufficient cooling when installing the drive inside an enclosed panel or cabinet.

Failure to comply could result in overheating and fire.

When multiple drives are placed inside the same enclosure panel, install proper cooling to ensure air entering the enclosure does not exceed 40 °C.

Crush Hazard

Only allow qualified personnel to operate a crane or hoist to transport the drive.

Failure to comply may result in serious injury or death from falling equipment.

Use a dedicated lifter when transporting the drive by a lifter.

Failure to comply may result in serious injury or death from falling equipment.

Only use vertical suspension to temporarily lift the drive during installation to an enclosure panel. Do not use vertical suspension to transport the drive.

Failure to comply may result in serious injury or death from falling equipment.

Use screws to securely affix the drive front cover, terminal blocks, and other drive components prior to vertical suspension.

Failure to comply may result in serious injury or death from falling equipment.

Do not subject the drive to vibration or impact greater than 1.96 m/s² (0.2 G) while it is suspended by the cables.

Failure to comply may result in serious injury or death from falling equipment.

Do not attempt to flip the drive over or leave the drive unattended while it is suspended by the wires.

Failure to comply may result in serious injury or death from falling equipment.

A CAUTION

Crush Hazard

Do not carry the drive by the front cover or the terminal cover.

Failure to comply may result in minor or moderate injury from the main body of the drive falling.

NOTICE

Equipment Hazard

Prevent foreign matter such as metal shavings or wire clippings from falling into the drive during drive installation and project construction.

Failure to comply could result in damage to the drive. Place a temporary cover over the top during installation. Be sure to remove the temporary cover before start-up, as the cover will reduce ventilation and cause the unit to overheat.

Observe proper electrostatic discharge (ESD) procedures when handling the drive.

Failure to comply could result in ESD damage to the drive circuitry.

Operating the motor in the low-speed range diminishes the cooling effects, increases motor temperature, and may lead to motor damage by overheating.

Reduce the motor torque in the low-speed range whenever using a standard blower cooled motor. If 100% torque is required continuously at low speed, consider using a special drive or vector-control motor. Select a motor that is compatible with the required load torque and operating speed range.

The speed range for continuous operation differs according to the lubrication method and motor manufacturer.

If the motor is to be operated at a speed higher than the rated speed, consult with the manufacturer.

Continuously operating an oil-lubricated motor in the low-speed range may result in burning.

When the input voltage is 440 V or higher or the wiring distance is greater than 100 meters, pay special attention to the motor insulation voltage or use a drive-rated motor with reinforced insulation.

Failure to comply could lead to motor winding failure.

Motor vibration may increase when operating a machine in variable-speed mode, if that machine previously operated at a constant speed.

Install vibration-proof rubber on the motor base or use the frequency jump function to skip a frequency resonating the machine.

The motor may require more acceleration torque with drive operation than with a commercial power supply.

Set a proper V/f pattern by checking the load torque characteristics of the machine to be used with the motor.

The rated input current of submersible motors is higher than the rated input current of standard motors.

Select an appropriate drive according to its rated output current. When the distance between the motor and drive is long, use a cable thick enough to connect the motor to the drive to prevent motor torque reduction.

The current rating differs for a motor with variable pole pitches differs from a standard motor.

Check the maximum current of the motor before selecting the drive capacity. Only switch motor poles when the motor is stopped. Switching between motor during run will trigger overcurrent protection circuitry or result in overvoltage from regeneration, and the motor will simply coast to stop.

When using an explosion-proof motor, it must be subject to an explosion-proof test in conjunction with the drive.

This is also applicable when an existing explosion-proof motor is to be operated with the drive. Since the drive itself is not explosion-proof, always install it in a safe place.

Never lift the drive up while the cover is removed.

This can damage the terminal board and other components.

2.2 Mechanical Installation

This section outlines specifications, procedures, and the environment for proper mechanical installation of the drive.

Installation Environment

Install the drive in an environment matching the specifications in *Table 2.1* to help prolong the optimum performance life of the drive.

Table 2.1 Installation Environment

Environment	Conditions		
Installation Area	Indoors		
Ambient Temperature IP20/NEMA Type 1 enclosure: -10 °C to +40 °C (14 °F to 104 °F) IP00/Open Type enclosure: -10 °C to +50 °C (14 °F to 122 °F) Drive reliability improves in environments without wide temperature fluctuations. When using the drive in an enclosure panel, install a cooling fan or air conditioner in the area to ensure that the temperature inside the enclosure does not exceed the specified levels. Do not allow ice to develop on the drive.			
Humidity	95% RH or less and free of condensation		
Storage Temperature	-20 °C to +60 °C (-4 °F to +104 °F)		
Surrounding Area	Install the drive in an area free from: oil mist and dust metal shavings, oil, water, or other foreign materials radioactive materials combustible materials (e.g., wood) harmful gases and liquids excessive vibration chlorides direct sunlight.		
Altitude	1000 m (3281 ft.) or lower, up to 3000 m (9843 ft.) with derating. <i>Refer to Drive Derating Data on page 560</i> for details.		
Vibration	10 to 20 Hz at 9.8 m/s ² (32.15 ft/s ²) <1> 20 to 55 Hz at 5.9 m/s ² (19.36 ft/s ²) (Models 2A0004 to 2A0211, 4A0002 to 4A0165, and 5A0003 to 5A0099) or 2.0 m/s ² (6.56 ft/s ²) (Models 2A0250 to 2A0415, 4A0208 to 4A1200, and 5A0125 to 5A0242)		
Orientation	Install the drive vertically to maintain maximum cooling effects.		

<1> Models 4A0930 and 4A1200 are rated at 5.9 m/s² (19.36 ft/s²)

NOTICE: Avoid placing drive peripheral devices, transformers, or other electronics near the drive as the noise created can lead to erroneous operation. If such devices must be used in close proximity to the drive, take proper steps to shield the drive from noise.

NOTICE: Prevent foreign matter such as metal shavings and wire clippings from falling into the drive during installation. Failure to comply could result in damage to the drive. Place a temporary cover over the top of the drive during installation. Remove the temporary cover before drive start-up, as the cover will reduce ventilation and cause the drive to overheat.

◆ Installation Orientation and Spacing

Install the drive upright as illustrated in *Figure 2.1* to maintain proper cooling.

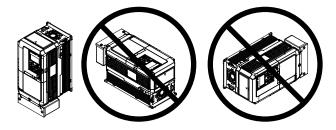


Figure 2.1 Correct Installation Orientation

NOTICE: Install the drive upright as specified in the manual. Failure to comply may damage the drive due to improper cooling.

Single Drive Installation

Figure 2.2 shows the installation distance required to maintain sufficient space for airflow and wiring. Install the heatsink against a closed surface to avoid diverting cooling air around the heatsink.

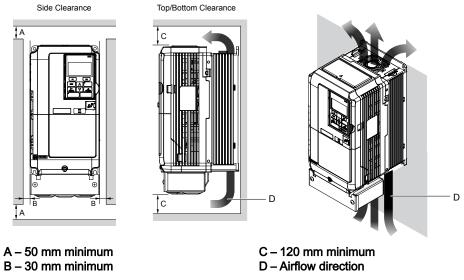
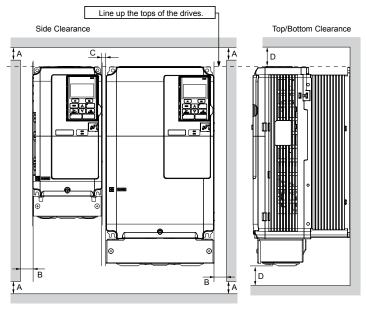


Figure 2.2 Correct Installation Spacing


Note: IP20/NEMA Type 1 enclosure and IP00/Open Type enclosure models require the same amount of space above and below the drive for installation.

■ Multiple Drive Installation (Side-by-Side Installation)

Models 2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032 can take advantage of Side-by-Side installation.

When installing multiple drives into the same enclosure panel, mount the drives according to *Figure 2.2* and set L8-35, Installation Method Selection, to 1 (Side-by-Side Mounting).

When mounting drives with the minimum clearance of 2 mm according to *Figure 2.3*, set parameter L8-35 to 1 while considering derating. *Refer to L8-35: Installation Method Selection on page 385* for details.

A – 50 mm minimum B – 30 mm minimum

C – 2 mm minimum D – 120 mm minimum

Figure 2.3 Space Between Drives (Side-by-Side Mounting)

Note: Align the tops of the drives when installing drives of different heights in the same enclosure panel. Leave space between the tops and bottoms of stacked drives for easier cooling fan replacement.

Remove the top protective covers of all drives as shown in *Figure 2.4* when mounting IP20/NEMA Type 1 enclosure drives side-by-side. *Refer to Top Protective Cover on page 152* to remove and reattach the top protective cover.

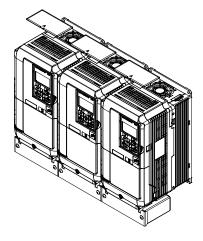


Figure 2.4 IP20/NEMA 1 Side-by-Side Mounting in Enclosure

Instructions on Installation Using the Eye Bolts

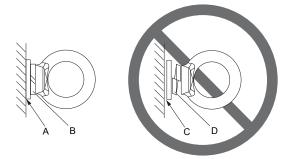
Eye bolts are used to install the drive or to temporarily lift the drive when replacing it. Using the eye bolts, the drive can be installed in an enclosure panel or on a wall. Do not leave the drive suspended by the wires in a horizontal or vertical position for long periods of time. Do not transport the drive over long distances. Read the following precautions and instructions before installing the drive.

WARNING! Crush Hazard. Observe the following instructions and precautions. Failure to comply could result in serious injury or death from falling equipment.

Only use vertical suspension to temporarily lift the drive during installation to an enclosure panel. Do not use vertical suspension to transport the drive.

Use screws to securely affix the drive front cover, terminal blocks, and other drive components prior to vertical suspension.

Do not subject the drive to vibration or impact greater than 1.96 m/s² (0.2 G) while it is suspended by the wires.


Do not leave the drive unattended while it is suspended by the wires.

Do not attempt to flip the drive over while it is suspended by the wires.

■ Horizontal Suspension of Drive Models 2A0360, 2A0415, and 4A0250 to 4A0675

To make a wire hanger or frame for use when lifting the drive with a crane, lay the drive in a horizontal position and pass a wire through the holes of the four eye bolts.

NOTICE: Damage to Equipment. When lifting the drive, confirm that the spring washer is fully closed. Failure to comply may deform or damage the drive when lifted.

A – No space between drive and washer B – Spring washer fully closed

C - Space between drive and washer

D - Spring washer open

Figure 2.5 Spring Washer

Vertical Suspension of Drive Models 2A0360, 2A0415, and 4A0250 to 4A1200

Models 2A0360, 2A0415, and 4A0250 to 4A0675

When vertical suspension of the drive is required in an enclosure panel, change the orientation of the eye bolts for these models by turning the eye bolts counterclockwise 90 degrees.

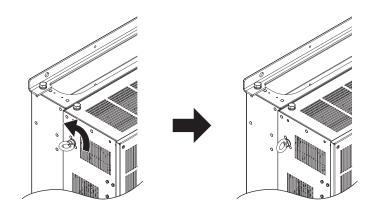


Figure 2.6 Adjusting Angle of Eye Bolts

Models 4A0930 and 4A1200

When suspending models 4A0930 or 4A1200 with wires, follow the procedure described below.

WARNING! Crush Hazard. Use an adequate length of wire to ensure a 50° or wider suspension angle as illustrated in Figure 2.8. The maximum allowable load of the eye bolts cannot be guaranteed when the drive is suspended with the wires at angles less than 50°. Failure to comply may result in serious injury or death from falling equipment.

1. Remove the four eye bolts from the drive side panels and fix them securely on the top panel.

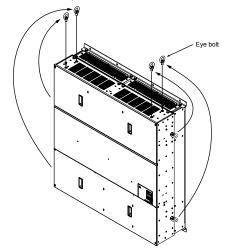
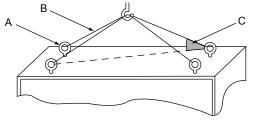



Figure 2.7 Eye Bolt Repositioning

2. Pass wire through the holes of all four eye bolts.

A - Eye bolt B - Wires

C – Suspending angle: 50° or greater

Figure 2.8 Suspension Wire Angle Example

- 3. Gradually take up the slack in the wires and hoist the drive after the wires are stretched tight.
- **4.** Lower the drive when ready to install in the enclosure panel. Stop lowering the drive when it is near the floor then begin lowering the drive again very slowly until the drive is placed correctly.

Digital Operator Remote Usage

■ Remote Operation

The digital operator mounted on the drive can be removed and connected to the drive using an extension cable up to 3 m long to facilitate operation when the drive is installed in a location where it can not be easily accessed.

The digital operator can also be permanently mounted remote locations such as panel doors using an extension cable and an installation support set (depending on the installation type).

Note: Refer to Drive Options and Peripheral Devices on page 518 for information on extension cables and installation support sets.

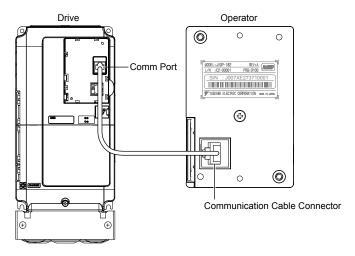


Figure 2.9 Communication Cable Connection

■ Digital Operator Remote Installation

Digital Operator Dimensions

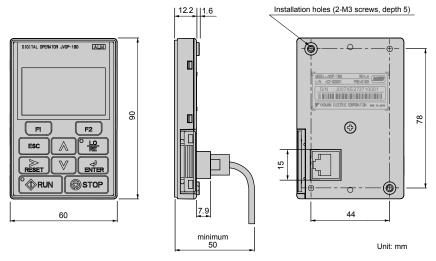


Figure 2.10 Digital Operator Dimensions

NEMA Keypad Kits

Yaskawa offers keypad kits that provide the functionality of the digital operator on enclosures designed for NEMA Type 1, 3R, 4, 4X, 12, or IPX6 environments. These kits are for use with digital operator models JVOP-180 and JVOP-182.

Table 2.2 Installation Environment

Keypad Kit Model	Description
UUX000526	Blank label on the front.
UUX000527	Yaskawa brand label on the front.

Installation Types and Required Materials

The digital operator mounts to an enclosure two different ways:

- External/face-mount installs the operator outside the enclosure panel
- Internal/flush-mount installs the operator inside the enclosure panel

Table 2.3 Digital Operator Installation Methods and Required Tools

Installation Method	Description	Installation Support Sets	Model	Required Tools
External/ Face-Mount	Simplified installation with the digital operator is mounted on the outside of the panel with two screws.	_	_	Phillips screwdriver (#1)
Internal/	Encloses the digital operator in the panel. The front of the digital operator	Installation Support Set A (for mounting with screws through holes in the panel)	EZZ020642A	Phillips screwdriver (#1, #2)
Flush-Mount	is flush with the outside of the panel.	Installation Support Set B (for use with threaded studs that are fixed to the panel)	EZZ020642B	Phillips screwdriver (#1) Wrench (7 mm)

NOTICE: Prevent foreign matter such as metal shavings or wire clippings from falling into the drive during installation and project construction. Failure to comply could result in damage to the drive. Place a temporary cover over the top of the drive during installation. Remove the temporary cover before drive start-up, as the cover will reduce ventilation and cause the drive to overheat.

External/Face-Mount

- 1. Cut an opening in the enclosure panel for the digital operator as shown in *Figure 2.12*.
- 2. Position the digital operator so the display faces outwards, and mount it to the enclosure panel as shown in *Figure* 2.11.

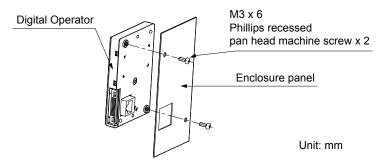


Figure 2.11 External/Face-Mount Installation

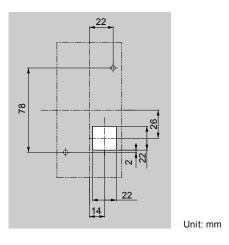


Figure 2.12 Panel Cut-Out Dimensions (External/Face-Mount Installation)

Internal/Flush-Mount

An internal flush-mount requires an installation support set that must be purchased separately. Contact a Yaskawa representative to order an installation support set and mounting hardware. *Figure 2.13* illustrates how to attach the Installation Support Set A.

- 1. Cut an opening in the enclosure panel for the digital operator as shown in Figure 2.14.
- 2. Mount the digital operator to the installation support.
- 3. Mount the installation support set and digital operator to the enclosure panel.

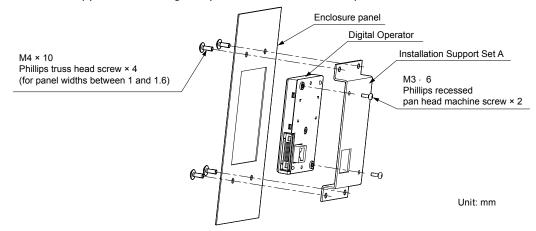


Figure 2.13 Internal/Flush Mount Installation

Note: Use a gasket between the enclosure panel and the digital operator in environments with a significant amount of dust or other airborne debris.

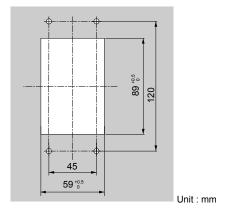


Figure 2.14 Panel Cut-Out Dimensions (Internal/Flush-Mount Installation)

◆ Exterior and Mounting Dimensions

Table 2.4 Drive Models and Types

Doctorthio		Drive Model		
Protective Design	Three-Phase 200 V Class	Three-Phase 400 V Class	Three-Phase 600 V Class	Page
IP20/NEMA Type 1 Enclosure	2A0004F 2A0006F 2A0008F 2A0010F 2A0012F 2A0018F 2A0021F 2A0030F 2A0040F 2A0056F 2A0069F 2A0081F 2A0110F 2A0138F 2A0169F 2A0169F 2A0211F	4A0002F 4A0004F 4A0005F 4A0007F 4A0009F 4A0011F 4A0018F 4A0023F 4A0031F 4A0038F 4A0044F 4A0058F 4A0072F 4A0088F 4A0103F 4A0139F 4A0165F	5A0003F 5A0004F 5A0006F 5A0009F 5A0011F 5A0022F 5A0027F 5A0032F 5A0041F 5A0052F 5A0062F 5A0077F 5A0099F	63
IP00/Open Type Enclosure	2A0250A <i> 2A0312A <i> 2A0360A <i> 2A0415A <2></i></i></i>	4A0208A <1> 4A0250A <1> 4A0296A <1> 4A0362A <1> 4A0414A <2> 4A0515A <2> 4A0675A <2> 4A0930A <2> 4A1200A <2>	5A0125A 5A0145A 5A0192A 5A0242A	69
Flange Type Enclosure (NEMA 12 Backside)	2A0004U 2A0006U 2A0008U 2A0010U 2A0012U 2A0018U 2A0021U 2A0030U 2A0040U 2A0056U 2A0069U 2A0081U 2A0110U 2A0138U 2A0169U 2A0211U 2A0250U 2A0312U 2A0360U 2A0415U	4A0002U 4A0004U 4A0005U 4A0007U 4A0009U 4A0011U 4A0018U 4A0031U 4A0038U 4A0044U 4A0058U 4A0072U 4A0088U 4A0103U 4A0139U 4A0165U 4A0208U 4A0208U 4A0296U 4A0296U 4A0362U 4A0414U 4A0675U 4A0930U 4A1200U	5A0003U 5A0004U 5A0006U 5A0009U 5A0011U 5A0017U 5A0022U 5A0027U 5A0032U 5A0041U 5A0052U 5A0062U 5A0077U 5A0099U 5A0125U 5A0145U 5A0192U 5A0242U	72

<1> Customers may convert these models to IP20/NEMA Type 1 enclosures using an IP20/NEMA Type 1 Kit. *Refer to IP20/NEMA Type 1 Kit Selection on page 71* to select the appropriate kit.

<2> Contact a Yaskawa representative for IP20/NEMA Type 1 Kit availability for these models.

■ IP20/NEMA Type 1 Enclosure Drives

Note: Removing the top protective cover or bottom conduit bracket from an IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while maintaining IP20 conformity.

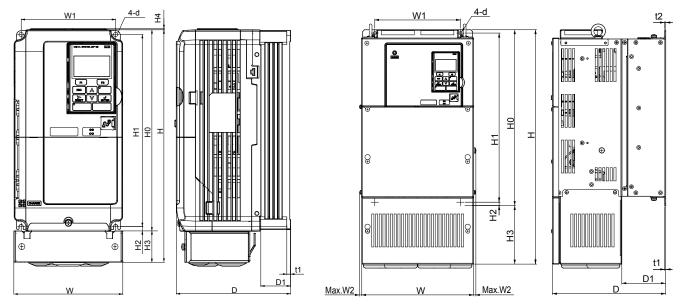


Figure 1 Figure 2

Table 2.5 Dimensions for IP20/NEMA Type 1 Enclosure: 200 V Class

D M. J. I	F'				111611310			mensior								Wt. kg
Drive Model	Figure	w	Н	D	W1	W2	H0	H1	H2	НЗ	H4	D1	t1	t2	d	(lb)
2A0004F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.3 (7.3)
2A0006F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.3 (7.3)
2A0008F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
2A0010F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
2A0012F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
2A0018F	1	140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	_	M5	3.8 (8.2)
2A0021F	<1>	140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	Ι	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	_	M5	3.8 (8.2)
2A0030F		140 (5.51)	300 (11.81)	167 (6.57)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	4.2 (9.3)
2A0040F		140 (5.51)	300 (11.81)	167 (6.57)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	4.2 (9.3)
2A0056F		180 (7.09)	340 (13.39)	187 (7.36)	160 (6.30)	-	300 (11.81)	284 (11.18)	7.9 (0.31)	40 (1.57)	1.5 (0.06)	75 (2.95)	5 (0.20)	_	M5	5.9 (13.0)
2A0069F		220 (8.66)	400 (15.75)	197 (7.76)	192 (7.56)	ı	350 (13.78)	335 (13.19)	7.9 (0.31)	50 (1.97)	1.5 (0.06)	78 (3.07)	5 (0.20)	-	M6	9 (20.1)
2A0081F		220 (8.66)	400 (15.75)	197 (7.76)	192 (7.56)	ı	350 (13.78)	335 (13.19)	7.9 (0.31)	50 (1.97)	1.5 (0.06)	78 (3.07)	5 (0.20)	-	M6	10 (22.0)
2A0110F		254 (10.00)	534 (21.02)	258 (10.16)	195 (7.68)	7.9 (0.31)	400 (15.75)	385 (15.16)	7.7 (0.30)	134 (5.28)	1.5 (0.06)	100 (3.94)	2.2 (0.09)	2.286 (0.09)	M6	23 (50.7)
2A0138F	2	279 (10.98)	614 (24.17)	258 (10.16)	220 (8.66)	7.9 (0.31)	450 (17.72)	435 (17.13)	7.7 (0.30)	164 (6.46)	-	100 (3.94)	2.2 (0.09)	2.286 (0.09)	M6	28 (61.7)
2A0169F	<1>	329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	-	110 (4.33)	2.2 (0.09)	2.286 (0.09)	M6	41 (90.4)
2A0211F		329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	-	110 (4.33)	2.2 (0.09)	2.286 (0.09)	M6	42 (92.6)

							Dii	mensior	ns mm (in)						\A/4 cm
Drive Model	Figure	w	н	D	W1	W2	НО	H1	H2	Н3	H4	D1	t1	t2	d	Wt. kg (lb)
Dime	ensions be	low are t	he dimer	sions of	IP00/Ope	en Type	models a	fter custo	mer inst	allation o	f the app	ropriate I	P20/NEM	ИА Туре	1 Kit.	
2A0250A		456 (17.95)	960 (37.80)	330 (12.99)	325 (12.80)	7.9 (0.31)	28 (27.76)	680 (26.77)	12 (0.49)	255 (10.04)	-	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	83 (183.0)
2A0312A	2	456 (17.95)	960 (37.80)	330 (12.99)	325 (12.80)	7.9 (0.31)	28 (27.76)	680 (26.77)	12 (0.49)	255 (10.04)	-	130 (5.12)	3.3 (0.13)	3.30 (0.13)	M10	88 (194.0)
2A0360A		194 (19.84)	1168 (45.98)	35 (13.78)	370 (14.57)	7.9 (0.31)	800 (31.50)	773 (30.43)	13 (0.51)	368 (14.49)	-	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	108 (238.1)

<1> Removing the top protective cover from a IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while retaining IP20 conformity.

Table 2.6 Dimensions for IP20/NEMA Type 1 Enclosure: 400 V Class

			1 45.0	2.0 2.		10 101 11	P20/NEI Dii	mension			100 7 0	Jiuoo -				Wt. kg
Drive Model	Figure	w	Н	D	W1	W2	НО	H1	H2	Н3	H4	D1	t1	t2	d	(lb)
4A0002F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	ı	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
4A0004F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	_	M5	3.4 (7.5)
4A0005F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
4A0007F		140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	3.6 (7.9)
4A0009F		140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	3.8 (8.2)
4A0011F	1 <1>	140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	_	M5	3.8 (8.2)
4A0018F		140 (5.51)	300 (11.81)	167 (6.57)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	_	M5	4.0 (9.0)
4A0023F		140 (5.51)	300 (11.81)	167 (6.57)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	_	M5	4.0 (9.0)
4A0031F		180 (7.09)	340 (13.39)	167 (6.57)	160 (6.30)	-	300 (11.81)	284 (11.18)	7.9 (0.31)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	_	M5	5.8 (12.6)
4A0038F		180 (7.09)	340 (13.39)	187 (7.36)	160 (6.30)	-	300 (11.81)	284 (11.18)	7.9 (0.31)	40 (1.57)	1.5 (0.06)	75 (2.95)	5 (0.20)	_	M5	6.0 (13.2)
4A0044F		220 (8.66)	400 (15.75)	197 (7.76)	195 (7.68)	-	35 (13.78)	335 (13.19)	7.9 (0.31)	50 (1.97)	1.5 (0.06)	78 (3.07)	5 (0.20)	_	M6	8.8 (19.2)
4A0058F		254 (10.00)	465 (18.31)	258 (10.16)	195 (7.68)	7.9 (0.31)	400 (15.75)	385 (15.16)	7.7 (0.30)	65 (2.56)	-	100 (3.94)	2.2 (0.09)	2.2 (0.09)	M6	23 (50.7)
4A0072F		279 (10.98)	515 (20.28)	258 (10.16)	220 (8.66)	7.9 (0.31)	450 (17.72)	435 (17.13)	7.7 (0.30)	65 (2.56)	-	100 (3.94)	2.2 (0.09)	2.2 (0.09)	M6	27 (59.5)
4A0088F	2	329 (12.95)	630 (24.80)	258 (10.16)	260 (10.24)	7.9 (0.31)	509 (20.08)	495 (19.49)	7.7 (0.30)	120 (4.72)	-	105 (4.13)	2.2 (0.09)	3.3 (0.13)	M6	39 (86.0)
4A0103F	<1>	329 (12.95)	630 (24.80)	258 (10.16)	260 (10.24)	7.9 (0.31)	509 (20.08)	495 (19.49)	7.7 (0.30)	120 (4.72)	-	105 (4.13)	2.2 (0.09)	3.3 (0.13)	M6	39 (86.0)
4A0139F		329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	-	110 (4.33)	2.2 (0.09)	2.2 (0.09)	M6	45 (99.2)
4A0165F		329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	_	110 (4.33)	2.2 (0.09)	2.2 (0.09)	M6	46 (101.4)
Dime	ensions be	T T								T	f the app				1 Kit.	
4A0208A		456 (17.95)	960 (37.80)	330 (12.99)	325 (12.80)	7.9 (0.31)	28 (27.76)	680 (26.77)	12 (0.49)	255 (10.04)	-	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	87 (191.8)
4A0250A	2	194 (19.84)	1168 (45.98)	35 (13.78)	370 (14.57)	7.9 (0.31)	800 (31.50)	773 (30.43)	13 (0.51)	368 (14.49)	-	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	106 (233.7)
4A0296A	_	194 (19.84)	1168 (45.98)	35 (13.78)	370 (14.57)	7.9 (0.31)	800 (31.50)	773 (30.43)	13 (0.51)	368 (14.49)	-	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	112 (246.9)
4A0362A		194 (19.84)	1168 (45.98)	35 (13.78)	370 (14.57)	7.9 (0.31)	800 (31.50)	773 (30.43)	13 (0.51)	368 (14.49)	-	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	117 (257.9)

<1> Removing the top protective cover from a IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while retaining IP20 conformity.

Table 2.7 Dimensions for IP20/NEMA Type 1 Enclosure: 600 V Class

			, abi	e 2.7 D		101 1		mensior			300 V (400				Wt. kg
Drive Model	Figure	w	н	D	W1	W2	Н0	H1	H2	нз	H4	D1	t1	t2	d	(lb)
5A0003F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
5A0004F		140 (5.51)	300 (11.81)	147 (5.79)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	38 (1.50)	5 (0.20)	-	M5	3.4 (7.5)
5A0006F		140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	3.8 (8.2)
5A0009F		140 (5.51)	300 (11.81)	164 (6.46)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	3.8 (8.2)
5A0011F	1 <1>	140 (5.51)	300 (11.81)	167 (6.57)	122 (4.80)	-	260 (10.24)	248 (9.76)	6 (0.24)	40 (1.57)	1.5 (0.06)	55 (2.17)	5 (0.20)	-	M5	4.0 (9.0)
5A0017F		180 (7.09)	340 (13.39)	187 (7.36)	160 (6.30)	-	300 (11.81)	284 (11.18)	7.9 (0.31)	40 (1.57)	1.5 (0.06)	75 (2.95)	5 (0.20)	-	M5	6.0 (13.2)
5A0022F		180 (7.09)	340 (13.39)	187 (7.36)	160 (6.30)	-	300 (11.81)	284 (11.18)	7.9 (0.31)	40 (1.57)	1.5 (0.06)	75 (2.95)	5 (0.20)	-	M5	6.0 (13.2)
5A0027F		220 (8.66)	400 (15.75)	197 (7.76)	192 (7.56)	-	35 (13.78)	335 (13.19)	7.9 (0.31)	50 (1.97)	1.5 (0.06)	78 (3.07)	5 (0.20)	-	M6	8.8 (19.2)
5A0032F		220 (8.66)	400 (15.75)	197 (7.76)	192 (7.56)	-	35 (13.78)	335 (13.19)	7.9 (0.31)	50 (1.97)	1.5 (0.06)	78 (3.07)	5 (0.20)	-	M6	8.8 (19.2)
5A0041F		279 (10.98)	515 (20.28)	258 (10.16)	220 (8.66)	7.9 (0.31)	450 (17.72)	435 (17.13)	7.7 (0.30)	65 (2.56)	-	100 (3.94)	2.2 (0.09)	2.2 (0.09)	M6	27 (59.5)
5A0052F		279 (10.98)	515 (20.28)	258 (10.16)	220 (8.66)	7.9 (0.31)	450 (17.72)	435 (17.13)	7.7 (0.30)	65 (2.56)	-	100 (3.94)	2.2 (0.09)	2.2 (0.09)	M6	27 (59.5)
5A0062F	2	329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	-	110 (4.33)	2.2 (0.09)	2.2 (0.09)	M6	45 (99.2)
5A0077F		329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	-	110 (4.33)	2.2 (0.09)	2.2 (0.09)	M6	45 (99.2)
5A0099F		329 (12.95)	730 (28.74)	283 (11.14)	260 (10.24)	7.9 (0.31)	550 (21.65)	535 (21.06)	7.7 (0.30)	180 (7.09)	-	110 (4.33)	2.2 (0.09)	2.2 (0.09)	M6	45 (99.2)
Dim	nensions b	elow are	the dime	nsions of	IP00/Op	en Type	models a	after custo	omer inst	allation o	of the app	ropriate	P20/NE	ИА Туре	1 Kit.	
5A0125A		456 (17.95)	960 (37.80)	330 (12.99)	325 (12.80)	7.9 (0.31)	28 (27.76)	680 (26.77)	12 (0.49)	255 (10.04)	-	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	87 (191.8)
5A0145A	2	456 (17.95)	960 (37.80)	330 (12.99)	325 (12.80)	7.9 (0.31)	28 (27.76)	680 (26.77)	12 (0.49)	255 (10.04)	-	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	87 (191.8)
5A0192A		194 (19.84)	1168 (45.98)	35 (13.78)	370 (14.57)	7.9 (0.31)	800 (31.50)	773 (30.43)	13 (0.51)	368 (14.49)	-	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	106 (233.7)
5A0242A		194 (19.84)	1168 (45.98)	35 (13.78)	370 (14.57)	7.9 (0.31)	800 (31.50)	773 (30.43)	13 (0.51)	368 (14.49)	_	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	117 (257.9)

<1> Removing the top protective cover or bottom conduit bracket from an IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while maintaining IP20 conformity.

IP20/NEMA Type 1 Enclosure Conduit Bracket Dimensions

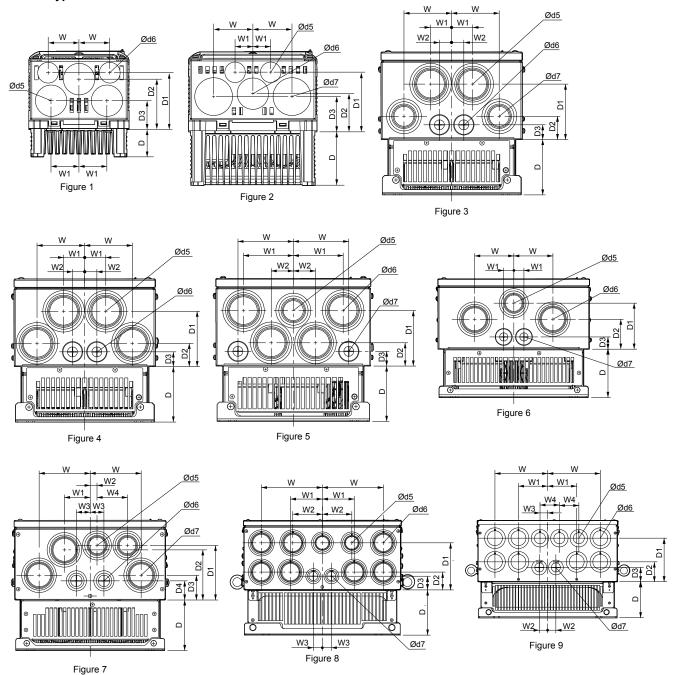


Table 2.8 Conduit Bracket Dimensions for IP20/NEMA Type 1

									·—···	<u> </u>				
Drive Model	Figure				D	imensior	ns mm (iı	n)				Dia	meter mm	(in)
Drive Model	Figure	W	D	W1	W2	W3	W4	D1	D2	D3	D4	d5	d6	d7
						200 V 0	Class							
2A0004F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	
2A0006F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
2A0008F	1	43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	-	-	-
2A0010F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
2A0012F		43 (1.7)	56 (2.2)	38 (1.5)	_	-	_	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-

					D	imensior	ns mm (iı	n)				Dia	meter mm	(in)
Drive Model	Figure	w	D	W1	W2	W3	W4	D1	D2	D3	D4	d5	d6	d7
2A0018F		43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
2A0021F		43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
2A0030F		43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
2A0040F	2	25 (1.0)	76 (3.0)	56 (2.2)	-	_	-	48 (1.9)	84 (3.3)	53 (2.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
2A0056F		25 (1.0)	76 (3.0)	56 (2.2)	_	_	_	48 (1.9)	84 (3.3)	53 (2.1)	_	36 (1.4)	23 (0.9)	43 (1.7)
2A0069F		28 (1.1)	79 (3.1)	64 (2.5)	-		-	51 (2.0)	86 (3.4)	56 (2.2)	-	36 (1.4)	23 (0.9)	43 (1.7)
2A0081F		28 (1.1)	79 (3.1)	64 (2.5)	-	_	-	51 (2.0)	86 (3.4)	56 (2.2)	_	36 (1.4)	23 (0.9)	43 (1.7)
2A0110F	4	86 (3.4)	99 (3.9)	38 (1.5)	23 (0.9)	_	_	99 (3.9)	43 (1.7)	25 (1.0)	_	61 (2.4)	28 (1.1)	-
2A0138F	5	99 (3.9)	99 (3.9)	89 (3.5)	41 (1.6)	_	_	99 (3.9)	43 (1.7)	25 (1.0)	-	51 (2.0)	61 (2.4)	28 (1.1)
2A0169F	7	111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
2A0211F	,	111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
2A0250A	8	175 (6.9)	130 (5.1)	91 (3.6)	84 (3.3)	25 (1.0)	-	137 (5.4)	51 (2.0)	41 (1.6)	-	51 (2.0)	61 (2.4)	36 (1.4)
2A0312A	0	175 (6.9)	130 (5.1)	91 (3.6)	84 (3.3)	25 (1.0)	-	137 (5.4)	51 (2.0)	41 (1.6)		51 (2.0)	61 (2.4)	36 (1.4)
2A0360A	9	191 (7.5)	130 (5.1)	104 (4.1)	30 (1.2)	28 (1.1)	71 (2.8)	157 (6.2)	71 (2.8)	51 (2.0)		51 (2.0)	61 (2.4)	43 (1.7)
		1		T	T.	400 V 0	Class		T	1	1		T	T
4A0002F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	(0.9)	36 (1.4)	-
4A0004F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
4A0005F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
4A0007F	1	43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
4A0009F		43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
4A0011F		43 (1.7)	56 (2.2)	38 (1.5)	-	_	-	41 (1.6)	71 (2.8)	79 (3.1)	_	23 (0.9)	36 (1.4)	-
4A0018F		43 (1.7)	56 (2.2)	38 (1.5)	-		-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	-
4A0023F		25 (1.0)	76 (3.0)	56 (2.2)	-	-	-	48 (1.9)	84 (3.3)	53 (2.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
4A0031F	2	25 (1.0)	76 (3.0)	56 (2.2)	-	-	-	48 (1.9)	84 (3.3)	53 (2.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
4A0038F	_	28 (1.1)	79 (3.1)	64 (2.5)	-	-	-	51 (2.0)	86 (3.4)	56 (2.2)	-	36 (1.4)	23 (0.9)	43 (1.7)
4A0044F		28 (1.1)	79 (3.1)	64 (2.5)	-	-	-	51 (2.0)	86 (3.4)	56 (2.2)	-	36 (1.4)	23 (0.9)	43 (1.7)
4A0058F	3	86 (3.4)	99 (3.9)	38 (1.5)	23 (0.9)	-	-	99 (3.9)	43 (1.7)	25 (1.0)	-	61 (2.4)	28 (1.1)	51 (2.0)
4A0072F	,	89 (3.5)	99 (3.9)	41 (1.6)	23 (0.9)	-	-	99 (3.9)	43 (1.7)	25 (1.0)	-	61 (2.4)	28 (1.1)	51 (2.0)
4A0088F	6	84 (3.3)	104 (4.1)	23 (0.9)	-	-	-	99 (3.9)	66 (2.6)	25 (1.0)	-	51 (2.0)	61 (2.4)	28 (1.1)
4A0103F		84 (3.3)	104 (4.1)	23 (0.9)	_	_	_	99 (3.9)	66 (2.6)	25 (1.0)	_	51 (2.0)	61 (2.4)	28 (1.1)

2.2 Mechanical Installation

Drive Medel	Figure				D	imensior	ns mm (ir	า)				Dia	meter mm	(in)
Drive Model	Figure	W	D	W1	W2	W3	W4	D1	D2	D3	D4	d5	d6	d7
4A0139F		111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
4A0165F	7	111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
4A0208A	8	175 (6.9)	130 (5.1)	91 (3.6)	84 (3.3)	25 (1.0)	-	137 (5.4)	51 (2.0)	41 (1.6)	-	51 (2.0)	61 (2.4)	36 (1.4)
4A0250A		191 (7.5)	130 (5.1)	104 (4.1)	30 (1.2)	28 (1.1)	71 (2.8)	157 (6.2)	71 (2.8)	51 (2.0)	-	51 (2.0)	61 (2.4)	43 (1.7)
4A0296A	9	191 (7.5)	130 (5.1)	104 (4.1)	30 (1.2)	28 (1.1)	71 (2.8)	157 (6.2)	71 (2.8)	51 (2.0)	-	51 (2.0)	61 (2.4)	43 (1.7)
4A0362A		191 (7.5)	130 (5.1)	104 (4.1)	30 (1.2)	28 (1.1)	71 (2.8)	157 (6.2)	71 (2.8)	51 (2.0)	-	51 (2.0)	61 (2.4)	43 (1.7)
			I.			600 V C	Class			·		I.		
5A0003F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	_	23 (0.9)	36 (1.4)	-
5A0004F		43 (1.7)	38 (1.5)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	_
5A0006F	1	43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	_
5A0009F		43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	_
5A0011F		43 (1.7)	56 (2.2)	38 (1.5)	-	-	-	41 (1.6)	71 (2.8)	79 (3.1)	-	23 (0.9)	36 (1.4)	_
5A0017F		25 (1.0)	76 (3.0)	56 (2.2)	-	-	-	48 (1.9)	84 (3.3)	53 (2.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
5A0022F		25 (1.0)	76 (3.0)	56 (2.2)	-	-	-	48 (1.9)	84 (3.3)	53 (2.1)	-	36 (1.4)	23 (0.9)	43 (1.7)
5A0027F	2	28 (1.1)	79 (3.1)	64 (2.5)	-	-	-	51 (2.0)	86 (3.4)	56 (2.2)	-	36 (1.4)	23 (0.9)	43 (1.7)
5A0032F		28 (1.1)	79 (3.1)	64 (2.5)	-	_	-	51 (2.0)	86 (3.4)	56 (2.2)	-	36 (1.4)	23 (0.9)	43 (1.7)
5A0041F		89 (3.5)	99 (3.9)	41 (1.6)	23 (0.9)	_	-	99 (3.9)	43 (1.7)	25 (1.0)	-	61 (2.4)	28 (1.1)	51 (2.0)
5A0052F	3	89 (3.5)	99 (3.9)	41 (1.6)	23 (0.9)	_	_	99 (3.9)	43 (1.7)	25 (1.0)	_	61 (2.4)	28 (1.1)	51 (2.0)
5A0062F		111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
5A0077F	7	111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
5A0099F		111 (4.4)	109 (4.3)	56 (2.2)	15 (0.6)	30 (1.2)	66 (2.6)	119 (4.7)	109 (4.3)	53 (2.1)	41 (1.6)	51 (2.0)	36 (1.4)	61 (2.4)
5A0125A	e	175 (6.9)	130 (5.1)	91 (3.6)	84 (3.3)	25 (1.0)	-	137 (5.4)	51 (2.0)	41 (1.6)	-	51 (2.0)	61 (2.4)	36 (1.4)
5A0145A	8	175 (6.9)	130 (5.1)	91 (3.6)	84 (3.3)	25 (1.0)	_	137 (5.4)	51 (2.0)	41 (1.6)	-	51 (2.0)	61 (2.4)	36 (1.4)
5A0192A	_	191 (7.5)	130 (5.1)	104 (4.1)	30 (1.2)	28 (1.1)	71 (2.8)	157 (6.2)	71 (2.8)	51 (2.0)	-	51 (2.0)	61 (2.4)	43 (1.7)
5A0242A	9	191 (7.5)	130 (5.1)	104 (4.1)	30 (1.2)	28 (1.1)	71 (2.8)	157 (6.2)	71 (2.8)	51 (2.0)	_	51 (2.0)	61 (2.4)	43 (1.7)

Note: Removing the top protective cover or bottom conduit bracket from an IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while maintaining IP20 conformity.

■ IP00/Open Type Enclosure Drives

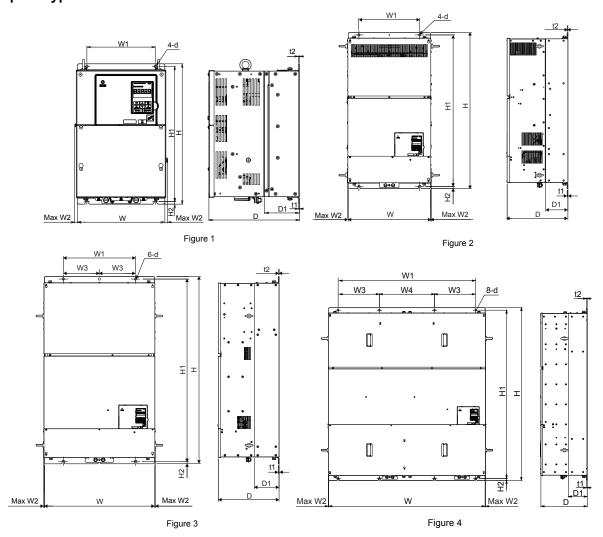


Table 2.9 Dimensions for IP00/Open Type Enclosure: 200 V Class

Drive	Figure					Dime	ensions m	m (in)					Wt. kg
Model	Figure	W	Н	D	W1	W2	H1	H2	D1	t1	t2	d	(lb)
2A0250A <1>		450 (17.72)	705 (27.76)	330 (12.99)	325 (12.80)	10 (0.39)	680 (26.77)	12 (0.49)	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	76 (167.6)
2A0312A <1>	1	450 (17.72)	705 (27.76)	330 (12.99)	325 (12.80)	10 (0.39)	680 (26.77)	12 (0.49)	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	80 (176.4)
2A0360A <1>	•	500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	98 (216.1)
2A0415A		500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	99 (218.3)

<1> Customers may convert these models to IP20/NEMA Type 1 enclosures using an IP20/NEMA Type 1 Kit.

Table 2.10 Dimensions for IP00/Open Type Enclosure: 400 V Class

Drive	Fi						Dime	nsions m	m (in)						Wt. kg
Model	Figure	W	Н	D	W1	W2	W3	W4	H1	H2	D1	t1	t2	d	(lb)
4A0208A <1>		450 (17.72)	705 (27.76)	330 (12.99)	325 (12.80)	10 (0.39)	-	-	680 (26.77)	12.4 (0.49)	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	79 (174.2)
4A0250A <1>	1	500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	-	-	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	96 (211.6)
4A0296A <1>	1	500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	-	-	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	102 (224.9)
4A0362A <1>		500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	-	-	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	107 (235.9)
4A0414A	2	500 (19.69)	950 (37.40)	370 (14.57)	370 (14.57)	7.9 (0.31)	_	_	923 (36.34)	13 (0.51)	135 (5.31)	4.6 (0.18)	4.6 (0.18)	M12	125 (275.6)
4A0515A	3	670 (26.38)	1140 (44.88)	370 (14.57)	440 (17.32)	6 (0.24)	220 (8.66)	_	1110 (43.70)	15 (0.59)	150 (5.91)	4.6 (0.18)	4.6 (0.18)	M12	216 (476.2)
4A0675A	,	670 (26.38)	1140 (44.88)	370 (14.57)	440 (17.32)	6 (0.24)	220 (8.66)	_	1110 (43.70)	15 (0.59)	150 (5.91)	4.6 (0.18)	4.6 (0.18)	M12	221 (487.2)
4A0930A	4	1250 (49.21)	1380 (54.33)	370 (14.57)	1110 (43.70)	6 (0.24)	330 (13.00)	440 (17.32)	1345 (52.95)	15 (0.59)	150 (5.91)	4.6 (0.18)	4.6 (0.18)	M12	545 (1201.5)
4A1200A	4	1250 (49.21)	1380 (54.33)	370 (14.57)	1110 (43.70)	6 (0.24)	330 (13.00)	440 (17.32)	1345 (52.95)	15 (0.59)	150 (5.91)	4.6 (0.18)	4.6 (0.18)	M12	555 (1223.6)

<1> Customers may convert these models to IP20/NEMA Type 1 enclosures using an IP20/NEMA Type 1 Kit.

Table 2.11 Dimensions for IP00/Open Type Enclosure: 600 V Class

			-					P J P -		u. 0. 000					
Drive	Figure .						Dime	nsions m	nm (in)						Wt. kg
Model	Figure	w	Н	D	W1	W2	W3	W4	H1	H2	D1	t1	t2	d	(lb)
5A0125A <1>		450 (17.72)	705 (27.76)	330 (12.99)	325 (12.80)	10 (0.39)	-	_	680 (26.77)	12.4 (0.49)	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	79 (174.2)
5A0145A <1>	1	450 (17.72)	705 (27.76)	330 (12.99)	325 (12.80)	10 (0.39)	-	-	680 (26.77)	12.4 (0.49)	130 (5.12)	3.3 (0.13)	3.3 (0.13)	M10	79 (174.2)
5A0192A <1>	1	500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	-	-	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	107 (235.9)
5A0242A <1>		500 (19.69)	800 (31.50)	350 (13.78)	370 (14.57)	10 (0.39)	-	-	773 (30.43)	13 (0.51)	130 (5.12)	4.6 (0.18)	4.6 (0.18)	M12	107 (235.9)

<1> Customers may convert these models to IP20/NEMA Type 1 enclosures using an IP20/NEMA Type 1 Kit.

IP20/NEMA Type 1 Kit Selection

Customers may convert IP00/Open Type models to IP20/NEMA Type 1 enclosures. Refer to *Table 2.12* to select the appropriate IP20/NEMA Type 1 Kit when performing the conversion.

Contact a Yaskawa representative for IP20/NEMA Type 1 Kit availability for IP00/Open Type models not listed.

Table 2.12 IP20/NEMA Type 1 Kit Selection

IP00/Open Type Drive Model	IP20/NEMA Type 1 Kit Code	Comments
2A0250A		
2A0312A	100-054-503	
2A0360A	100-034-303	
4A0208A		
4A0250A		Refer to IP20/NEMA Type 1 Enclosure
4A0296A	100-054-504	Refer to IP20/NEMA Type 1 Enclosure Drives on page 63 for drive dimensions with the
4A0362A		IP20/NEMA Type 1 Kit installed.
5A0125A	100-054-503	
5A0145A	100-034-303	
5A0192A	100-054-504	
5A0242A	100-034-304	

2.3 Flange Type Enclosure (NEMA 12 Backside) Dimensions & Heat Loss

- ◆ Flange Type Models 2A0004 to 2A0012, 4A0002 to 4A0005, and 5A0003 and 5A0004
- Flange Type Exterior and Mounting Dimensions

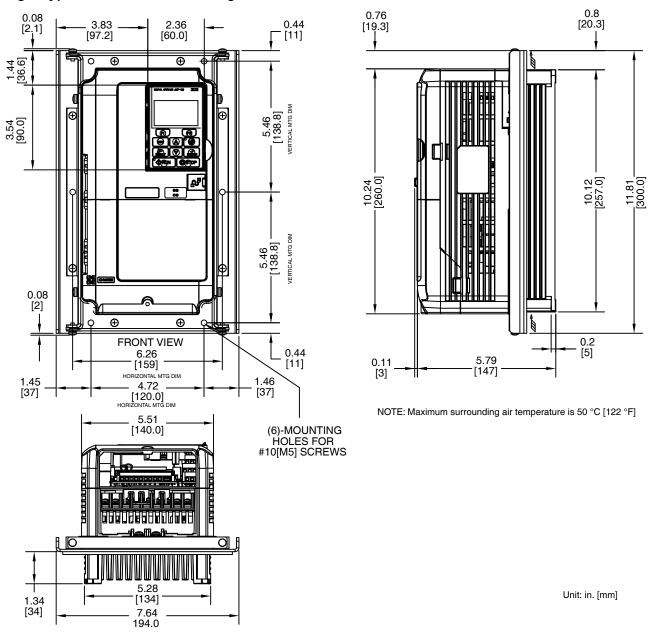


Figure 2.15 Models 2A0004 to 2A0012, 4A0002 to 4A0005, and 5A0003 and 5A0004

Table 2.13 Models 2A0004 to 2A0012, 4A0002 to 4A0005, and 5A0003 and 5A0004

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	1D (Fc = 8 kHz	2)	Wt. kg (lb)
	Ciaco	Internal	External	Total	Internal	External	Total	
2A0004		47.3	18.4	65.7	44.4	14.8	59.2	3.3 (7.3)
2A0006		51.4	30.8	82.2	47.6	24.1	71.7	3.3 (7.3)
2A0008	200	52.1	42.9	95.0	48.9	34.8	83.7	3.4 (7.5)
2A0010		58.4	56.7	115.1	52.1	42.9	95.0	3.4 (7.5)
2A0012		64.4	76.9	141.3	57.9	63.7	121.6	3.4 (7.5)

Drive Model Voltag				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	HD (Fc = 8 kHz	<u>:</u>)	Wt. kg (lb)
	Ciaoo	Internal	External	Total	Internal	External	Total	
4A0002		47.9	19.8	67.7	44.7	15.9	60.6	3.4 (7.5)
4A0004	400	49.2	32.1	81.3	45.7	24.6	70.3	3.4 (7.5)
4A0005		52.8	44.6	97.4	49.4	37.4	86.8	3.4 (7.5)

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	<u>z</u>)	H	1D (Fc = 8 kHz	:)	Wt. kg (lb)
	Olass	Internal	External	Total	Internal	External	Total	
5A0003	600	23.3	21.5	44.8	19.8	28.9	48.7	3.4 (7.5)
5A0004	600	33.6	27.5	61.1	27.6	54.3	81.9	3.4 (7.5)

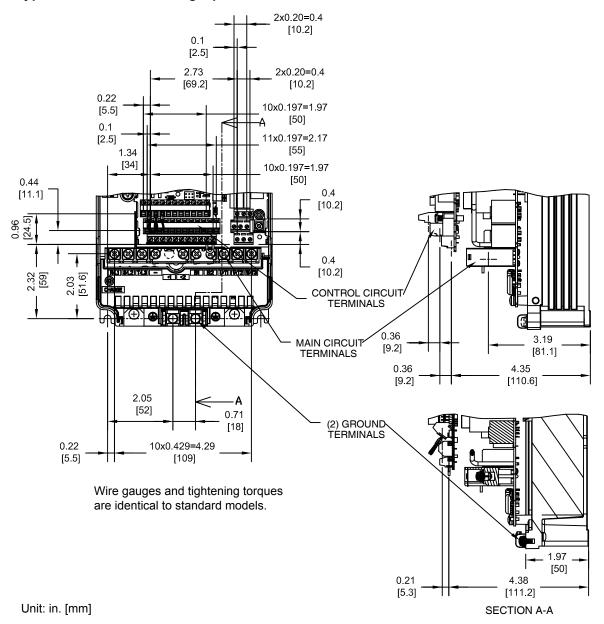


Figure 2.16 Models 2A0004 to 2A0012, 4A0002 to 4A0005, and 5A0003 and 5A0004

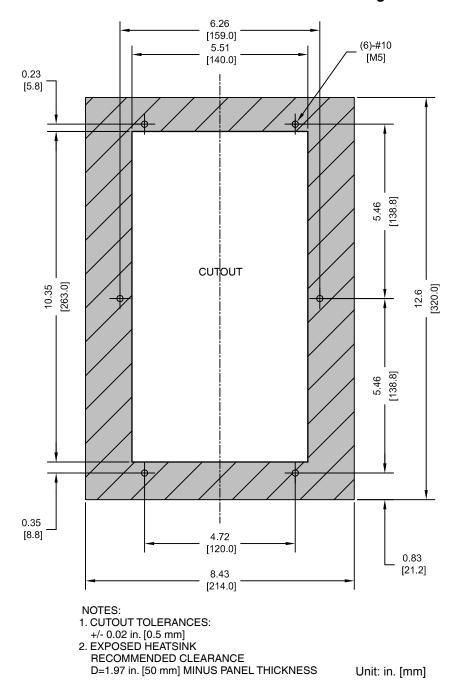


Figure 2.17 Models 2A0004 to 2A0012, 4A0002 to 4A0005, and 5A0003 and 5A0004

- ◆ Flange Type Models 2A0018 and 2A0021, 4A0007 to 4A0011, and 5A0006 and 5A0009
- Flange Type Exterior and Mounting Dimensions

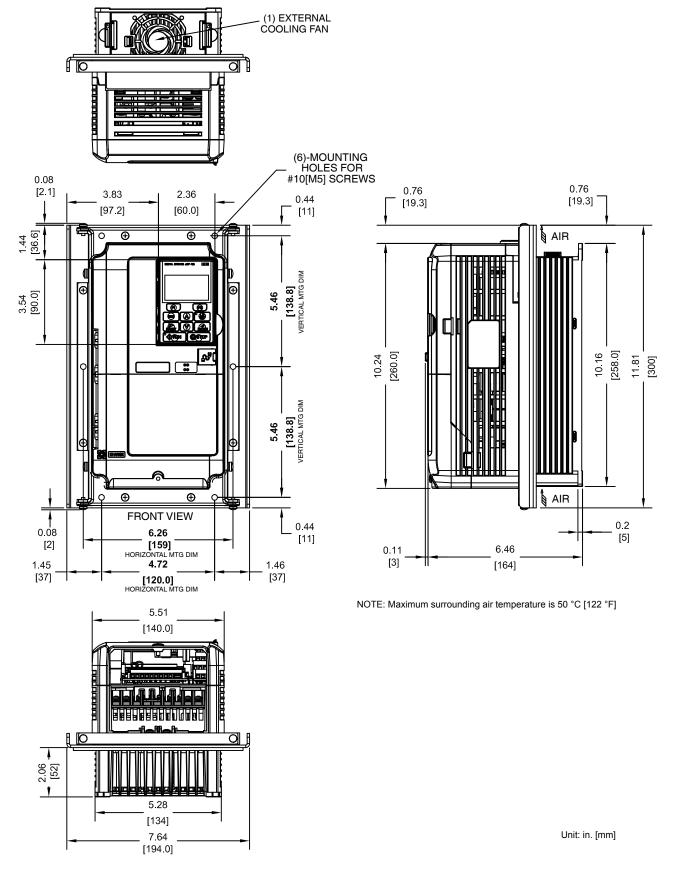


Figure 2.18 Models 2A0018 and 2A0021, 4A0007 to 4A0011, and 5A0006 and 5A0009

Table 2.14 Models 2A0018 and 2A0021, 4A0007 to 4A0011, and 5A0006 and 5A0009

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	ID (Fc = 8 kHz	2)	Wt. kg (lb)
	Ciaco	Internal	External	Total	Internal	External	Total	
2A0018	200	67.4	100.7	168.1	60.0	77.0	137.0	3.7 (8.1)
2A0021	200	83.3	138.4	221.7	67.4	100.7	168.1	3.7 (8.1)

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	1D (Fc = 8 kHz	2)	Wt. kg (lb)
	Glado	Internal	External	Total	Internal	External	Total	
4A0007		59.0	62.1	121.1	53.0	47.7	100.7	3.6 (7.9)
4A0009	400	60.4	65.8	126.2	55.3	53.1	108.4	3.7 (8.1)
4A0011		73.0	88.7	161.7	61.0	68.5	129.5	3.7 (8.1)

Drive Model								
	Voltage Class	1	ND (Fc = 2 kHz	<u>z</u>)	H	1D (Fc = 8 kHz	2)	Wt. kg (lb)
	Cidoo	Internal	External	Total	Internal	External	Total	
5A0006	600	43.7	28.1	71.8	27.0	53.0	80.0	3.7 (8.1)
5A0009	600	68.9	43.4	112.3	36.4	78.7	115.1	3.7 (8.1)

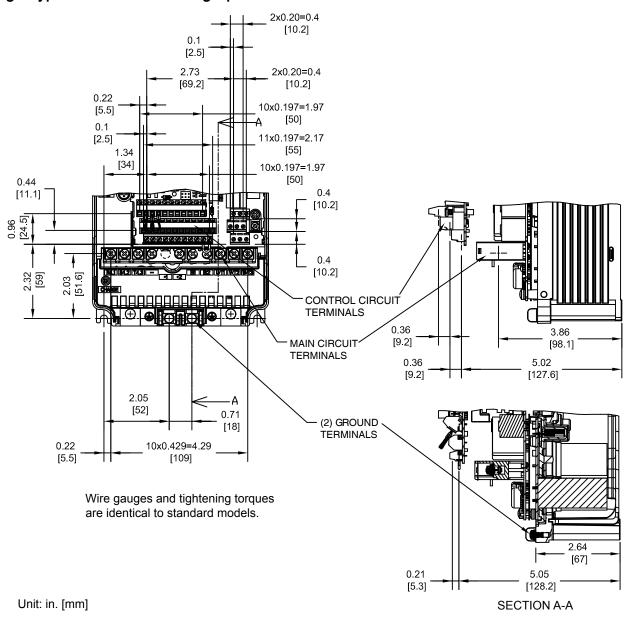


Figure 2.19 Models 2A0018 and 2A0021, 4A0007 to 4A0011, and 5A0006 and 5A0009

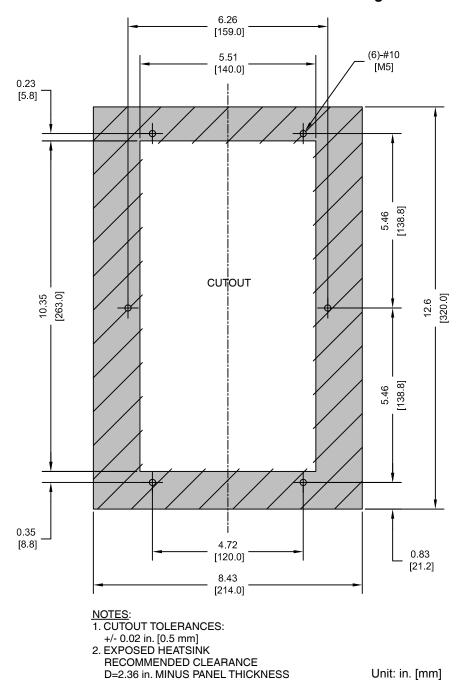


Figure 2.20 Models 2A0018 and 2A0021, 4A0007 to 4A0011, and 5A0006 and 5A0009

- Flange Type Models 2A0030 and 2A0040, 4A0018 and 4A0023, and 5A0011
- Flange Type Exterior and Mounting Dimensions

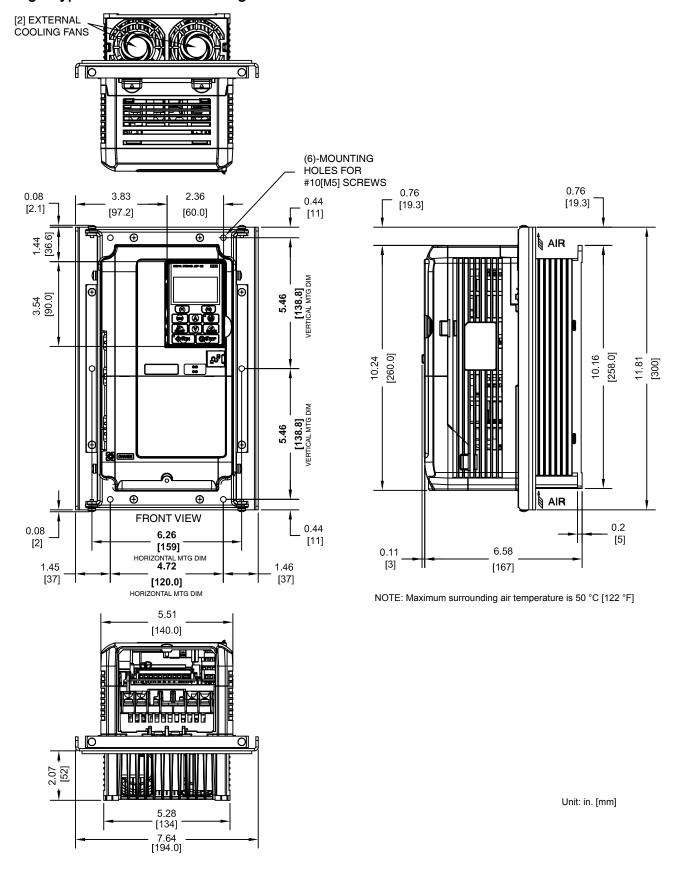


Figure 2.21 Models 2A0030 and 2A0040, 4A0018 and 4A0023, and 5A0011

Table 2.15 Models 2A0030 and 2A0040, 4A0018 and 4A0023, and 5A0011

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	ID (Fc = 8 kHz	2)	Wt. kg (lb)
	Oldoo	Internal	External	Total	Internal	External	Total	
2A0030	200	117.1	261.5	378.6	92.3	194.4	286.7	4.2 (9.2)
2A0040	200	144.5	292.8	437.3	104.8	213.8	318.6	4.2 (9.2)

			Heat Loss (W)						
Drive Model	Voltage Class	1	ND (Fc = 2 kH;	z)	H	1D (Fc = 8 kHz	<u>z</u>)	Wt. kg (lb)	
	Oldoo	Internal	External	Total	Internal	External	Total		
4A0018	400	108.0	177.3	285.3	85.7	135.4	221.1	4.1 (9.0)	
4A0023	400	138.1	215.9	354.0	97.0	149.9	246.9	4.1 (9.0)	

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	1D (Fc = 8 kHz	2)	Wt. kg (lb)
	Ciaco	Internal	External	Total	Internal	External	Total	
5A0011	600	88.0	56.1	144.1	49.5	110.9	160.4	4.1 (9.0)

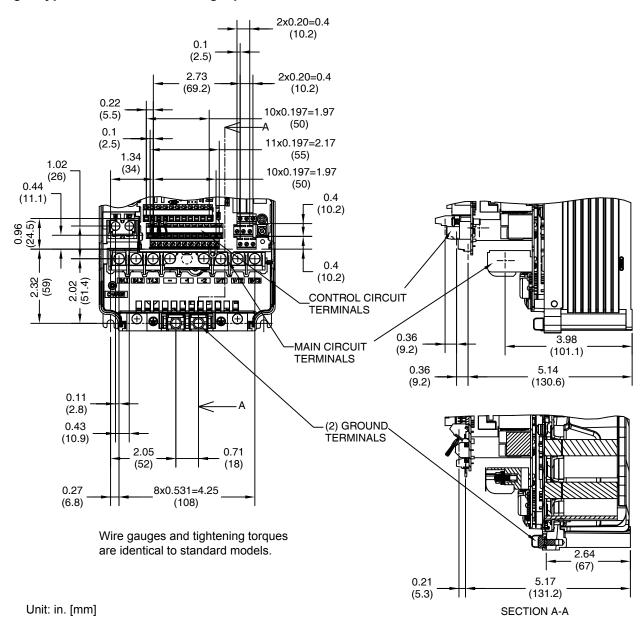


Figure 2.22 Models 2A0030 and 2A0040, 4A0018 and 4A0023, and 5A0011

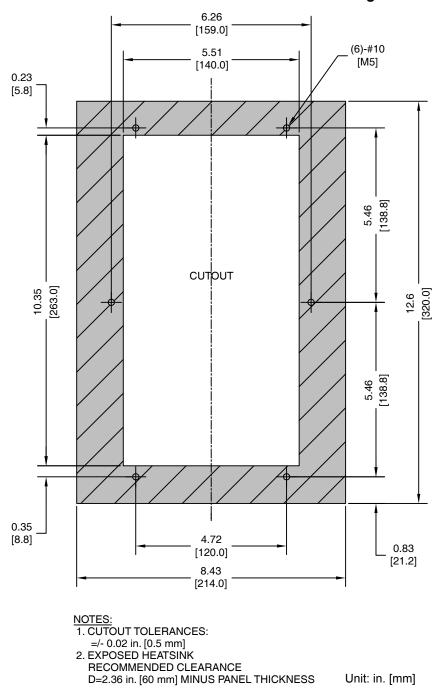


Figure 2.23 Models 2A0030 and 2A0040, 4A0018 and 4A0023, and 5A0011

Flange Type Model 4A0031

■ Flange Type Exterior and Mounting Dimensions

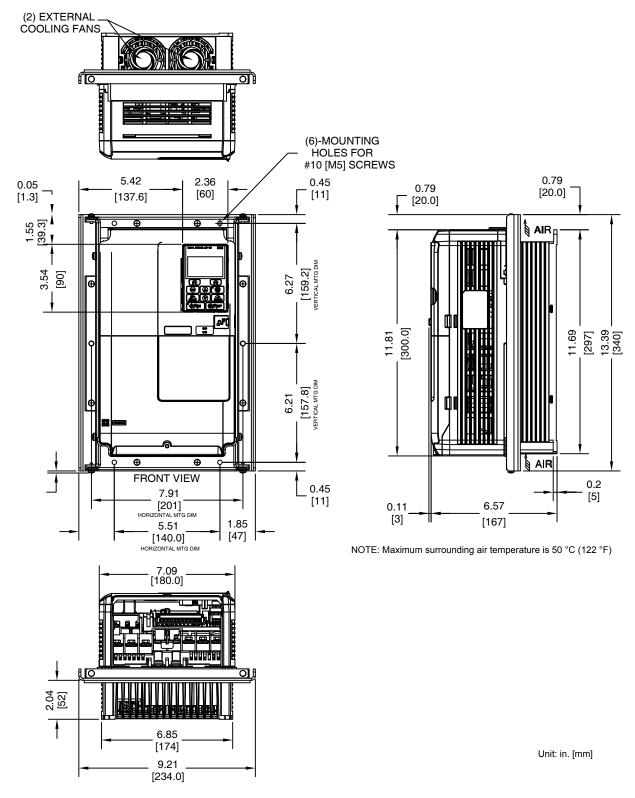


Figure 2.24 Model 4A0031

Table 2.16 Model 4A0031

Drive Model Voltage Class								
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	1D (Fc = 8 kHz	:)	Wt. kg (lb)
	Ciaco	Internal	External	Total	Internal	External	Total	
4A0031	400	160.5	294.6	455.1	115.1	208.0	323.1	5.7 (12.5)

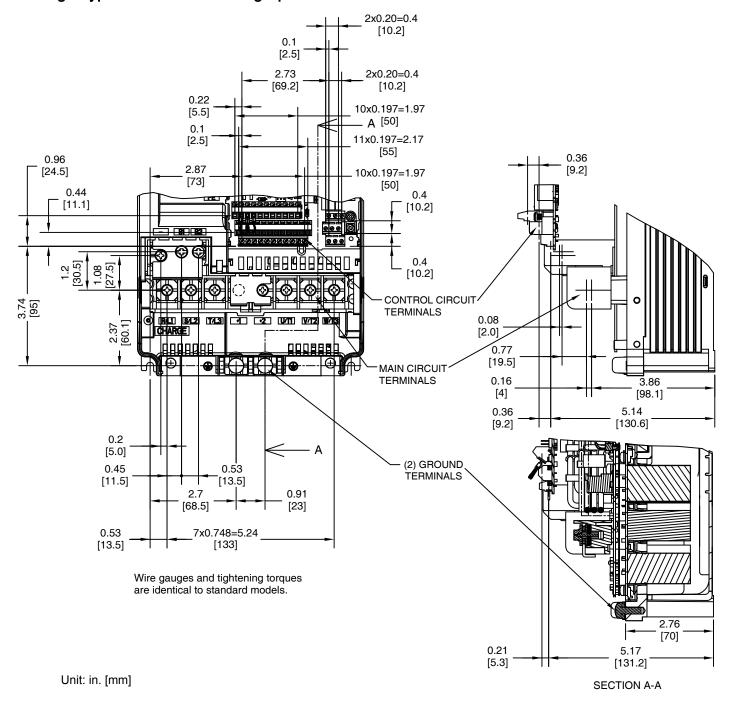


Figure 2.25 Model 4A0031

Figure 2.26 Model 4A0031

◆ Flange Type Models 2A0056, 4A0038, and 5A0017 and 5A0022

■ Flange Type Exterior and Mounting Dimensions

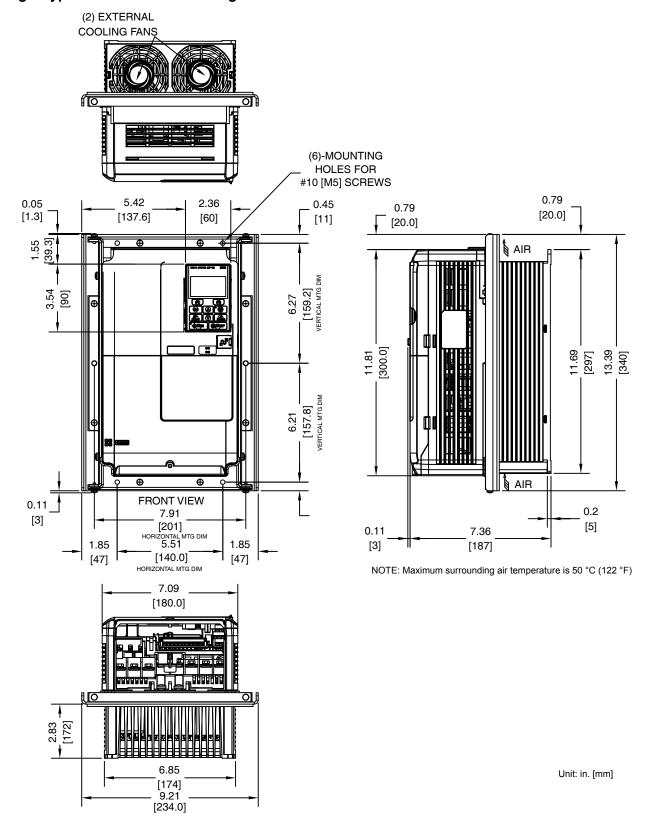


Figure 2.27 Models 2A0056, 4A0038, and 5A0017 and 5A0022

Table 2.17 Models 2A0056, 4A0038, and 5A0017 and 5A0022

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	<u>z</u>)	H	HD (Fc = 8 kHz	:)	Wt. kg (lb)
	Oldoo	Internal	External	Total	Internal	External	Total	
2A0056	200	175.4	370.7	546.1	129.9	280.2	410.1	5.9 (13.0)

Drive Model				Heat Lo	oss (W)			
	Voltage Class	1	ND (Fc = 2 kHz	z)	H	1D (Fc = 8 kHz	:)	Wt. kg (lb)
	Olass	Internal	External	Total	Internal	External	Total	
4A0038	400	181.6	339.6	521.2	140.8	262.6	403.4	6.0 (13.2)

				Heat Lo	oss (W)			
Drive Model	Voltage Class	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
		Internal	External	Total	Internal	External	Total	
5A0017	600	146.7	96.6	243.3	67.5	144.7	212.2	6.0 (13.2)
5A0022	600	178.3	99.4	277.7	81.1	203.8	284.9	6.0 (13.2)

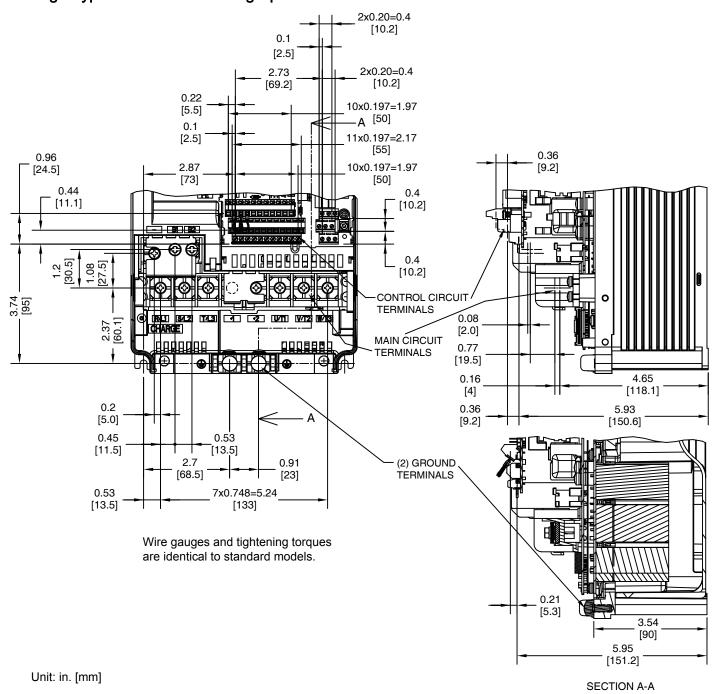


Figure 2.28 Models 2A0056, 4A0038, and 5A0017 and 5A0022

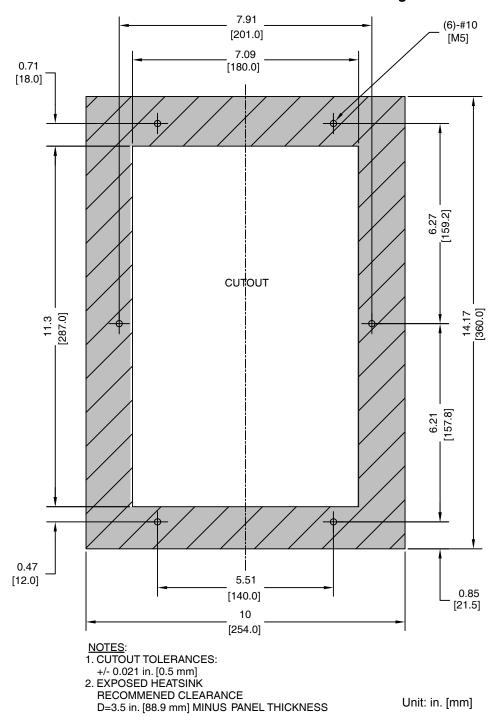


Figure 2.29 Models 2A0056, 4A0038, and 5A0017 and 5A0022

Flange Type Models 2A0069 and 2A0081, 4A0044, and 5A0027 and 5A0032

■ Flange Type Exterior and Mounting Dimensions

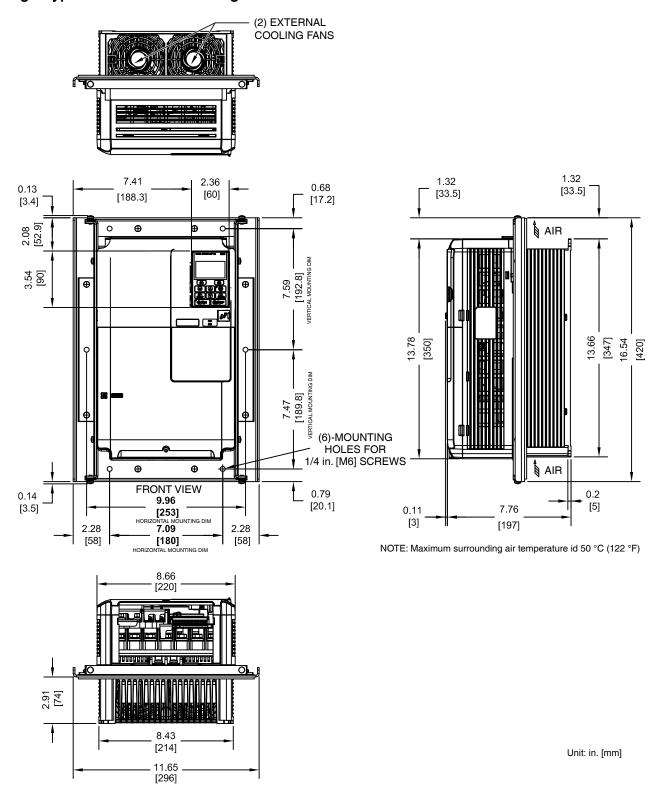


Figure 2.30 Models 2A0069 and 2A0081, 4A0044, and 5A0027 and 5A0032

Table 2.18 Models 2A0069 and 2A0081, 4A0044, and 5A0027 and 5A0032

Drive Model								
	Voltage Class	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
		Internal	External	Total	Internal	External	Total	
2A0069	200	204.5	491.3	695.8	162.8	394.9	557.7	9.1 (20.0)
2A0081	200	257.4	527.4	784.8	220.9	459.8	680.7	10.0 (22.0)

Drive Model								
	Voltage Class	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
		Internal	External	Total	Internal	External	Total	
4A0044	400	208.9	389.6	598.5	179.4	329.8	509.2	8.7 (19.1)

Drive Model								
	Voltage Class	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
		Internal	External	Total	Internal	External	Total	
5A0027	600	227.2	132.1	359.3	113.9	267.2	381.1	8.7 (19.1)
5A0032	000	279.9	141.6	421.5	132.2	332.9	465.1	8.7 (19.1)

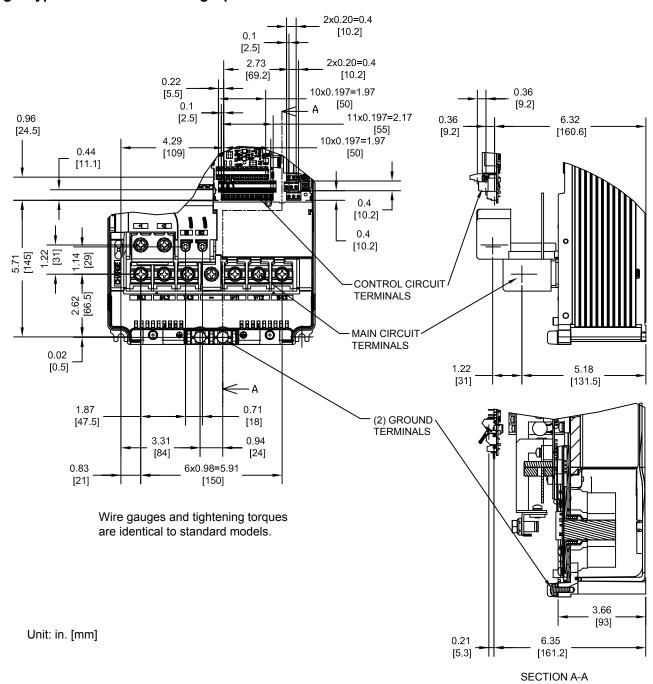


Figure 2.31 Models 2A0069 and 2A0081

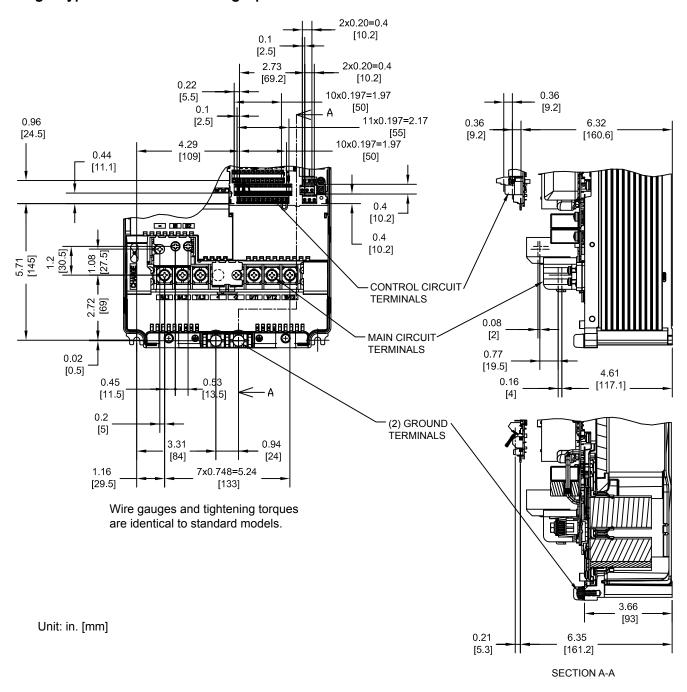
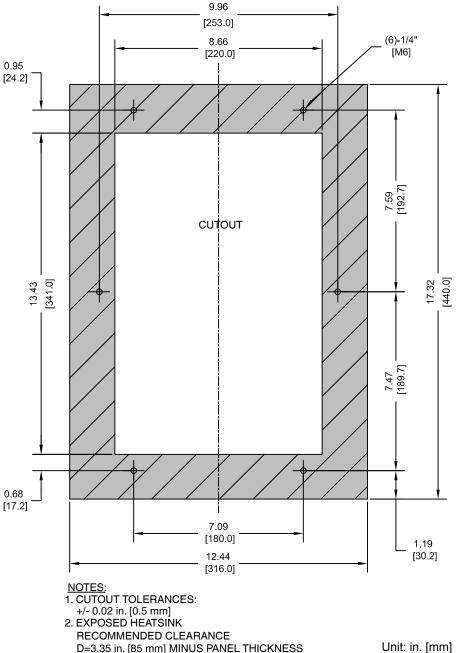



Figure 2.32 Models 4A0044, 5A0027, and 5A0032

D=3.35 in. [85 mm] MINUS PANEL THICKNESS

Figure 2.33 Models 2A0069 and 2A0081, 4A0044, and 5A0027 and 5A0032

◆ Flange Type Models 2A0110 and 4□0058

■ Flange Type Exterior and Mounting Dimensions



Figure 2.34 Models 2A0110 and 4□0058

Table 2.19 Models 2A0110 and 4□0058

Drive Model			Heat Loss (W)							
	Voltage Class	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)		
	Ciaco	Internal	External	Total	Internal	External	Total			
2A0110	200	286	719	1005	211	510	721	23 (50.6)		

				Heat Loss (W)							
Drive Model	Voltage Class	Input Type	ND (Fc = 2 kHz)			HE) (Fc = 8 kHz	2)	Wt. kg (lb)		
			Internal	External	Total	Internal	External	Total			
4A0058	400	6-Pulse	215	471	686	170	349	519	23 (50.6)		
4T0058 <1>	400	12-Pulse	197	453	650	159	341	500	21 (46.2)		

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

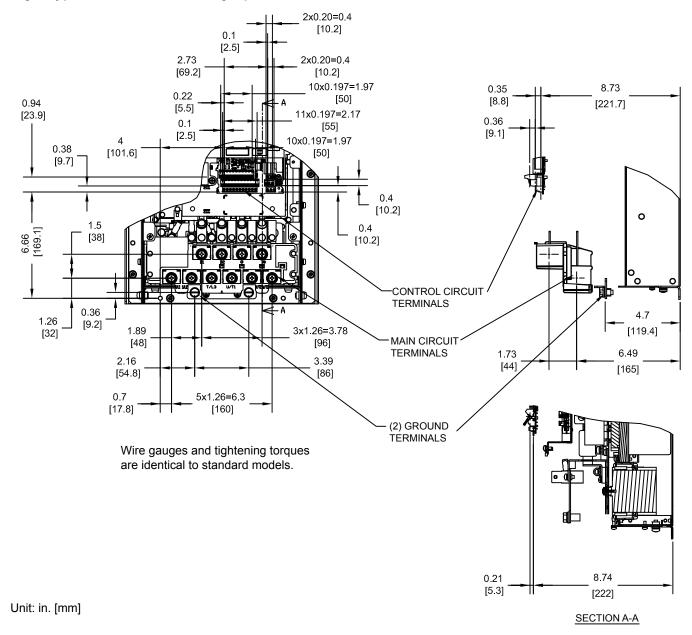


Figure 2.35 Models 2A0110 and 4A0058

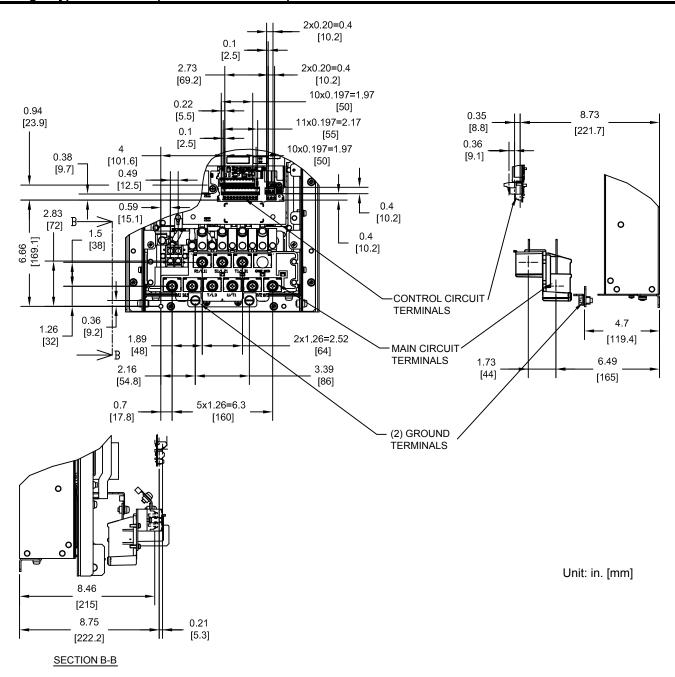
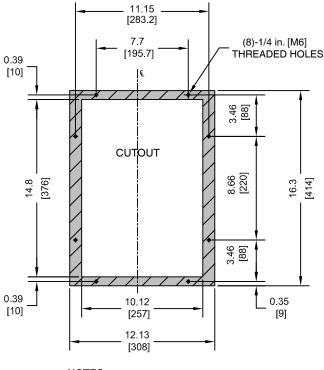



Figure 2.36 Model 4T0058

Table 2.20 12-Pulse Model 4T0058 Terminal and Wire Specifications for Main Circuit and Ground

Drive Model	Terminal	Wire Range AWG, kcmil	Screw Size	Tightening Torque N⋅m (lb.in.)
4T0058 < <i>I</i> >	R/L1, S/L2, T/L3 R1/L11, S1/L21, T1/L31 U/T1, V/T2, W/T3	10 to 1/0 (5.3 to 53.5)	M8	9 to 11 (79.7 to 97.4)
410030	B1, B2	22 to 10 (0.3 to 5.3)	M4	1.2 (10.6)
		Refer to applicable codes for wire size	M8	9 to 11 (79.7 to 97.4)

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

NOTES:

- 1. CUTOUT TOLERANCES:
- +/- 0.02 in. [0.5 mm]
- 2. EXPOSED HEATSINK DEPTH D=3.82 in. [97 mm] MINUS PANEL THICKNESS
- 3. MINIMUM RECOMMENDED PANEL
- Unit: in. [mm] THICKNESS: 12 GA

Figure 2.37 Models 2A0110 and 4□0058

◆ Flange Type Models 2A0138, 4□0072, and 5A0041 and 5A0052

■ Flange Type Exterior and Mounting Dimensions

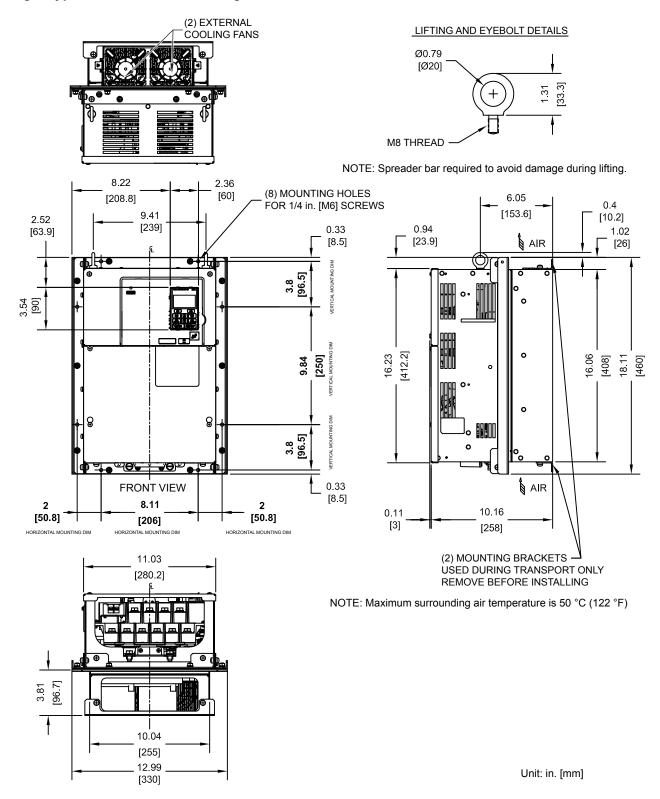


Figure 2.38 Models 2A0138, 4D0072, and 5A0041 and 5A0052

Table 2.21 Models 2A0138, 4D0072, and 5A0041 and 5A0052

Drive Model	Voltage Class							
		ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
	Cidoo	Internal	External	Total	Internal	External	Total	
2A0138	200	312	842	1154	250	662	912	28 (61.6)

				Heat Loss (W)						
Drive Model	Voltage Class	Input Type	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)	
	Ciaoo		Internal	External	Total	Internal	External	Total		
4A0072	400	6-Pulse	265	605	870	217	484	701	27 (59.4)	
4T0072 <1>	400	12-Pulse	244	588	832	206	477	683	24 (52.8)	

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

Drive Model	Voltage Class	ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
	Oldoo	Internal	External	Total	Internal	External	Total	
5A0041	600	136	331	467	128	406	534	27 (59.4)
5A0052	000	166	428	594	161	527	688	27 (59.4)

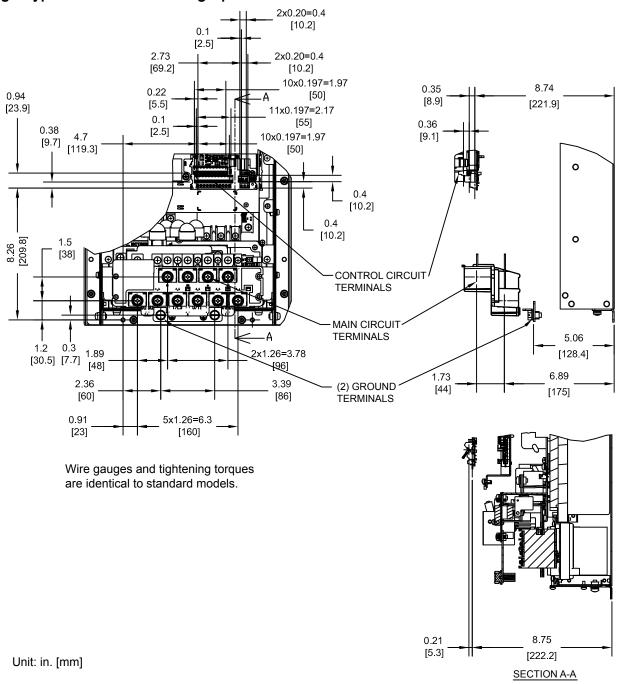


Figure 2.39 Models 2A0138, 4A0072, and 5A0041 and 5A0052

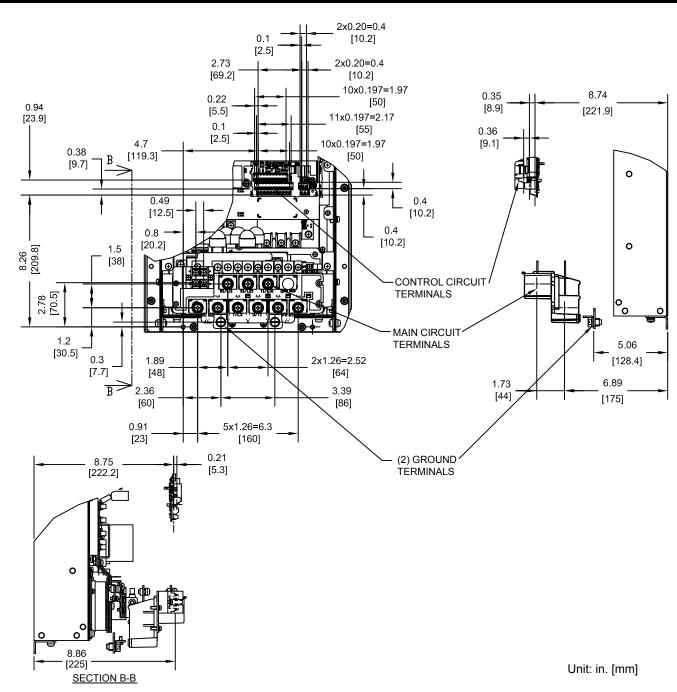


Figure 2.40 Model 4T0072

Table 2.22 12-Pulse Model 4T0072Terminal and Wire Specifications for Main Circuit and Ground

Drive Model	Terminal	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3			
	R1/L11, S1/L21, T1/L31	10 to 3/0 (5.3 to 85.0)	M8	9 to 11 (79.7 to 97.4)
4T0072 <1>	U/T1, V/T2, W/T3			(75.7 10 57.1)
410072	B1, B2	22 to 10 (0.3 to 5.3)	M4	1.2 (10.6)
		Refer to applicable codes for wire size	M8	9 to 11 (79.7 to 97.4)

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

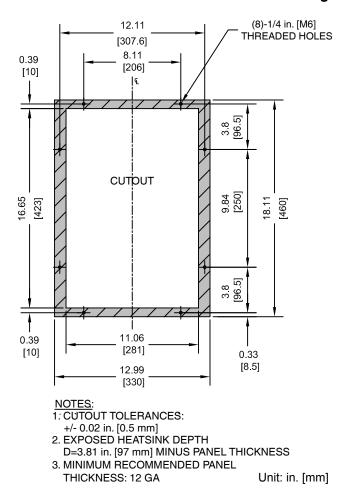


Figure 2.41 Models 2A0138, 4□0072, and 5A0041 and 5A0052

◆ Flange Type Models 4□0088 and 4□0103

■ Flange Type Exterior and Mounting Dimensions

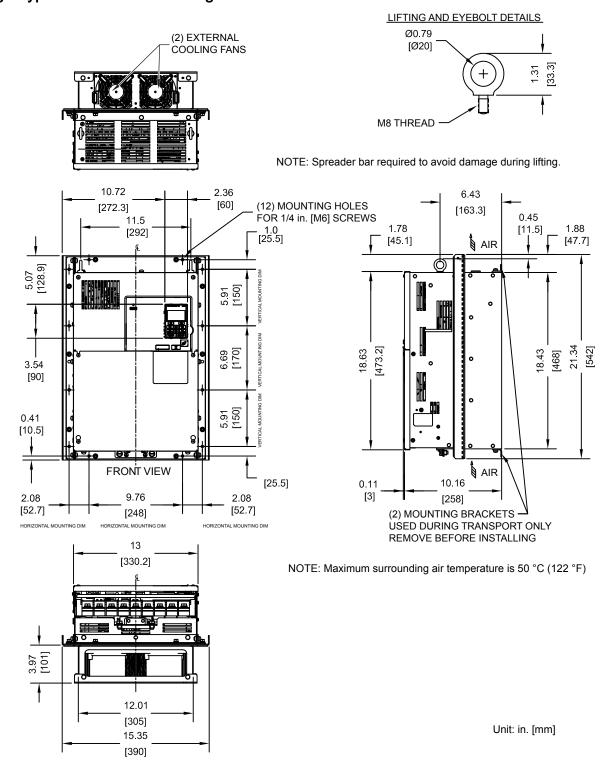


Figure 2.42 Models 4□0088 and 4□0103

Table 2.23 Models 4□0088 and 4□0103

				Heat Loss (W)							
Drive Model	Voltage Class	Input Type	N	D (Fc = 2 kH	z)	Н	D (Fc = 8 kH:	z)	Wt. kg (lb)		
	Oldoo		Internal	External	Total	Internal	External	Total			
4A0088		6-Pulse	308	684	992	254	563	817	39 (85.8)		
4A0103	400	6-Puise	357	848	1205	299	723	1022	39 (85.8)		
4T0088 <1>	400	12-Pulse	285	669	954	241	556	797	35 (77.0)		
4T0103 <1>			329	827	1156	285	714	999	35 (77.0)		

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

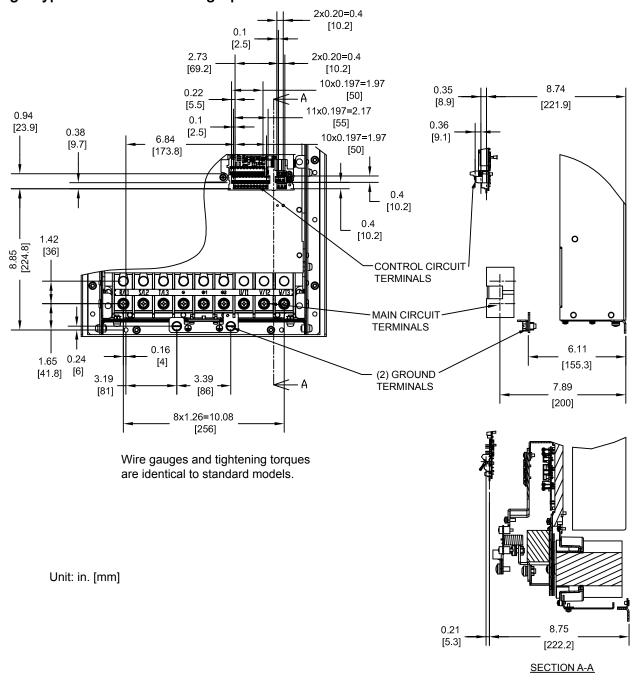


Figure 2.43 Models 4A0088 and 4A0103

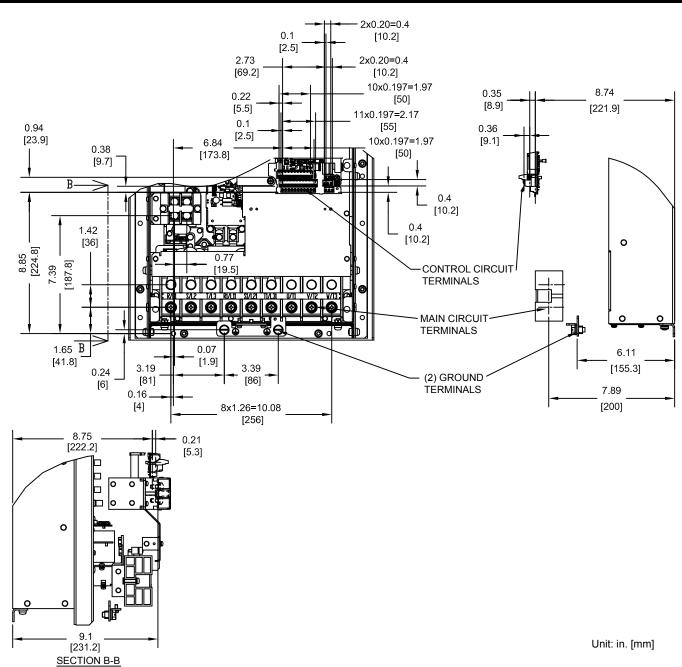
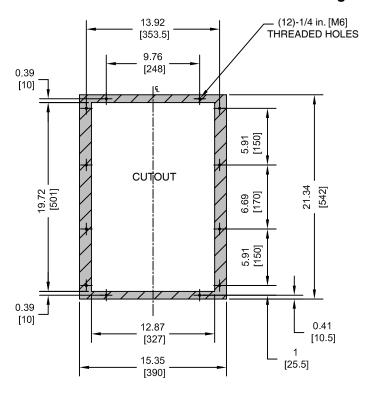



Figure 2.44 Models 4T0088 and 4T0103

Table 2.24 12-Pulse Models 4T0088 and 4T0103 Terminal and Wire Specifications for Main Circuit and Ground

Drive Model	Terminal	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
4T0088 <i> 4T0103 <i></i></i>	R/L1, S/L2, T/L3	6 to 250 (13.3 to 127)	M8	9 to 11 (79.7 to 97.4)
	R1/L11, S1/L21, T1/L31			
	U/T1, V/T2, W/T3			
	B1, B2	22 to 1/0 (0.3 to 53.5)	M6	2.5 to 3.0 (22.1 to 26.6)
	=	Refer to applicable codes for wire size	M8	9 to 11 (79.7 to 97.4)

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

- NOTES: 1. CUTOUT TOLERANCES:
- +/- 0.02 in. [0.5 mm]
 2. EXPOSED HEATSINK DEPTH D=3.97 in. [101 mm] MINUS PANEL THICKNESS
 3. MINIMUM RECOMMENDED PANEL
- Unit: in. [mm] THICKNESS: 12 GA

Figure 2.45 Models 4□0088 and 4□0103

◆ Flange Type Models 2A0169 and 2A0211, 4□0139 and 4□0165, and 5A0062 to 5A0099

■ Flange Type Exterior and Mounting Dimensions

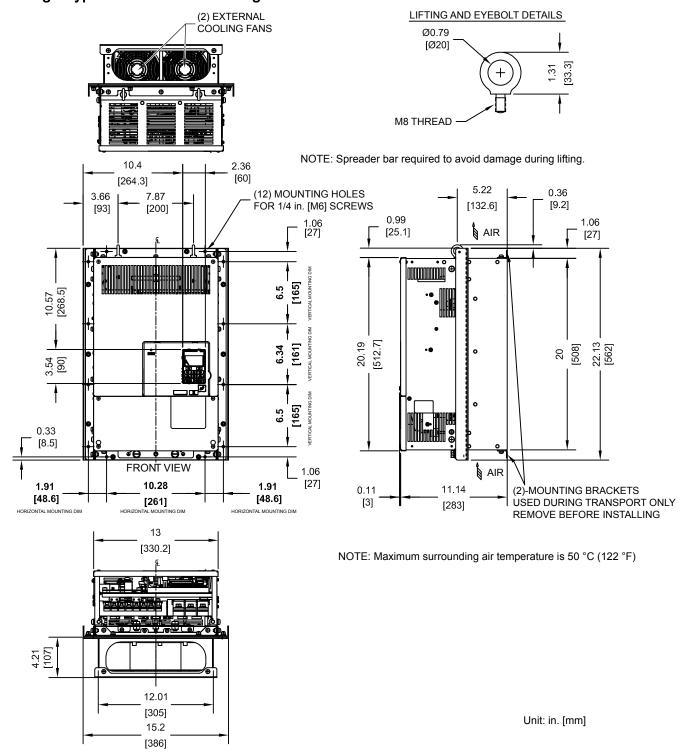


Figure 2.46 Models 2A0169 and 2A0211, 4D0139 and 4D0165, and 5A0062 to 5A0099

■ Flange Type Heat Loss Data

Table 2.25 Models 2A0169 and 2A0211, 4D0139 and 4D0165, and 5A0062 to 5A0099

				Heat Lo	oss (W)			
Drive Model Voltage Class		1	ND (Fc = 2 kHz	z)		Wt. kg (lb)		
	Cidoo	Internal	External	Total	Internal	External	Total	
2A0169	200	380	1014	1394	306	816	1122	41 (90.2)
2A0211	200	473	1218	1691	378	976	1354	42 (92.4)

<1> Carrier frequency is set to 8 kHz in model 2A0169 and set to 5 kHz in model 2A0211.

Drive Model	Voltage Class	Input Type	N	D (Fc = 2 kH	z)	HD (Fc = <1>)			Wt. kg (lb)
	0.000		Internal	External	Total	Internal	External	Total	
4A0139		6-Pulse	534	1215	1749	416	908	1324	45 (99.0)
4A0165	400	0-ruise	668	1557	2225	580	1340	1920	46 (101.2)
4T0139 <2>	400	400 12-Pulse	487	1179	1666	447	1100	1547	39 (85.8)
4T0165 <2>			624	1520	2164	629	1647	2276	40 (88.2)

<1> Carrier frequency is set to 8 kHz in model 4 \(\Delta\)0139 and set to 5 kHz in model 4 A0165.

<2> Refer to manual TOEP C710616 50 for information on 12-pulse models.

				Heat Lo	oss (W)				
Drive Model	ve Model Voltage Class		ND (Fc = 2 kHz)			HD (Fc = <1>)			
	0.000	Internal	External	Total	Internal	External	Total		
5A0062		279	791	1070	335	1272	1607	45 (99.0)	
5A0077	600	329	959	1288	379	1457	1836	45 (99.0)	
5A0099		412	1253	1665	352	1267	1619	45 (99.0)	

<1> Carrier frequency is set to 8 kHz in models 5A0062 and 5A0077 and set to 5 kHz in model 5A0099.

■ Flange Type Terminal and Wiring Specifications

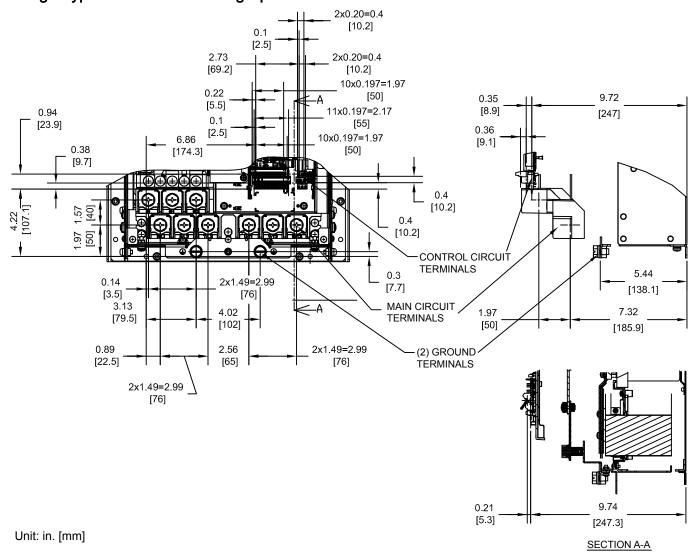


Figure 2.47 Models 2A0169 and 2A0211, 4A0139 and 4A0165, and 5A0062 to 5A0099

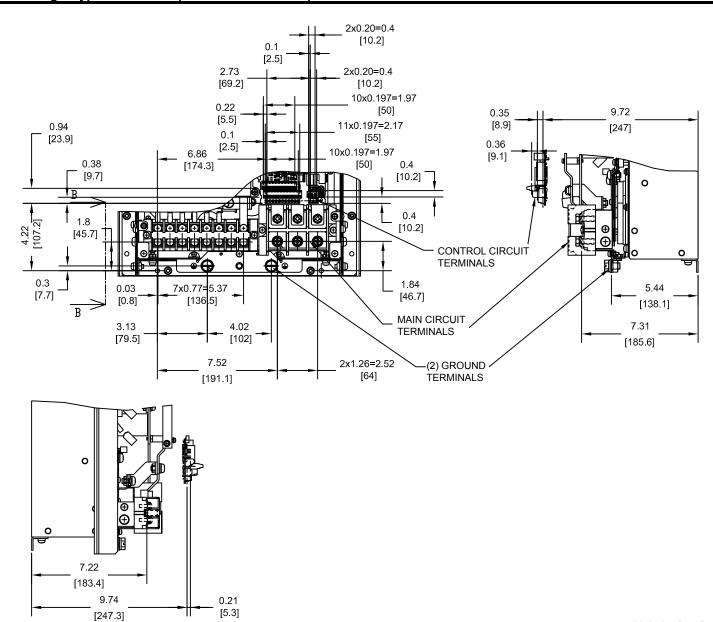


Figure 2.48 Models 4T0139 and 4T0165

Table 2.26 12-Pulse Models 4T0139 and 4T0165 Terminal and Wire Specifications for Main Circuit and Ground

Drive Model	Terminal	Wire Range AWG, kcmil	Screw Size	Tightening Torque N⋅m (lb.in.)
4T0139 <1> 4T0165 <1>	R/L1, S/L2, T/L3 R1/L11, S1/L21, T1/L31 ⊖, ⊕3	22 to 1/0 (0.3 to 53.5)	M6	2.5 to 3.0 (22 to 1/0)
4T0165	U/T1, V/T2, W/T3	6 to 250 (13.3 to 127)	M8	15.0 (132.8)
		Refer to applicable codes for wire size	M10	18 to 23 (159.3 to 203.6)

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

SECTION B-B

Unit: in. [mm]

■ Flange Type Panel Cutout Dimensions for External Heatsink Mounting

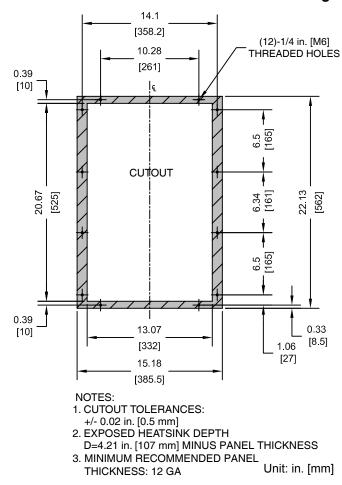


Figure 2.49 Models 2A0169 and 2A0211, 4D0139 and 4D0165, and 5A0062 to 5A0099

◆ Flange Type Models 2A0250 and 2A0312, 4□0208, and 5A0125 and 5A0145

■ Flange Type Exterior and Mounting Dimensions

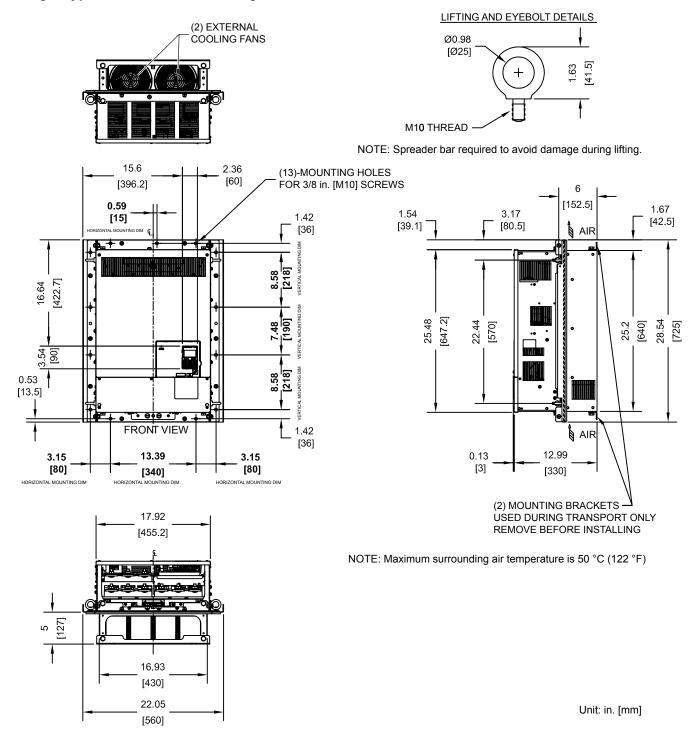


Figure 2.50 Models 2A0250 and 2A0312, 4D0208, and 5A0125 and 5A0145

■ Flange Type Heat Loss Data

Table 2.27 Models 2A0250 and 2A0312, 4D0208, and 5A0125 and 5A0145

				Heat Lo	oss (W)			
Drive Model Voltage Class		1	ND (Fc = 2 kH;	z)	ŀ	Wt. kg (lb)		
		Internal	External	Total	Internal	External	Total	
2A0250	200	594	1764	2358	466	1514	1980	83 (183)
2A0312	200	665	2020	2685	588	1936	2524	88 (194)

				Heat Loss (W)						
Drive Model	Voltage Class	Input Type	N	D (Fc = 2 kH	z)	H	Wt. kg (lb)			
	Oldoo		Internal	External	Total	Internal	External	Total		
4A0208	400	6-Pulse	607	1800	2407	541	1771	2312	87 (191)	
4T0208 <1>	400	12-Pulse	553	1746	2299	586	2199	2765	78 (172)	

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

Drive Model	Voltage Class	ND (Fc = 2 kHz)			H	Wt. kg (lb)		
	Internal	External	Total	Internal	External	Total		
5A0125	600	537	1641	2178	422	1328	1750	87 (191)
5A0145	000	603	1860	2463	508	1638	2146	87 (191)

■ Flange Type Terminal and Wiring Specifications

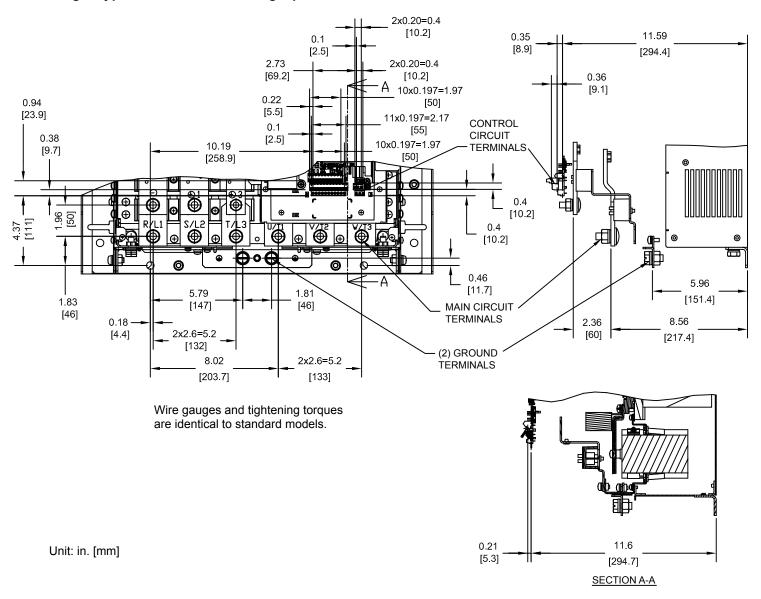
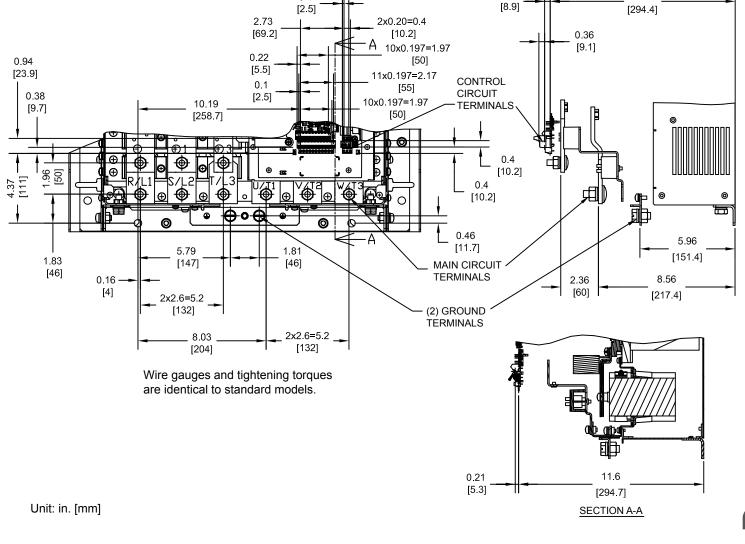



Figure 2.51 Models 2A0250 and 2A0312

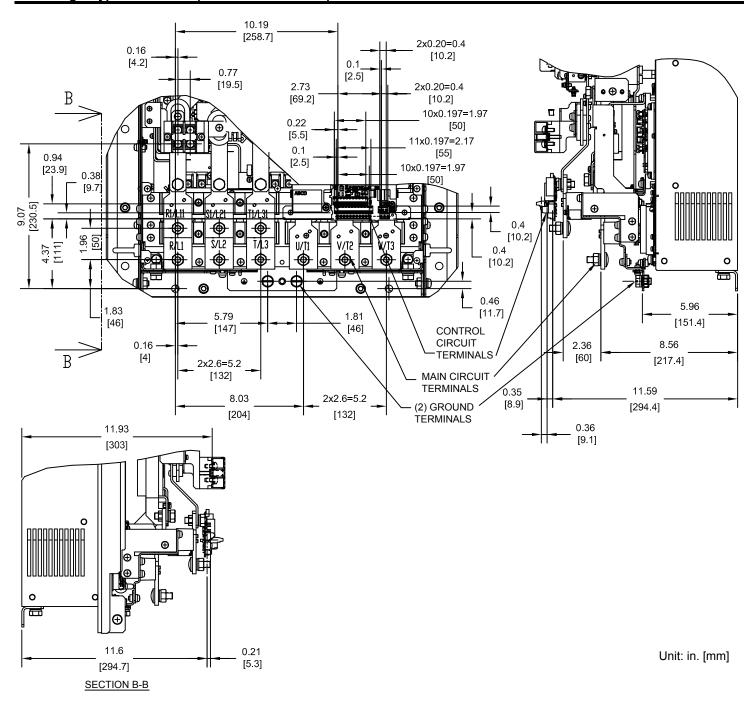
0.35

11.59

2x0.20=0.4 [10.2]

0.1

Figure 2.52 Models 4A0208, 5A0125, and 5A0145



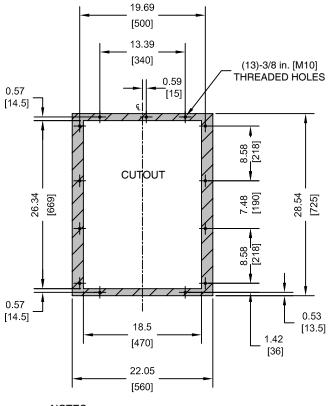

Figure 2.53 Model 4T0208

Table 2.28 12-Pulse Model 4T0208 Terminal and Wire Specifications for Main Circuit and Ground

Drive Model	Terminal	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3 R1/L11, S1/L21, T1/L31 U/T1, V/T2, W/T3	Refer to applicable codes for wire size	M10	18 to 23 (159.3 to 203.6)
4T0208 <1>	⊖, ⊕3	22 to 1/0 (0.3 to 53.5)	M6	2.5 to 3.0 (22.1 to 26.6)
		Refer to applicable codes for wire size	M10	18 to 23 (159.3 to 203.6)

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

Flange Type Panel Cutout Dimensions for External Heatsink Mounting

NOTES:

- 1. CUTOUT TOLERANCES: +/- 0.02 in. [0.5 mm]
- 2. EXPOSED HEATSINK DEPTH D=5.00 in. [127 mm] MINUS PANEL THICKNESS
- 3. MINIMUM RECOMMENDED PANEL Unit: in. [mm] THICKNESS: 10 GA

Figure 2.54 Models 2A0250 and 2A0312, 4D0208, and 5A0125 and 5A0145

- ◆ Flange Type Models 2A0360 and 2A0415, 4□0250 to 4□0362, and 5A0192 and 5A0242
- Flange Type Exterior and Mounting Dimensions

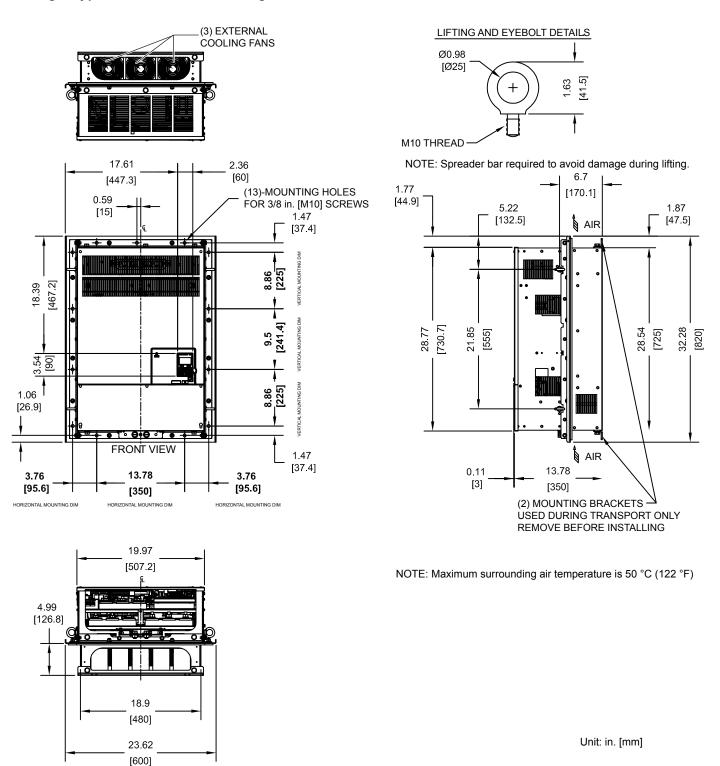


Figure 2.55 Models 2A0360 and 2A0415, 4D0250 to 4D0362, and 5A0192 and 5A0242

■ Flange Type Heat Loss Data

Table 2.29 Models 2A0360 and 2A0415, 4D0250 to 4D0362, and 5A0192 and 5A0242

				Heat Lo	oss (W)			
Drive Model Voltage Class		1	ND (Fc = 2 kHz	z)		Wt. kg (lb)		
		Internal	External	Total	Internal	External	Total	
2A0360	200	894	2698	3592	783	2564	3347	108 (238)
2A0415	200	954	2672	3626	954	2672	3626	-

<1> Carrier frequency is set to 5 kHz in model 2A0360 and set to 2 kHz in model 2A0415.

	Voltore			Heat Loss (W)							
Drive Model	Voltage Class	Input Type	N	D (Fc = 2 kH	z)	HD (Fc = <1>)			Wt. kg (lb)		
	- Class		Internal	External	Total	Internal	External	Total			
4A0250			803	2379	3182	715	2360	3075	106 (233)		
4A0296		6-Pulse	905	2448	3353	787	2391	3178	112 (246)		
4A0362			1130	3168	4298	985	3075	4060	117 (257)		
4T0250 <2>	400	12-Pulse	729	2305	3034	663	2308	2971	90 (198)		
4T0296 <2>			772	2308	3080	694	2295	2989	95 (209)		
4T0362 <2>			874	3168	4042	788	3075	3863	97 (214)		

<1> Carrier frequency is set to 5 kHz in models 4\(\simega\)0250, 4\(\simega\)0296, and 4T0362 and set to 2 kHz in model 4A0362.

<2> Refer to manual TOEP C710616 50 for information on 12-pulse models.

				Heat Lo	oss (W)			
Drive Model Voltage Class		ND (Fc = 2 kHz)			H	Wt. kg (lb)		
	Cidoo	Internal	External	Total	Internal	External	Total	
5A0192	600	769	2420	3189	648	2114	2762	117 (257)
5A0242	000	1131	3100	4231	896	2526	3422	117 (257)

■ Flange Type Terminal and Wiring Specifications

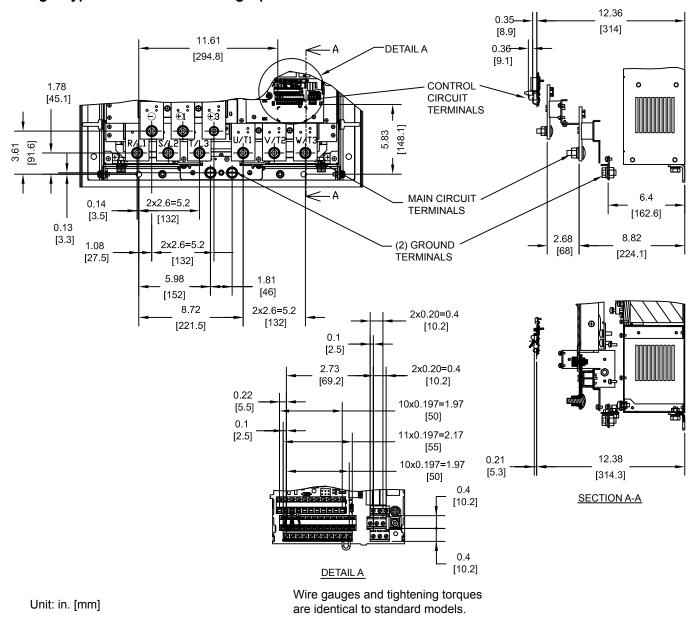


Figure 2.56 Models 2A0360 and 2A0415, 4A0296 to 4A0362, and 5A0192 and 5A0242

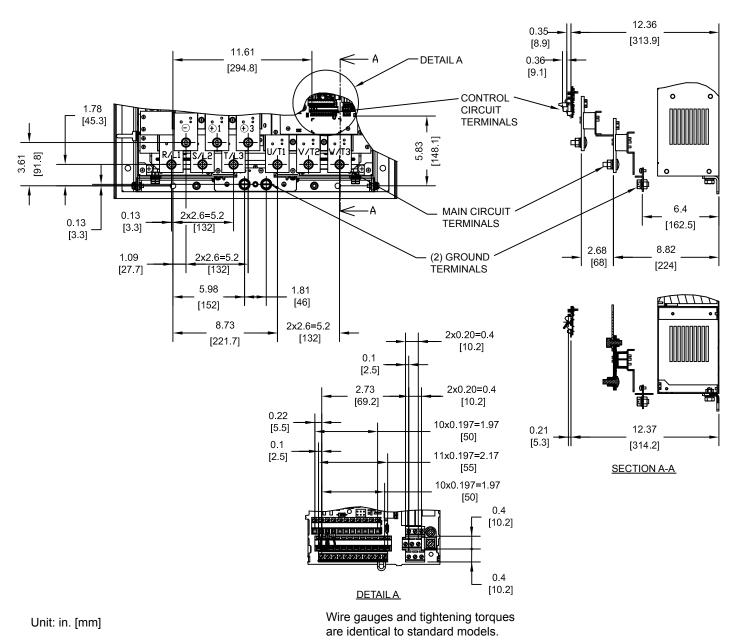


Figure 2.57 Model 4A0250

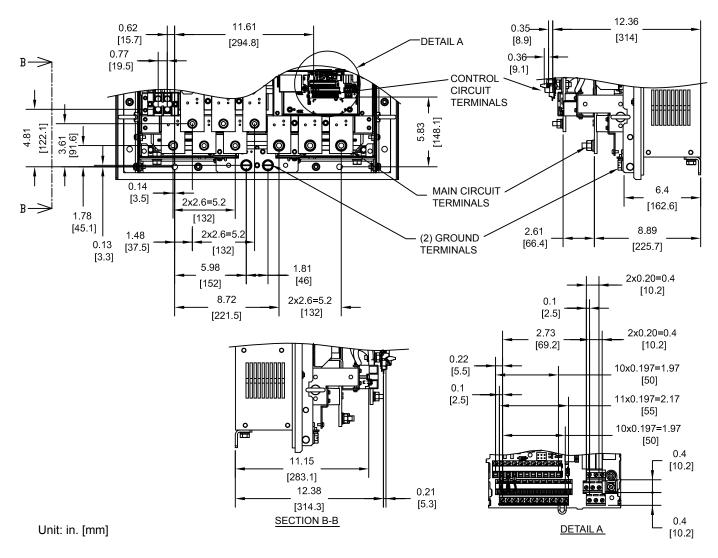


Figure 2.58 Models 4T0250 to 4T0362

Table 2.30 12-Pulse Models 4T0250, 4T0296, and 4T0362 Terminal and Wire Specifications for Main Circuit and Ground

Drive Model	Terminal	Wire Range AWG, kcmil	Screw Size	Tightening Torque N⋅m (lb.in.)
	R/L1, S/L2, T/L3 R1/L11, S1/L21, T1/L31 U/T1, V/T2, W/T3	Refer to applicable codes for wire size	M10	18 to 23 (159.3 to 203.6)
4T0250 <1>	⊖, ⊕3	22 to 1/0 (0.3 to 53.5)	M6	2.5 to 3.0 (22.1 to 26.6)
		Refer to applicable codes for wire size	M10	18 to 23 (159.3 to 203.6)
	R/L1, S/L2, T/L3 R1/L11, S1/L21, T1/L31	Refer to applicable codes for wire size	M10	18 to 23 (159.3 to 203.6)
4T0296 <1>	U/T1, V/T2, W/T3	Tester to applicable codes for time size	M12	32 to 40 (283.2 to 354.0)
4T0362 <1>	⊖, ⊕3	22 to 1/0 (0.3 to 53.5)	M6	2.5 to 3.0 (22.1 to 26.6)
		Refer to applicable codes for wire size	M12	32 to 40 (283.2 to 354.0)

<1> Refer to manual TOEP C710616 50 for information on 12-pulse models.

■ Flange Type Panel Cutout Dimensions for External Heatsink Mounting

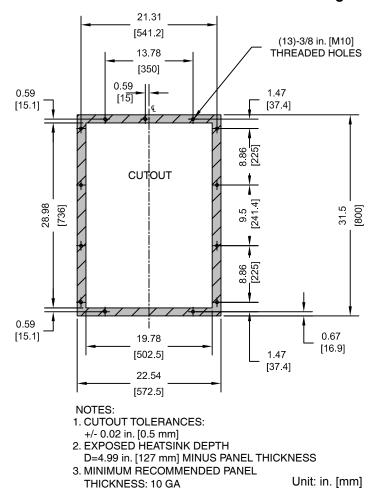


Figure 2.59 Models 2A0360 and 2A0415, 4D0250 to 4D0362, and 5A0192 and 5A0242

Flange Type Model 4A0414

■ Flange Type Exterior and Mounting Dimensions

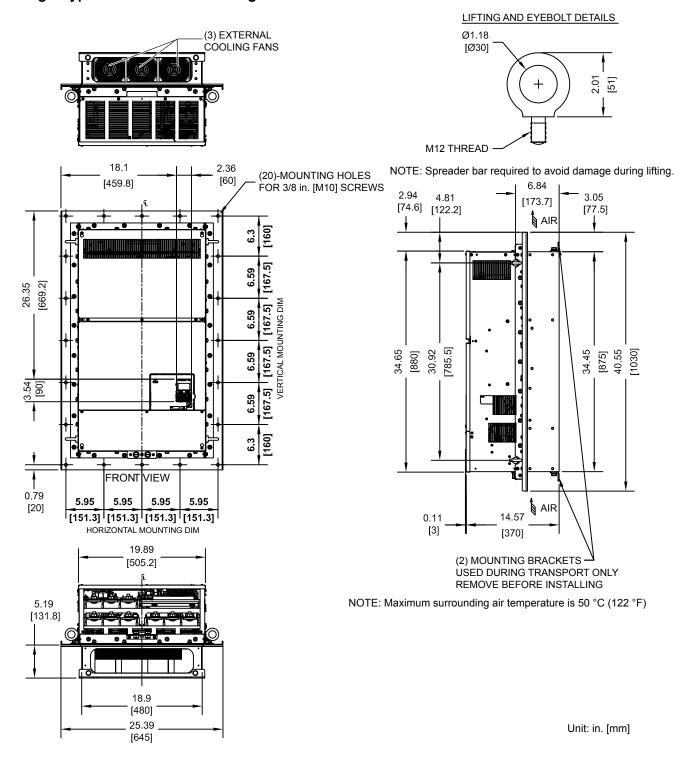


Figure 2.60 Model 4A0414

■ Flange Type Heat Loss Data

Table 2.31 Model 4A0414

	Voltage Class							
Drive Model		ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
	Cidoo	Internal	External	Total	Internal	External	Total	
4A0414	400	1295	3443	4738	1164	3578	4742	138 (304)

■ Flange Type Terminal and Wiring Specifications

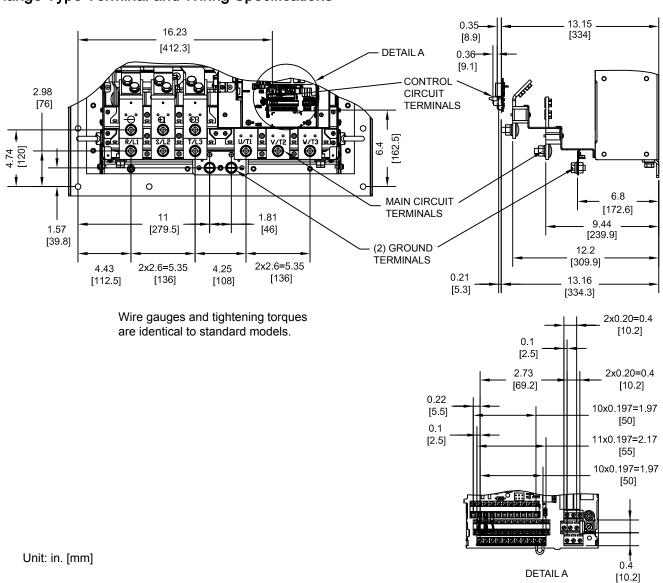


Figure 2.61 Model 4A0414

■ Flange Type Panel Cutout Dimensions for External Heatsink Mounting

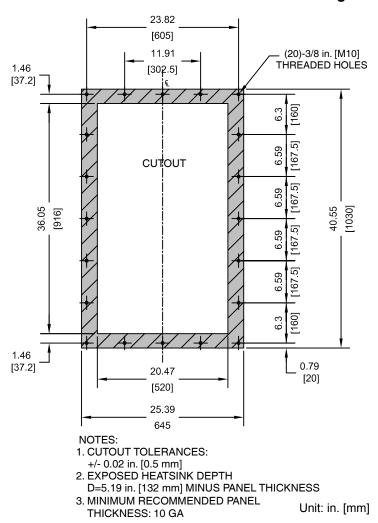


Figure 2.62 Model 4A0414

◆ Flange Type Models 4A0515 and 4A0675

■ Flange Type Exterior and Mounting Dimensions

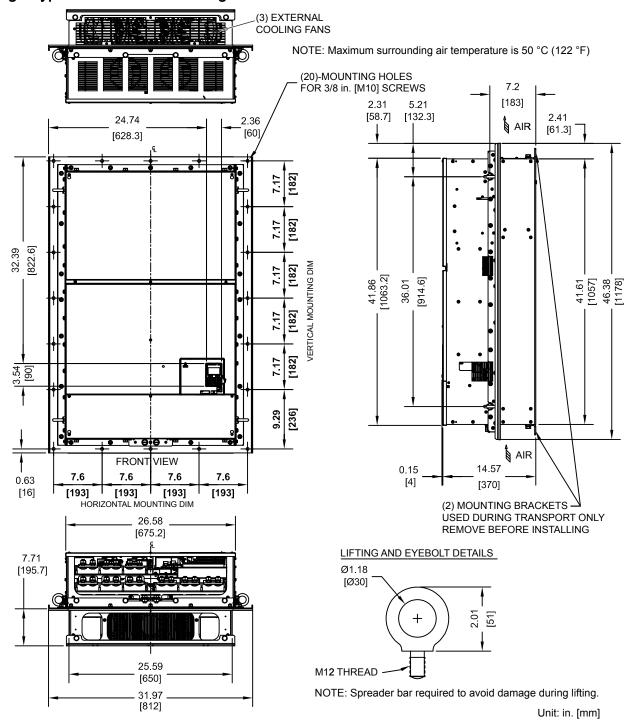


Figure 2.63 Models 4A0515 and 4A0675

■ Flange Type Heat Loss Data

Table 2.32 Models 4A0515 and 4A0675

Drive Model	Voltage Class							
		ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
	Cidoo	Internal	External	Total	Internal	External	Total	
4A0515	400	1668	4850	6518	1386	3972	5358	223 (492)
4A0675		2037	4861	6898	1685	4191	5876	228 (503)

■ Flange Type Terminal and Wiring Specifications

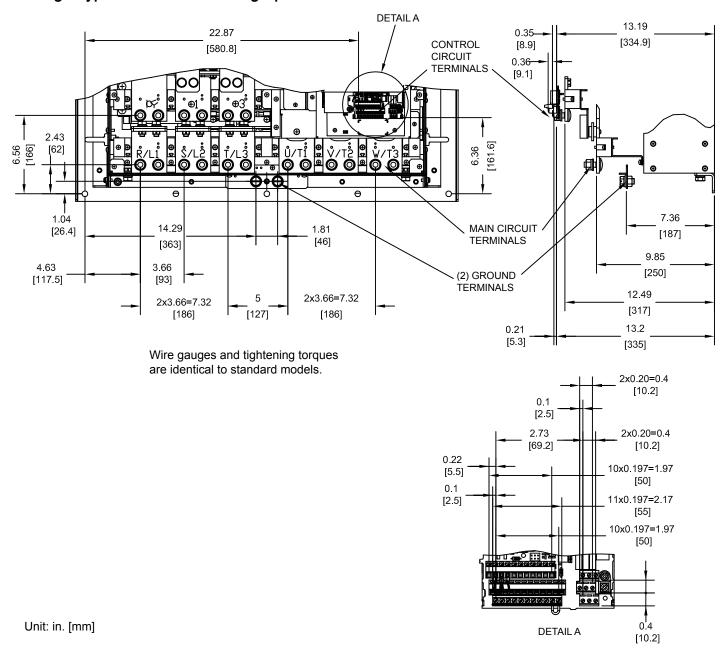
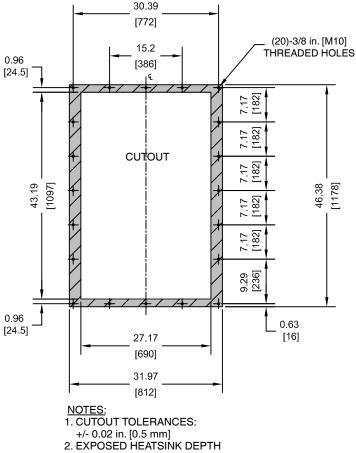



Figure 2.64 Models 4A0515 and 4A0675

■ Flange Type Panel Cutout Dimensions for External Heatsink Mounting

- D=7.71 in. [196 mm] MINUS PANEL THICKNESS
- 3. MINIMUM RECOMMENDED PANEL THICKNESS: 10 GA Unit: in. [mm]

Figure 2.65 Models 4A0515 and 4A0675

Flange Type Models 4A0930 and 4A1200

■ Flange Type Exterior and Mounting Dimensions

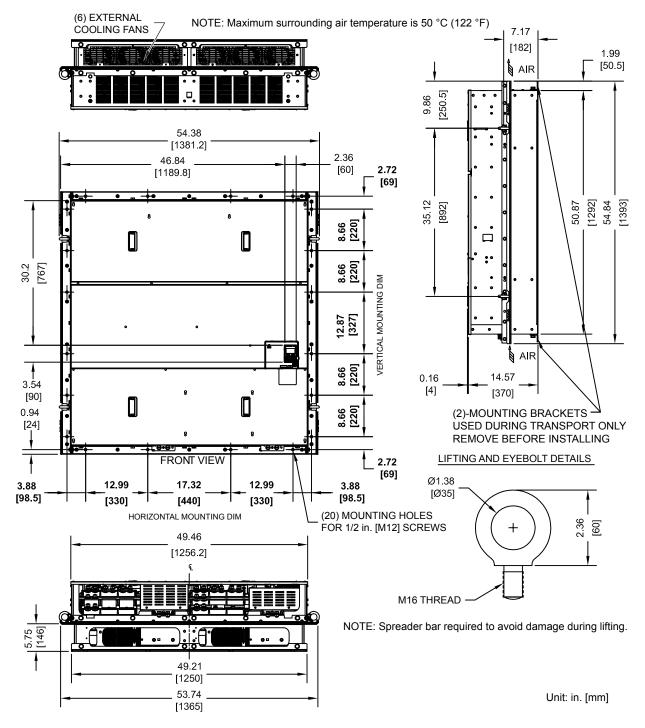


Figure 2.66 Models 4A0930 and 4A1200

■ Flange Type Heat Loss Data

Table 2.33 Models 4A0930 and 4A1200

	Voltage Class							
Drive Model		ND (Fc = 2 kHz)			HD (Fc = 8 kHz)			Wt. kg (lb)
		Internal	External	Total	Internal	External	Total	
4A0930	400	2952	8476	11428	2455	6912	9367	575 (1265)
4A1200		3612	8572	12184	3155	7626	10781	587 (1291)

■ Flange Type Terminal and Wiring Specifications

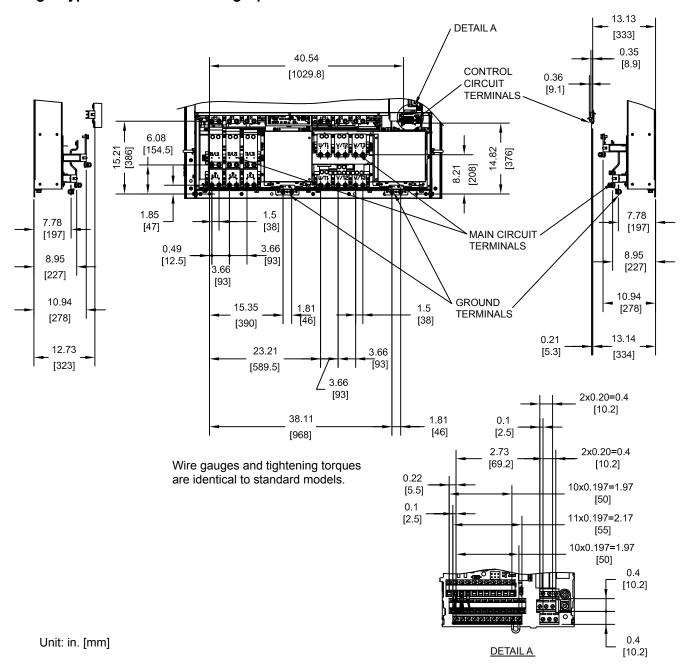


Figure 2.67 Models 4A0930 and 4A1200

■ Flange Type Panel Cutout Dimensions for External Heatsink Mounting

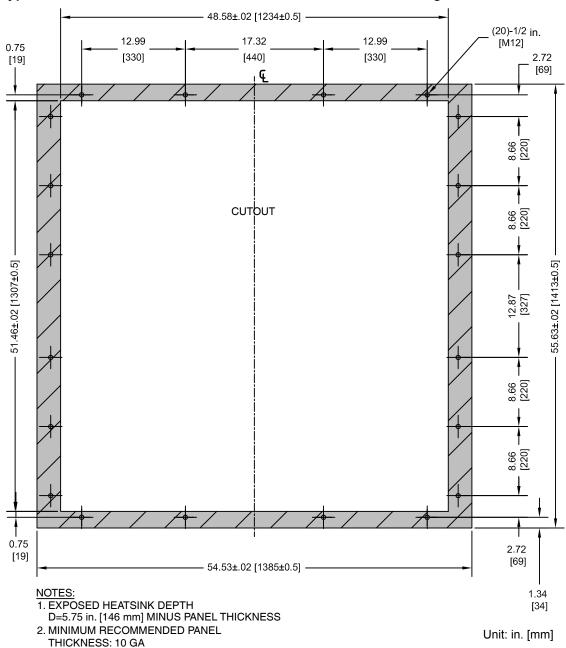


Figure 2.68 Models 4A0930 and 4A1200

Electrical Installation

This chapter explains proper procedures for wiring the control circuit terminals, motor, and power supply.

3.1	SECTION SAFETY	136
3.2	STANDARD CONNECTION DIAGRAM	138
3.3	MAIN CIRCUIT CONNECTION DIAGRAM	141
3.4	TERMINAL BLOCK CONFIGURATION	145
3.5	TERMINAL COVER	147
3.6	DIGITAL OPERATOR AND FRONT COVER	149
3.7	TOP PROTECTIVE COVER	152
3.8	MAIN CIRCUIT WIRING	153
3.9	CONTROL CIRCUIT WIRING	164
3.10	CONTROL I/O CONNECTIONS	170
3.11	CONNECT TO A PC	174
3.12	EXTERNAL INTERLOCK	175
3.13	WIRING CHECKLIST	176

3.1 Section Safety

▲ DANGER

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply will result in death or serious injury.

A WARNING

Electrical Shock Hazard

Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

Make sure the protective earthing conductor complies with technical standards and local safety regulations.

Because the leakage current exceeds 3.5 mA in models 4A0414 and larger, IEC/EN 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor or a protective earthing conductor with a cross-section of at least 10 mm² (Cu) or 16 mm² (Al) must be used. Failure to comply may result in death or serious injury.

Always use appropriate equipment for Ground Fault Circuit Interrupters (GFCIs).

The drive can cause a residual current with a DC component in the protective earthing conductor. Where a residual current operated protective or monitoring device is used for protection in case of direct or indirect contact, always use a type B GFCI according to IEC/EN 60755.

Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and servicing must be performed only by authorized personnel familiar with installation, adjustment, and maintenance of AC drives.

Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before wiring terminals, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

Fire Hazard

Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

Do not use improper combustible materials.

Failure to comply could result in death or serious injury by fire.

Do not install the drive to a combustible surface. Never place combustible materials on the drive.

A WARNING

Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

When installing dynamic braking options, perform all wiring exactly as specified in the wiring diagrams provided.

Failure to do so can result in fire. Improper wiring may damage braking components.

A CAUTION

Do not carry the drive by the front cover or the terminal cover.

Failure to comply may cause the main body of the drive to fall, resulting in minor or moderate injury.

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the drive.

Do not allow unqualified personnel to use the product.

Failure to comply could result in damage to the drive or braking circuit.

Carefully review instruction manual TOBPC72060000 or TOBPC72060001 when connecting a dynamic braking option to the drive.

Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for any modification of the product made by the user. This product must not be modified.

Check all the wiring to ensure that all connections are correct after installing the drive and connecting any other devices.

Failure to comply could result in damage to the drive.

3.2 Standard Connection Diagram

Connect the drive and peripheral devices as shown in *Figure 3.1*. It is possible to set and run the drive via the digital operator without connecting digital I/O wiring. This section does not discuss drive operation; *Refer to Start-Up Programming & Operation on page 179* for instructions on operating the drive.

NOTICE: Inadequate wiring could result in damage to the drive. Install adequate branch circuit short circuit protection per applicable codes. The drive is suitable for circuits capable of delivering not more than 100,000 RMS symmetrical amperes, 240 Vac maximum (200 V class), 480 Vac maximum (400 V class), 600 Vac maximum (600 V class).

NOTICE: When the input voltage is 440 V or higher or the wiring distance is greater than 100 meters, pay special attention to the motor insulation voltage or use a drive duty motor. Failure to comply could lead to motor insulation breakdown.

NOTICE: Do not connect AC control circuit ground to drive enclosure. Improper drive grounding can cause control circuit malfunction.

NOTICE: Route motor leads U/T1, V/T2, and W/T3 separate from all other leads to reduce possible interference related issues. Failure to comply may result in abnormal operation of drive and nearby equipment.

NOTICE: Correctly set Sink/Source jumper S3 for internal power supply. Failure to comply may result in damage to the drive. Refer to Control I/O Connections on page 170 for details.

Note: The minimum load for the relay outputs M1-M2, M3-M4, M5-M6, and MA-MB-MC is 10 mA.

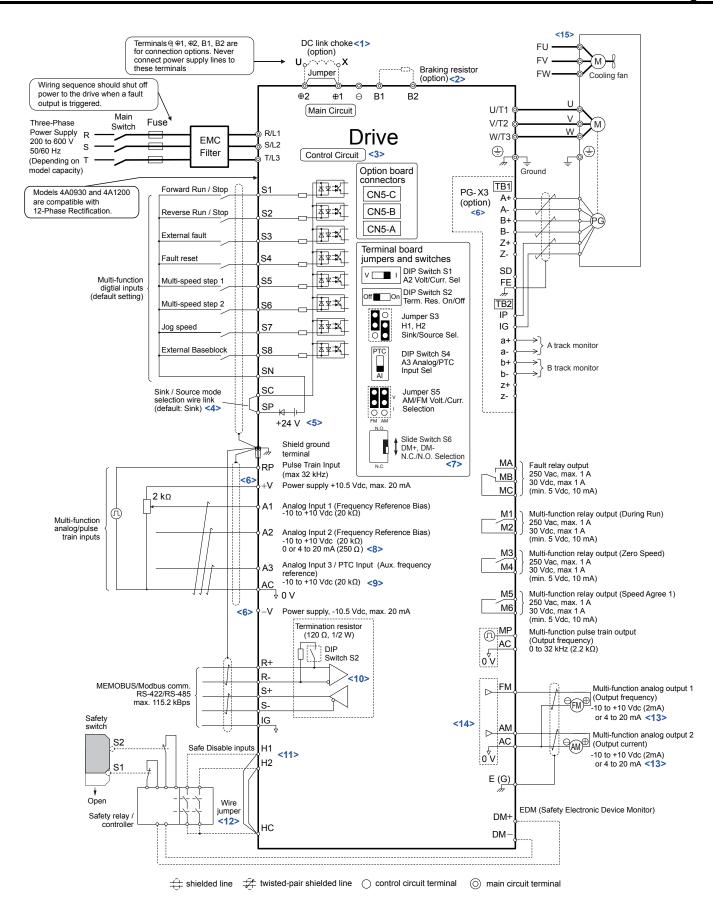


Figure 3.1 Drive Standard Connection Diagram (example: model 2A0040)

<1> Remove the jumper when installing a DC link choke. Models 2A0110 to 2A0415 and 4A0058 to 4A1200 come with a built-in

- DC link choke.
- <2> Set L8-55 to 0 to disable the protection function of the built-in braking transistor of the drive when using an optional regenerative converter or dynamic braking option. Leaving L8-55 enabled may cause a braking resistor fault (rF). Additionally, disable Stall Prevention (L3-04 = 0) when using an optional regenerative converter, regenerative or braking units, or dynamic braking option. Leaving If L3-04 enabled may prevent the drive from stopping within the specified deceleration time.
- <3> Supplying power to the control circuit separately from the main circuit requires 24 V power supply (option).
- <4> This figure illustrates an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor. Install the wire link between terminals SC-SP for Sink mode, between SC-SN for Source mode, or leave the link out for external power supply. Never short terminals SP and SN, as it will damage the drive.
- <5> This voltage source supplies a maximum current of 150 mA when not using a digital input card DI-A3.
- <6> The maximum output current capacity for the +V and -V terminals on the control circuit is 20 mA. Never short terminals +V, -V, and AC, as it can cause erroneous operation or damage the drive.
- <7> Slide switch S6 selects N.C. or N.O. as the state of the DM+ and DM- terminals for EDM output. Slide switch S6 is available on terminal board ETC74030□.
- <8> Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for current input.
- <9> Set DIP switch S4 to select between analog or PTC input for terminal A3.
- <10> Set DIP switch S2 to the ON position to enable the termination resistor in the last drive in a MEMOBUS/Modbus network.
- <11> Use jumper S3 to select between Sink mode, Source mode, and external power supply for the Safe Disable inputs.

 Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.
- <12> Disconnect the wire jumper between H1 HC and H2 HC when utilizing the Safe Disable input.

 Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.
- <13> Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. They are not intended for use as a feedback-type signal.
- <14> Use jumper S5 to select between voltage or current output signals at terminals AM and FM. Set parameters H4-07 and H4-08 accordingly.
- <15> Self-cooling motors do not require the same wiring necessary for motors with cooling fans.

WARNING! Sudden Movement Hazard. Do not close the wiring for the control circuit unless the multifunction input terminal parameters are properly set. Improper sequencing of run/stop circuitry could result in death or serious injury from moving equipment.

WARNING! Sudden Movement Hazard. Ensure start/stop and safety circuits are wired properly and in the correct state before energizing the drive. Failure to comply could result in death or serious injury from moving equipment. When programmed for 3-Wire control, a momentary closure on terminal S1 may cause the drive to start.

WARNING! Sudden Movement Hazard. When using a 3-Wire sequence, set the drive to 3-Wire sequence prior to wiring the control terminals and set parameter b1-17 to 0 so the drive will not accept a Run command at power up (default). If the drive is wired for a 3-Wire sequence but set up for a 2-Wire sequence (default), and parameter b1-17 is set to 1 so the drive accepts a Run command at power up, the motor will rotate in reverse direction at drive power up and may cause injury.

WARNING! Sudden Movement Hazard. Confirm the drive I/O signals and external sequence before executing the application preset function. Executing the application preset function or setting A1-06 ≠ 0 will change the drive I/O terminal functions and may cause unexpected equipment operation. Failure to comply may cause death or serious injury.

NOTICE: When using the automatic fault restart function with wiring designed to shut off the power supply upon drive fault, make sure the drive does not trigger a fault output during fault restart (L5-02 = 0, default). Failure to comply will prevent the automatic fault restart function from working properly.

3.3 Main Circuit Connection Diagram

Refer to diagrams in this section when wiring the main circuit of the drive. Connections may vary based on drive capacity. The DC power supply for the main circuit also provides power to the control circuit.

NOTICE: Do not use the negative DC bus terminal "-" as a ground terminal. This terminal is at high DC voltage potential. Improper wiring connections could damage the drive.

Three-Phase 200 V Class Models 2A0004 to 2A0081 Three-Phase 400 V Class Models 4A0002 to 4A0044 Three-Phase 600 V Class Models 5A0003 to 5A0032

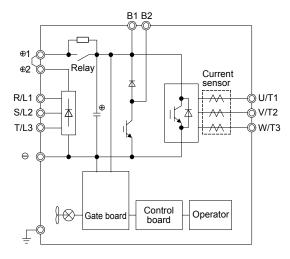


Figure 3.2 Connecting Main Circuit Terminals

Three-Phase 200 V Class Models 2A0110, 2A0138 Three-Phase 400 V Class Models 4A0058, 4A0072 Three-Phase 600 V Class Models 5A0041, 5A0052

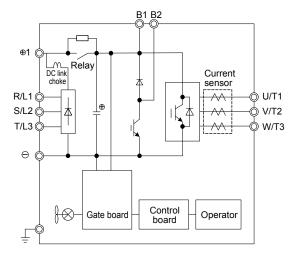


Figure 3.3 Connecting Main Circuit Terminals

Three-Phase 200 V Class Models 2A0169 to 2A0211 Three-Phase 400 V Class Models 4A0088 to 4A0139 Three-Phase 600 V Class Models 5A0062 to 5A0099

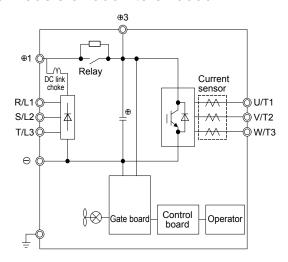


Figure 3.4 Connecting Main Circuit Terminals

Three-Phase 200 V Class Models 2A0250 to 2A0415 Three-Phase 400 V Class Models 4A0165 to 4A0675 Three-Phase 600 V Class Models 5A0125 to 5A0242

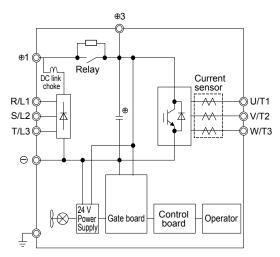


Figure 3.5 Connecting Main Circuit Terminals

◆ Three-Phase 400 V Class Models 4A0930, 4A1200

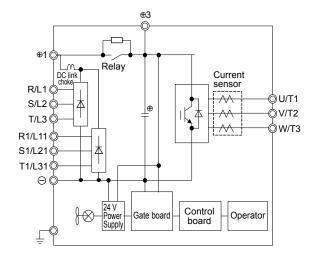


Figure 3.6 Connecting Main Circuit Terminals

Note: Models 4A0930 and 4A1200 are compatible for operation with 12-phase rectification. *Refer to 12-Phase Rectification on page 143* for details.

12-Phase Rectification

■ Removing the Jumper

Models 4A0930 and 4A1200 are compatible for operation with 12-phase rectification. Operation with 12-phase rectification requires the user to separately prepare a 3-winding transformer for the power supply. Contact Yaskawa or your nearest sales representative for transformer specifications.

WARNING! Fire Hazard. Failure to remove jumpers shorting the power supply terminals on the main circuit when operating with 12-phase rectification may cause death or serious injury by fire.

Application Notes

Models 4A0930 and 4A1200 are shipped from the factory with jumpers short-circuiting terminals R/L1-R1/L11, S/L2-S1/L21, and T/L3-T1/L31.

Remove M5 screws and jumpers as shown in *Figure 3.7* to operate with 12-phase rectification.

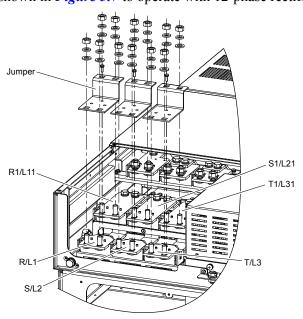


Figure 3.7 Removing the Jumper

■ Connection Diagram

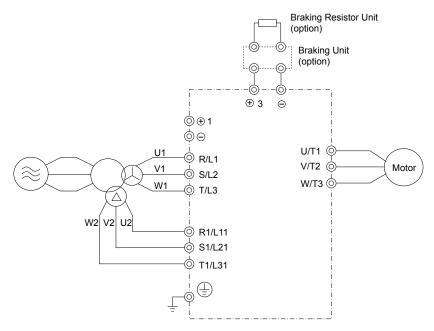


Figure 3.8 Connecting Main Circuit Terminals

3.4 Terminal Block Configuration

Figure 3.9 and Figure 3.10 show the different main circuit terminal arrangements for the drive capacities.

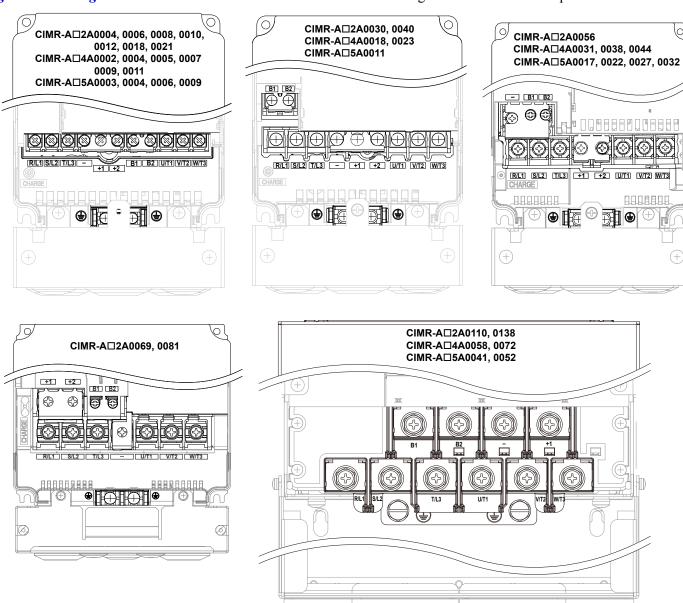


Figure 3.9 Main Circuit Terminal Block Configuration

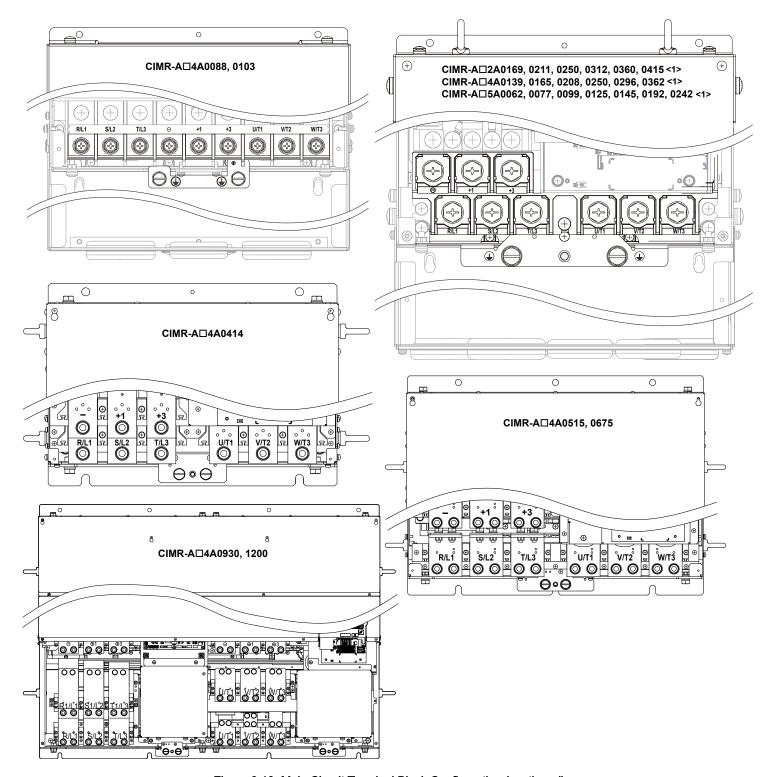


Figure 3.10 Main Circuit Terminal Block Configuration (continued)

<1> Terminal block design differs slightly for models 2A0250 to 2A0415, 4A0208 to 4A0362, and 5A0125 to 5A0242.

3.5 Terminal Cover

Follow the procedure below to remove the terminal cover for wiring and to reattach the terminal cover after wiring is complete.

Models 2A0004 to 2A0081, 4A0002 to 4A0044, 5A0003 to 5A0032 (IP20/NEMA Type 1 Enclosure)

■ Removing the Terminal Cover

1. Loosen the terminal cover screw using a #2 Phillips screwdriver. Screw sizes vary by drive model.

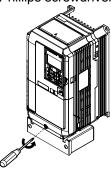


Figure 3.11 Removing the Terminal Cover on an IP20/NEMA Type 1 Enclosure Drive

2. Push in on the tab located on the bottom of the terminal cover and gently pull forward to remove the terminal cover.

Figure 3.12 Removing the Terminal Cover on an IP20/NEMA Type 1 Enclosure Drive

Reattaching the Terminal Cover

Power lines and signal wiring should pass through the opening provided. *Refer to Wiring the Main Circuit Terminal on page 163* and *Wiring the Control Circuit Terminal* on page 167 for details on wiring.

Reattach the terminal cover after completing the wiring to the drive and other devices.

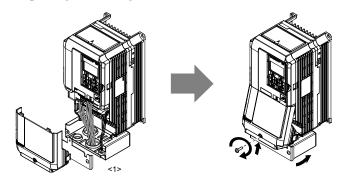


Figure 3.13 Reattaching the Terminal Cover on an IP20/NEMA Type 1 Enclosure Drive

<1> Connect the ground wiring first, then the main circuit wiring, and finally the control circuit wiring.

Models 2A0110 to 2A0250, 4A0208 to 4A1200, and 5A0125 to 5A0242 (IP00/Open Type Enclosure)

■ Removing the Terminal Cover

1. Loosen the screws on the terminal cover, then pull down on the cover.

Note: The terminal cover and the number of terminal cover screws differ depending on the drive model. *Refer to Component Names on page 42* for details.

CAUTION! Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury.

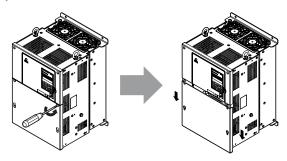


Figure 3.14 Removing the Terminal Cover on an IP00/Open Type Enclosure Drive

2. Pull forward on the terminal cover to free it from the drive.

Figure 3.15 Removing the Terminal Cover on an IP00/Open Type Enclosure Drive

■ Reattaching the Terminal Cover

After wiring the terminal board and other devices, double-check connections and reattach the terminal cover. *Refer to Wiring the Main Circuit Terminal on page 163* and *Wiring the Control Circuit Terminal* on page 167 for details on wiring.

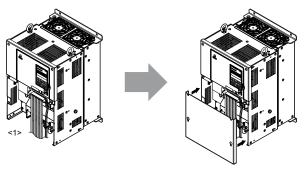


Figure 3.16 Reattaching the Terminal Cover on an IP00/Open Type Enclosure Drive

<1> Connect the ground wiring first, then the main circuit wiring, and finally the control circuit wiring.

3.6 Digital Operator and Front Cover

Detach the digital operator from the drive for remote operation or when opening the front cover to install an option card.

NOTICE: Be sure to remove the digital operator prior to opening or reattaching the front cover. Leaving the digital operator plugged into the drive when removing the front cover can result in erroneous operation caused by a poor connection. Firmly fasten the front cover back into place before reattaching the digital operator.

Removing/Reattaching the Digital Operator

Removing the Digital Operator

While pressing on the tab located on the right side of the digital operator, pull the digital operator forward to remove it from the drive.

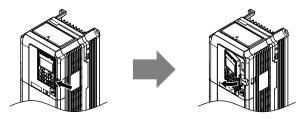


Figure 3.17 Removing the Digital Operator

■ Reattaching the Digital Operator

Insert the digital operator into the opening in the top cover while aligning it with the notches on the left side of the opening. Next, press gently on the right side of the operator until it clicks into place.

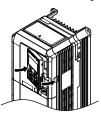


Figure 3.18 Reattaching the Digital Operator

Removing/Reattaching the Front Cover

Removing the Front Cover

Models 2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032

After removing the terminal cover and the digital operator, loosen the screw that affixes the front cover (models 2A0056, 4A0038, 5A0022, and 5A0027 do not use a screw to affix the front cover). Pinch in on the tabs found on each side of the front cover, then pull forward to remove it from the drive.

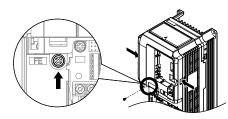


Figure 3.19 Remove the Front Cover (2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032)

Models 2A0110 to 2A0415 and 4A0058 to 4A1200

- 1. Remove the terminal cover and the digital operator.
- Loosen the installation screw on the front cover.
- 3. Use a straight-edge screwdriver to loosen the hooks on each side of the cover that hold it in place.

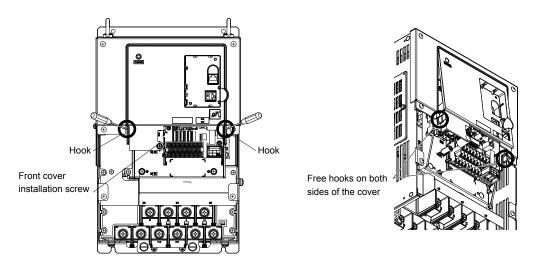


Figure 3.20 Remove the Front Cover (2A0010 to 2A0415 and 4A0058 to 4A1200)

4. Unhook the left side of the front cover then swing the left side towards you as shown in *Figure 3.21* until the cover comes off.

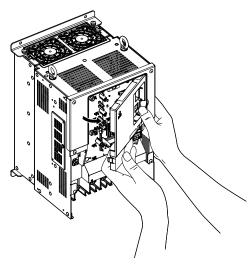


Figure 3.21 Remove the Front Cover (2A0010 to 2A0415 and 4A0058 to 4A1200)

■ Reattaching the Front Cover

Models 2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032

Reverse the instructions given in *Remove the Front Cover (2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032)* on page *149* to reattach the front cover. Pinch inwards on the hooks found on each side of the front cover while guiding it back into the drive. Make sure it clicks firmly into place.

Models 2A0110 to 2A0415 and 4A0058 to 4A1200

1. Slide the front cover so the hooks on the top connect to the drive.

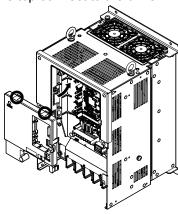


Figure 3.22 Reattach the Front Cover (2A0110 to 2A0415 and 4A0058 to 4A1200)

2. After connecting the hooks to the drive, press firmly on the cover to lock it into place.

3.7 Top Protective Cover

Drive models 2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032 are designed to IP20/NEMA Type 1 specifications with a protective cover on the top. Removing this top protective cover or the bottom conduit bracket from an IP20/NEMA Type 1 enclosure drive voids the NEMA Type 1 protection while maintaining IP20 conformity.

Removing the Top Protective Cover

Insert the tip of a straight-edge screwdriver into the small opening located on the front edge of the top protective cover. Gently apply pressure as shown in the figure below to free the cover from the drive.

Note: Removing the top protective cover or the bottom conduit bracket from an IP20/NEMA Type 1 enclosure drive voids the NEMA Type 1 protection while maintaining IP20 conformity.

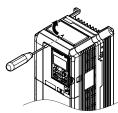


Figure 3.23 Removing the Top Protective Cover

Reattaching the Top Protective Cover

Insert the two small protruding hooks on the rear side of the top protective cover into the provided mounting holes near the back of the drive, then press down on the front side of the top protective cover to fasten the cover into place.

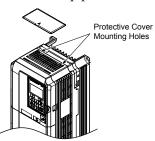


Figure 3.24 Reattaching the Protective Cover

3.8 Main Circuit Wiring

This section describes the functions, specifications, and procedures required to safely and properly wire the main circuit in the drive.

NOTICE: Do not solder the ends of wire connections to the drive. Soldered wiring connections can loosen over time. Improper wiring practices could result in drive malfunction due to loose terminal connections.

NOTICE: Do not switch the drive input to start or stop the motor. Frequently switching the drive on and off shortens the life of the DC bus charge circuit and the DC bus capacitors, and can cause premature drive failures. For the full performance life, refrain from switching the drive on and off more than once every 30 minutes.

Refer to Factory Recommended Branch Circuit Protection for UL Compliance on page 771 for details on fuse selection.

Main Circuit Terminal Functions

Table 3.1 Main Circuit Terminal Functions

				III Ollouit Terrilliai	1 4110410110		
Т	erminal		Ту	/pe			
200 V Class		2A0004 to 2A0081	2A0110, 2A0138	2A0169 to 2A0415	-		
400 V Class	Drive Model	4A0002 to 4A0044	4A0058, 4A0072	4A0088 to 4A0675	4A0930, 4A1200	Function	Page
600 V Class		5A0003 to 5A0032	5A0041, 5A0052	5A0062 to 5A0242	-		
	R/L1						
	S/L2		Main circuit por	wer supply input		Connects line power to the drive	
	T/L3						
1	R1-L11					Connects line power to the drive	139
5	S1-L21		Not available		Main circuit power	Remove the shorting bars connecting R/L1-R1/L11, S/L2-	
7	Г1-L31		1100 41 41 41 41		supply input	S1/L21, T/L3-T1/L31 when using 12-phase rectification.	
	U/T1						
	V/T2		Drive	output		Connects to the motor	139
	W/T3						
	B1	D 1:	• ,	27.		Available for connecting a	
	B2	Braking	resistor	Not av	vailable	braking resistor or a braking resistor unit option	532
	⊕2	DC link choke		Not available			
	⊕1	connection $(\oplus 1, \oplus 2)$					
	Θ	(remove the shorting bar between ⊕1 and ⊕2) • DC power supply input (⊕1, ⊖)	DC power supply input $(\oplus 1, \ominus)$	DC power supply Braking unit conn		For connecting: • the drive to a DC power supply • dynamic braking options • a DC link choke	536
	⊕3	Not av	ailable				
			For 400 V clas	s: 100Ω or less ss: 10Ω or less ss: 10Ω or less		Grounding terminal	162

Note: Use terminals B1 and ⊖ when installing a CDBR-type braking unit on drives with built-in braking transistors (Models 2A0004 to 2A0138, 4A0002 to 4A0072, and 5A0003 to 5A0052).

Wiring Fuses for Models 4A0930 and 4A1200

NOTICE: If a fuse is blown or an Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa before restarting the drive or the peripheral devices if the cause cannot be identified.

Install a fuse on the input side to protect drive wiring and prevent other secondary damage. Wire the fuse so that leakage current in the upper controller power supply will trigger the fuse and shut off the power supply.

Select the appropriate fuse from *Table 3.2*.

Table 3.2	Input Fuses f	or Models 4A0930	and 4A1200
-----------	---------------	------------------	------------

Voltage		Selection			Input Fuse (Example)				
Voltage Class	Model	Input Voltage	Current	Pre-arc l ² t (A ² s)	Model	Manufacturer	Rating	Pre-arc I ² t (A ² s)	
Three-	4A0930	480 V	1500 A	140000 to	CS5F-1200	Fuji Electric	AC500 V, 1200 A	276000	
Phase	4A0930	480 V	1300 A	3100000	FWH-1200A	Bussman	AC500 V, 1200 A	_	
400 V Class	4A1200	480 V	1500 A	320000 to	CS5F-1500	Fuji Electric	AC500 V, 1500 A	351000	
Class	4A1200	480 V	1300 A	3100000	FWH-1600A	Bussman	AC500 V, 1600 A	_	

Protecting Main Circuit Terminals

■ Insulation Caps or Sleeves

Use insulation caps or sleeves when wiring the drive with crimp terminals. Take particular care to ensure that the wiring does not touch nearby terminals or the surrounding case.

■ Insulation Barrier

Insulation barriers are packaged with drive models 4A0414 through 4A1200 to provide added protection between terminals. Yaskawa recommends using the provided insulation barriers to ensure proper wiring. Refer to *Figure 3.25* for instructions on placement of the insulation barriers.

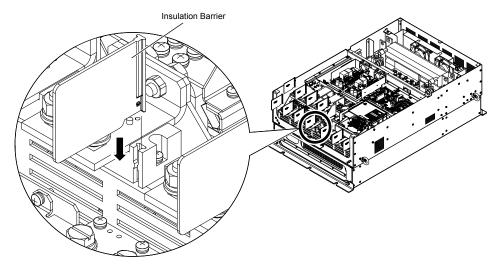


Figure 3.25 Installing Insulation Barriers

Main Circuit Wire Gauges and Tightening Torque

Use the tables in this section to select the appropriate wires and crimp terminals.

Gauges listed in the tables are for use in the United States.

Note:

- 1. Wire gauge recommendations based on drive continuous current ratings (ND) using 75 °C 600 Vac vinyl-sheathed wire assuming ambient temperature within 40 °C and wiring distance less than 100 m.
- 2. Terminals ⊕1, ⊕2, ⊕3, ⊖, B1 and B2 are for connecting optional power devices. Use caution to connect only approved devices to the correct terminal(s).
- Consider the amount of voltage drop when selecting wire gauges. Increase the wire gauge when the voltage drop is greater than 2% of motor rated voltage. Ensure the wire gauge is suitable for the terminal block. Use the following formula to calculate the amount of voltage drop:

Line drop voltage (V) = $\sqrt{3}$ × wire resistance (Ω/km) × wire length (m) × current (A) × 10^{-3}

- Refer to instruction manual TOBP C720600 00 for braking transistor option or braking resistor option wire gauges.
- Use terminals $\oplus 1$ and \ominus when connecting a regenerative converter or a regen unit.

NOTICE: Do not connect a braking resistor to terminals $\oplus 1$ or \ominus . Failure to comply may cause damage to the drive circuitry.

• Use terminals B1 and ⊖ when installing a CDBR-type braking unit on drives with built-in braking transistors (models 2A0004 to 2A0138, 4A0002 to 4A0072, and 5A0003 to 5A0052).

NOTICE: Do not connect a braking resistor to terminals ⊕1 or ⊖. Failure to comply may cause damage to the drive circuitry.

• Refer to UL Standards Compliance on page 760 for information on UL compliance.

Yaskawa recommends using closed-loop crimp terminals on all drive models. UL/cUL approval requires the use of closed-loop crimp terminals when wiring the drive main circuit terminals on models 2A0110 to 2A0415 and 4A0058 to 4A1200. Use only the tools recommended by the terminal manufacturer for crimping. *Refer to Closed-Loop Crimp Terminal Size on page* 767 for closed-loop crimp terminal recommendations.

The wire gauges listed in the following tables are Yaskawa recommendations. Refer to local codes for proper wire gauge selections.

■ Three-Phase 200 V Class

Table 3.3 Wire Gauge and Torque Specifications (Three-Phase 200 V Class)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)	
	R/L1, S/L2, T/L3	14	14 to 10			
2A0004	U/T1, V/T2, W/T3	14	14 to 10			
2A0006 2A0008	\ominus , \oplus 1, \oplus 2	-	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)	
2A0010	B1, B2	_	14 to 10		(10.0 to 15.5)	
		10 <1>	14 to 10			
	R/L1, S/L2, T/L3	12	14 to 10			
	U/T1, V/T2, W/T3	14	14 to 10		1.2 to 1.5 (10.6 to 13.3)	
2A0012	\ominus , \oplus 1, \oplus 2	-	14 to 10	M4		
	B1, B2	_	14 to 10			
	(10 <1>	14 to 10			
	R/L1, S/L2, T/L3	10	12 to 10			
	U/T1, V/T2, W/T3	10	14 to 10			
2A0018	\ominus , \oplus 1, \oplus 2	_	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)	
	B1, B2	_	14 to 10		(10.0 to 15.5)	
	(a)	10 <1>	14 to 10			
	R/L1, S/L2, T/L3	10	12 to 10			
	U/T1, V/T2, W/T3	10	12 to 10	1		
2A0021	\ominus , \oplus 1, \oplus 2	-	12 to 10	M4	1.2 to 1.5 (10.6 to 13.3)	
	B1, B2	-	14 to 10		(10.0 to 15.5)	
	(4)	10 <1>	12 to 10			

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	8	10 to 6		
	U/T1, V/T2, W/T3	8	10 to 6	M4	2.1 to 2.3
2A0030	$\Theta, \oplus 1, \oplus 2$	-	10 to 6	W14	(18.6 to 20.4)
	B1, B2	_	14 to 10		
	(8 <2>	10 to 8	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	6	8 to 6		
	U/T1, V/T2, W/T3	8	8 to 6	M4	2.1 to 2.3
2A0040	Θ , \oplus 1, \oplus 2	_	6	IVI4	(18.6 to 20.4)
	B1, B2	_	12 to 10		
		8 <2>	10 to 8	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	4	6 to 4		
	U/T1, V/T2, W/T3	4	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	$\Theta, \oplus 1, \oplus 2$	_	6 to 4		(17.0 to 23.1)
2A0056	B1, B2	-	10 to 6	M5	2.7 to 3.0 (23.9 to 26.6)
	(a)	6	8 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	3	4 to 3		,
	U/T1, V/T2, W/T3	3	4 to 3	M8	9.9 to 11.0 (87.6 to 97.4)
	⊖, ⊕1, ⊕2	_	4 to 3	7	(87.0 to 97.4)
2A0069	B1, B2	-	8 to 6	M5	2.7 to 3.0 (23.9 to 26.6)
	(a)	6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	2	3 to 2		,
	U/T1, V/T2, W/T3	2	3 to 2	M8	9.9 to 11.0 (87.6 to 97.4)
	$\Theta, \oplus 1, \oplus 2$	-	3 to 2		(07.0 to 57.4)
2A0081	B1, B2	-	6	M5	2.7 to 3.0 (23.9 to 26.6)
		6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	1/0	3 to 1/0		,
	U/T1, V/T2, W/T3	1/0	3 to 1/0		9 to 11
2A0110	⊖, ⊕1	_	2 to 1/0	M8	
	B1, B2	-	6 to 1/0	7	(79.7 to 97.4)
		6	6 to 4		
	R/L1, S/L2, T/L3	2/0	1 to 2/0		
	U/T1, V/T2, W/T3	2/0	1 to 2/0	MIO	18 to 23
2A0138	⊖, ⊕1	_	1/0 to 3/0	M10	(159 to 204)
	B1, B2	_	4 to 2/0		
		4	4	M8	9 to 11 (79.7 to 97.4)
	R/L1, S/L2, T/L3	4/0	2/0 to 4/0		
	U/T1, V/T2, W/T3	4/0	3/0 to 4/0	7	
2A0169	⊖, ⊕1	-	1 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	1/0 to 4/0		(137 to 204)
		4	4 to 2		
	R/L1, S/L2, T/L3	1/0 × 2P	1/0 to 2/0		
	U/T1, V/T2, W/T3	1/0 × 2P	1/0 to 2/0		
2A0211	⊖, ⊕1	-	1 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	1/0 to 4/0		(== == = = = = = = = = = = = = = = = =
		4	4 to 1/0		

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	3/0 × 2P	3/0 to 300		32 to 40 (283 to 354)
	U/T1, V/T2, W/T3	3/0 × 2P	3/0 to 300	M12	
24.0250	⊖, ⊕1	-	3/0 to 300		(======================================
2A0250	⊕3	-	2 to 300	M10	18 to 23 (159 to 204)
		3	3 to 300	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	4/0 × 2P	3/0 to 300		
	U/T1, V/T2, W/T3	3/0 × 2P	3/0 to 300	M12	32 to 40 (283 to 354)
	⊖, ⊕1	-	3/0 to 300		(203 to 33 1)
2A0312	⊕3	-	3/0 to 300	M10	18 to 23 (159 to 204)
	(a)	2	2 to 300	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	250 × 2P	4/0 to 600		32 to 40 (283 to 354)
	U/T1, V/T2, W/T3	4/0 × 2P	4/0 to 600	M12	
	⊖, ⊕1	-	250 to 600		(203 to 33 1)
2A0360	⊕3	-	3/0 to 600	M10	18 to 23 (159 to 204)
		1	1 to 350	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	350 × 2P	250 to 600		
	U/T1, V/T2, W/T3	300 × 2P	300 to 600	M12	32 to 40 (283 to 354)
2A0415	⊖, ⊕1	-	300 to 600		(203 to 33 1)
	⊕3	-	3/0 to 600	M10	18 to 23 (159 to 204)
	(a)	1	1 to 350	M12	32 to 40 (283 to 354)

<1> Install a GFCI when using this wire gauge in accordance with IEC/EN 61800-5-1.

Note: When connecting peripheral devices or options to terminals Θ , $\oplus 1$, $\oplus 3$, B1, and B2, refer to the instruction manual for each device. For more information, contact Yaskawa or your nearest sales representative.

■ Three-Phase 400 V Class

Table 3.4 Wire Gauge and Torque Specifications (Three-Phase 400 V Class)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	14	14 to 10		
	U/T1, V/T2, W/T3	14	14 to 10		
4A0002 4A0004	Θ , \oplus 1, \oplus 2	_	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
470004	B1, B2	-	14 to 10		(10.0 to 15.5)
		12 <1>	14 to 12		
	R/L1, S/L2, T/L3	14	14 to 10		1.2 to 1.5 (10.6 to 13.3)
4A0005	U/T1, V/T2, W/T3	14	14 to 10		
4A0007	\ominus , \oplus 1, \oplus 2	_	14 to 10	M4	
4A0009	B1, B2	_	14 to 10		
	+	10 <1>	14 to 10		
	R/L1, S/L2, T/L3	12	14 to 10		
	U/T1, V/T2, W/T3	14	14 to 10		
4A0011	$\Theta, \oplus 1, \oplus 2$	-	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
	B1, B2	-	14 to 10		(10.0 to 15.5)
	(4)	10 <1>	14 to 10		

<2> Install a GFCI, or use 10 mm² (AWG 8) copper wire when using this wire gauge in accordance with IEC/EN 61800-5-1.

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	10	12 to 6		
	U/T1, V/T2, W/T3	10	12 to 6	7	2.1 to 2.3
4A0018	$\Theta, \oplus 1, \oplus 2$	-	12 to 6	M4	(18.6 to 20.4)
1110010	B1, B2	-	12 to 10		
	(4)	10 <1>	14 to 10	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	10	10 to 6		
	U/T1, V/T2, W/T3	10	10 to 6		2.1 to 2.3
4A0023	⊖, ⊕1, ⊕2	_	12 to 6	M4	(18.6 to 20.4)
4A0023	B1, B2	_	12 to 10		
	(a)	10 <1>	12 to 10	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	8	8 to 6		
	U/T1, V/T2, W/T3	8	10 to 6		3.6 to 4.0 (31.8 to 35.4)
	⊖, ⊕1, ⊕2	_	10 to 6	M5	(31.8 to 33.4)
4A0031	B1, B2	-	10 to 8		2.7 to 3.0 (23.9 to 26.6)
	(b)	8 <2>	10 to 8	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	8 to 6		(,
	U/T1, V/T2, W/T3	8	8 to 6		3.6 to 4.0
	\ominus , \oplus 1, \oplus 2	_	6	M5	(31.8 to 35.4)
4A0038	B1, B2	-	10 to 8		2.7 to 3.0 (23.9 to 26.6)
	(b)	6	10 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	6 to 4	M6	
	U/T1, V/T2, W/T3	6	6 to 4		5.4 to 6.0 (47.8 to 53.1)
	⊖, ⊕1, ⊕2	_	6 to 4		(47.8 to 33.1)
4A0044	B1, B2	-	10 to 8	M5	2.7 to 3.0 (23.9 to 26.6)
	(a)	6	8 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	4	6 to 4		
	U/T1, V/T2, W/T3	4	6 to 4		9 to 11 (79.7 to 97.4)
4A0058	⊖, ⊕1	-	6 to 1	M8	
	B1, B2	-	8 to 4		(79.7 to 97.4)
		6	8 to 6		
	R/L1, S/L2, T/L3	3	4 to 3		
	U/T1, V/T2, W/T3	3	4 to 3		
4A0072	⊖, ⊕1	-	4 to 1	M8	9 to 11 (79.7 to 97.4)
	B1, B2	-	6 to 3		(17.17 10 71.1)
		6	6		
	R/L1, S/L2, T/L3	2	3 to 1/0		
	U/T1, V/T2, W/T3	2	3 to 1/0	M8	
4A0088	⊖, ⊕1	-	3 to 1/0		9 to 11 (79.7 to 97.4)
	⊕3	-	6 to 1/0		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		4	6 to 4		
	R/L1, S/L2, T/L3	1/0	2 to 1/0		
	U/T1, V/T2, W/T3	1	2 to 1/0		
4A0103	⊖, ⊕1	-	3 to 1/0	M8	9 to 11 (79.7 to 97.4)
	⊕3	-	4 to 1/0		(,)., (,),,,,)
	(4)	4	6 to 4		

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	3/0	1/0 to 4/0		
	U/T1, V/T2, W/T3	2/0	1/0 to 4/0		
4A0139	⊖, ⊕1	_	1/0 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	_	3 to 4/0		(10) to 20 .)
		4	4		
	R/L1, S/L2, T/L3	4/0	3/0 to 4/0		
	U/T1, V/T2, W/T3	4/0	3/0 to 4/0		
4A0165	⊖, ⊕1	-	1 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	1/0 to 4/0		(13) to 204)
		4	4 to 2		
	R/L1, S/L2, T/L3	300	2 to 300		
	U/T1, V/T2, W/T3	300	2 to 300		
4A0208	⊖, ⊕1	_	1 to 250	M10	18 to 23
	⊕3	_	3 to 3/0		(159 to 204)
	+	4	4 to 300		
	R/L1, S/L2, T/L3	400	1 to 600		
	U/T1, V/T2, W/T3	400	1/0 to 600		
4A0250	⊖, ⊕1	_	3/0 to 600	M10	18 to 23 (159 to 204)
	⊕3	_	1 to 325		
	+	2	2 to 350		
	R/L1, S/L2, T/L3	500	2/0 to 600		
	U/T1, V/T2, W/T3	500	2/0 to 600	M12	32 to 40
	⊖, ⊕1	_	3/0 to 600	-	(283 to 354)
4A0296	⊕3	-	1 to 325	M10	18 to 23 (159 to 204)
		2	2 to 350	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	4/0 × 2P	3/0 to 600		
	U/T1, V/T2, W/T3	4/0 × 2P	3/0 to 600	M12	32 to 40 (283 to 354)
	⊖, ⊕1	-	4/0 to 600		(203 to 30 1)
4A0362	⊕3	-	3/0 to 600	M10	18 to 23 (159 to 204)
		1	1 to 350	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	300 × 2P	4/0 to 300		
	U/T1, V/T2, W/T3	300 × 2P	4/0 to 300		
4A0414	⊖, ⊕1	-	3/0 to 300	M12	32 to 40 (283 to 354)
	⊕3	-	3/0 to 300		(33 33 37)
		1	1 to 3/0		
	R/L1, S/L2, T/L3	3/0 × 4P	3/0 to 300		
	U/T1, V/T2, W/T3	4/0 × 4P	3/0 to 300		
4A0515	$\Theta, \oplus 1$	-	1/0 to 300	M12	32 to 40 (283 to 354)
	⊕3	-	1/0 to 300		(203 10 334)
		1/0	1/0 to 300		
	R/L1, S/L2, T/L3	300 × 4P	4/0 to 300		
	U/T1, V/T2, W/T3	300 × 4P	4/0 to 300	7	
4A0675	⊖, ⊕1	-	1/0 to 300	M12	32 to 40
	⊕3	_	1/0 to 300		(283 to 354)
	(a)	2/0	2/0 to 300		

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3, R1/L11, S1/L21, T1/L31	$4/0 \times 4P \times 2$	3/0 to 300		
	U/T1, V/T2, W/T3	4/0 × 4P×2	3/0 to 300		32 to 40
4A0930	⊖, ⊕1	_	4/0 to 300	M12	(283 to 354)
	⊕3	_	4/0 to 300	1	
		3/0	3/0 to 250		
	R/L1, S/L2, T/L3, R1/L11, S1/L21, T1/L31	300 × 4P×2	4/0 to 300		
	U/T1, V/T2, W/T3	300 × 4P×2	4/0 to 300		32 to 40
4A1200	⊖, ⊕1	_	250 to 300	M12	(283 to 354)
	⊕3	-	4/0 to 300		
		4/0	4/0 to 250		

<1> Install a GFCI when using this wire gauge in accordance with IEC/EN 61800-5-1.

Note: When connecting peripheral devices or options to terminals Θ , $\oplus 1$, $\oplus 3$, B1, and B2, refer to the instruction manual for each device. For more information, contact Yaskawa or your nearest sales representative.

■ Three-Phase 600 V Class

Table 3.5 Wire Gauge and Torque Specifications (Three-Phase 600 V Class)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N⋅m (lb.in.)
	R/L1, S/L2, T/L3	14	14 to 10		
5A0003	U/T1, V/T2, W/T3	14	14 to 10		
5A0004	⊖, ⊕1, ⊕2	-	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
5A0006	B1, B2	-	14 to 10		(10.0 to 15.5)
	(4)	10	14 to 10		
	R/L1, S/L2, T/L3	14	14 to 10		
	U/T1, V/T2, W/T3	14	14 to 10		
5A0009	⊖, ⊕1, ⊕2	-	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
	B1, B2	-	14 to 10		(10.0 to 15.5)
		10	12 to 10		
	R/L1, S/L2, T/L3	10	14 to 6		2.1 to 2.3 (18.6 to 20.4)
	U/T1, V/T2, W/T3	14	14 to 6	M4	
5A0011	⊖, ⊕1, ⊕2	-	14 to 6		
3710011	B1, B2	-	14 to 10		
		8	12 to 8	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	10	10 to 6		3.6 to 4.0 (31.8 to 35.4)
	U/T1, V/T2, W/T3	10	10 to 6		
	$\Theta, \oplus 1, \oplus 2$	-	10 to 6	M5	
5A0017	B1, B2	-	10 to 8		2.7 to 3.0 (23.9 to 26.6)
		8	12 to 8	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	8	10 to 6		
	U/T1, V/T2, W/T3	10	10 to 6		3.6 to 4.0 (31.8 to 35.4)
	$\Theta, \oplus 1, \oplus 2$	-	10 to 6	M5	(31.6 10 33.4)
5A0022	B1, B2	-	10 to 8		2.7 to 3.0 (23.9 to 26.6)
		8	10 to 6	M6	5.4 to 6.0 (47.8 to 53.1)

<2> Install a GFCI or use 10 mm² (AWG 8) copper wire when using this wire gauge in accordance with IEC/EN 61800-5-1.

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	6	6 to 4		
5A0027	U/T1, V/T2, W/T3	6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	⊖, ⊕1, ⊕2	_	6 to 4		(,
5A0032	B1, B2	-	10 to 8	M5	2.7 to 3.0 (23.9 to 26.6)
		6	10 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	10 to 3		
	U/T1, V/T2, W/T3	6	10 to 3		
5A0041	⊖, ⊕1	-	6 to 1	M8	9.0 to 11 (79.7 to 97.4)
	B1, B2	-	12 to 3		(17.1 to 71.4)
	(-)	6	6		
	R/L1, S/L2, T/L3	4	10 to 3		
	U/T1, V/T2, W/T3	6	10 to 3		
5A0052	⊖, ⊕1	-	6 to 1	M8	9.0 to 11
	B1, B2	-	8 to 3		(79.7 to 97.4)
		6	6		
	R/L1, S/L2, T/L3	4	10 to 4/0		
	U/T1, V/T2, W/T3	4	10 to 4/0	\dashv	18 to 23 (159 to 204)
5A0062	⊖, ⊕1	_	4 to 4/0	M10	
	⊕3	_	6 to 4/0		
		4	4		
	R/L1, S/L2, T/L3	3	10 to 4/0		18 to 23 (159 to 204)
	U/T1, V/T2, W/T3	3	10 to 4/0	M10	
5A0077	Θ, ⊕1	_	3 to 4/0		
5110077	⊕3	_	6 to 4/0		
	(a)	4	4	-	
	R/L1, S/L2, T/L3	1/0	10 to 4/0		-
	U/T1, V/T2, W/T3	1	10 to 4/0		18 to 23 (159 to 204)
5A0099	⊖, ⊕1	_	2 to 4/0	M10	
JA0099	⊕3	_	4 to 4/0	- WITO	
	(a)	4	4	_	
	R/L1, S/L2, T/L3	2/0	1 to 300		
	U/T1, V/T2, W/T3	2/0	1 to 300	\dashv	
5A0125	⊖, ⊕1	_	2/0 to 3/0	M10	18 to 23
3A0123	⊕3	_	1 to 1/0	WITO	(159 to 204)
	(a)	3	4 to 300	\dashv	
	R/L1, S/L2, T/L3	3/0	2/0 to 300		
	U/T1, V/T2, W/T3	3/0	2/0 to 300	-	
5 4 0 1 4 5					18 to 23
5A0145	⊕, ⊕1	_	3/0 to 4/0 1/0 to 2/0	M10	(159 to 204)
	⊕ 3	- 2			
		3	4 to 300		
	R/L1, S/L2, T/L3	300	2/0 to 600	_ \	32 to 40
	U/T1, V/T2, W/T3	250	2/0 to 600	M12	(283 to 354)
5A0192	⊕, ⊕1		2/0 to 400 2/0 to 250	M10	18 to 23
					(159 to 204)
		1	1 to 350	M12	32 to 40 (283 to 354)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)	
	R/L1, S/L2, T/L3	400	2/0 to 600			
	U/T1, V/T2, W/T3	350	2/0 to 600	M12	32 to 40 (283 to 354)	
	⊖, ⊕1	-	2/0 to 500		(203 to 30 1)	
5A0242	⊕3	-	250 to 300	M10	18 to 23 (159 to 204)	
		1	1 to 350	M12	32 to 40 (283 to 354)	

Note:

When connecting peripheral devices or options to terminals \ominus , \oplus 1, \oplus 3, B1, and B2, refer to the instruction manual for each device. For more information, contact Yaskawa or your nearest sales representative.

Main Circuit Terminal and Motor Wiring

This section outlines the various steps, precautions, and checkpoints for wiring the main circuit terminals and motor terminals.

WARNING! Electrical Shock Hazard. Do not connect the AC power line to the output terminals of the drive. Failure to comply could result in death or serious injury by fire as a result of drive damage from line voltage application to output terminals.

NOTICE: When connecting the motor to the drive output terminals U/T1, V/T2, and W/T3, the phase order for the drive and motor should match. Failure to comply with proper wiring practices may cause the motor to run in reverse if the phase order is backward.

NOTICE: Route motor leads U/T1, V/T2, and W/T3 separate from all other leads to reduce possible interference related issues. Failure to comply may result in abnormal operation of drive and nearby equipment.

NOTICE: Do not connect phase-advancing capacitors or LC/RC noise filters to the output circuits. Failure to comply could result in damage to the drive, phase-advancing capacitors, LC/RC noise filters or ground fault circuit interrupters.

■ Cable Length Between Drive and Motor

Voltage drop along the motor cable may cause reduced motor torque when the wiring between the drive and the motor is too long, especially at low frequency output. This can also be a problem when motors are connected in parallel with a fairly long motor cable. Drive output current will increase as the leakage current from the cable increases. An increase in leakage current may trigger an overcurrent situation and weaken the accuracy of the current detection.

Adjust the drive carrier frequency according to *Table 3.6*. If the motor wiring distance exceeds 100 m because of the system configuration, reduce the ground currents. *Refer to C6-02: Carrier Frequency Selection on page 276*.

Table 3.6 Cable Length Between Drive and Motor

Cable Length	50 m or less	100 m or less	Greater than 100 m
Carrier Frequency	15 kHz or less	5 kHz or less	2 kHz or less

Note

- 1. When setting carrier frequency for drives running multiple motors, calculate cable length as the total wiring distance to all connected motors.
- 2. The maximum cable length when using OLV/PM (A1-02 = 5) or AOLV/PM (A1-02 = 6) is 100 m.

Ground Wiring

Follow the precautions below when wiring the ground for one drive or a series of drives.

WARNING! Electrical Shock Hazard. Make sure the protective earthing conductor complies with technical standards and local safety regulations. Because the leakage current exceeds 3.5 mA in models 4A0414 and larger, IEC/EN 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor or a protective earthing conductor with a cross-section of at least 10 mm² (Cu) or 16 mm² (Al) must be used. Failure to comply may result in death or serious injury.

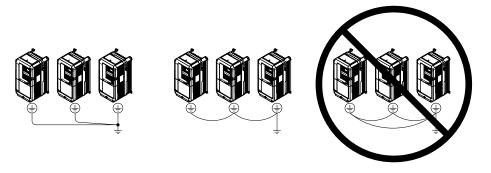
WARNING! Electrical Shock Hazard. Always use a ground wire that complies with technical standards on electrical equipment and minimize the length of the ground wire. Improper equipment grounding may cause dangerous electrical potentials on equipment chassis, which could result in death or serious injury.

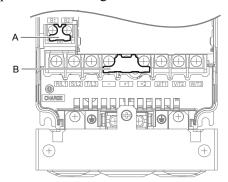
WARNING! Electrical Shock Hazard. Be sure to ground the drive ground terminal (200 V class: ground to 100 Ω or less; 400 V class: ground to 10 Ω or less). Improper equipment grounding could result in death or serious injury by contacting ungrounded electrical equipment.

NOTICE: Do not share the ground wire with other devices such as welding machines or large-current electrical equipment. Improper equipment grounding could result in drive or equipment malfunction due to electrical interference.

NOTICE: When using more than one drive, ground multiple drives according to instructions. Improper equipment grounding could result in abnormal operation of drive or equipment.

Refer to *Figure 3.26* when using multiple drives. Do not loop the ground wire.




Figure 3.26 Multiple Drive Wiring

■ Wiring the Main Circuit Terminal

WARNING! Electrical Shock Hazard. Shut off the power supply to the drive before wiring the main circuit terminals. Failure to comply may result in death or serious injury.

Wire the main circuit terminals after the terminal board has been properly grounded.

Models 2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032 have a cover placed over the DC bus and braking circuit terminals prior to shipment to help prevent miswiring. Use wire cutters to cut away covers as needed for terminals.

A - Braking circuit protective cover

B - DC bus protective cover

Figure 3.27 Protecting Cover to Prevent Miswiring (Model 5A0011)

Main Circuit Connection Diagram

Refer to Main Circuit Connection Diagram on page 141 when wiring terminals on the main power circuit of the drive.

WARNING! Fire Hazard. The braking resistor connection terminals are B1 and B2. Do not connect braking resistors to any other terminals. Improper wiring connections could cause the braking resistor to overheat and cause death or serious injury by fire. Failure to comply may result in damage to the braking circuit or drive.

3.9 Control Circuit Wiring

Control Circuit Connection Diagram

Refer to *Figure 3.1* on page *139* when wiring terminals on the drive control circuit.

Control Circuit Terminal Block Functions

Drive parameters determine which functions apply to the multi-function digital inputs (S1 to S8), multi-function digital outputs (M1 to M6), multi-function analog inputs (A1 to A3), and multi-function analog monitor output (FM, AM). The default setting is listed next to each terminal in *Figure 3.1* on page *139*.

WARNING! Sudden Movement Hazard. Always check the operation and wiring of control circuits after being wired. Operating a drive with untested control circuits could result in death or serious injury.

WARNING! Sudden Movement Hazard. Confirm the drive I/O signals and external sequence before starting test run. Setting parameter A1-06 may change the I/O terminal function automatically from the factory setting. Refer to Application Selection on page 198. Failure to comply may result in death or serious injury.

■ Input Terminals

Table 3.7 lists the input terminals on the drive. Text in parenthesis indicates the default setting for each multi-function input.

Table 3.7 Control Circuit Input Terminals

Туре	No.	Terminal Name (Function)	Function (Signal Level) Default Setting	Page
	S1	Multi-function input 1 (Closed: Forward run, Open: Stop)		
S2	S2	Multi-function input 2 (Closed: Reverse run, Open: Stop)		
	S3	Multi-function input 3 (External fault, N.O.)		
	S4	Multi-function input 4 (Fault reset)	Photocoupler24 Vdc, 8 mA	
	S5	Multi-function input 5 (Multi-step speed reference 1)	• Refer to Sinking/Sourcing Mode for Digital Inputs on page 170.	320
Multi-Function Digital Inputs S6 S7 S8	S6	Multi-function input 6 (Multi-step speed reference 2)		
	S7	Multi-function input 7 (Jog reference)		
	S8	Multi-function input 8 (Baseblock command (N.O.))		
	SC	Multi-function input common	Multi-function input common	
	SP	Digital input power supply +24 Vdc	24 Vdc power supply for digital inputs, 150 mA max (only when not	170
	SN	Digital input power supply 0 V	using digital input option DI-A3) NOTICE: Do not jumper or short terminals SP and SN. Failure to comply will damage the drive.	170
	H1	Safe Disable input 1 <1>	• 24 Vdc, 8 mA	
			 One or both open: Output disabled Both closed: Normal operation	
Safe Disable			• Internal impedance: 3.3 kΩ	
Inputs H2	H2	Safe Disable input 2	 Off time of at least 1 ms Disconnect the wire jumpers shorting terminals H1, H2, and HC to use the Safe Disable inputs. Set the S3 jumper to select between sinking, sourcing mode, and the power supply as explained on page 170. 	779
	НС	Safe Disable function common	Safe disable function common	

781

Туре	No.	Terminal Name (Function)	Function (Signal Level) Default Setting	Page
	RP	Multi-function pulse train input (Frequency reference)	 Input frequency range: 0 to 32 kHz Signal Duty Cycle: 30 to 70% High level: 3.5 to 13.2 Vdc, low level: 0.0 to 0.8 Vdc Input impedance: 3 kΩ 	232 349
	+V	Power supply for analog inputs	10.5 Vdc (max allowable current 20 mA)	231
	-V	Power supply for analog inputs	-10.5 Vdc (max allowable current 20 mA)	_
Analog Inputs /	A1	Multi-function analog input 1 (Frequency reference bias)	-10 to 10 Vdc, 0 to 10 Vdc (input impedance: 20 kΩ)	231 341
Pulse Train Input	A2	Multi-function analog input 2 (Frequency reference bias)	 -10 to 10 Vdc, 0 to 10 Vdc (input impedance: 20 kΩ) 4 to 20 mA, 0 to 20 mA (input impedance: 250 Ω) Voltage or current input must be selected by DIP switch S1 and H3-09. 	231 231 343
	A3	Multi-function analog input 3 (Auxiliary frequency reference)/PTC Input	 -10 to 10 Vdc, 0 to 10 Vdc (input impedance: 20 kΩ) Use DIP switch S4 on the terminal board to select between analog and PTC input. 	231
	AC	Frequency reference common	0 V	231
	E (G)	Ground for shielded lines and option cards	_	_

<1> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Output Terminals

Output

Safety Monitor

Output <2

AM

AC

DM+

DM-

Table 3.8 lists the output terminals on the drive. Text in parenthesis indicates the default setting for each multi-function output.

Terminal Name (Function) Function (Signal Level) Default Setting Type No. Page MA N.O. output (Fault) Fault Relay 30 Vdc, 10 mA to 1 A; 250 Vac, 10 mA to 1 A MB N.C. output (Fault) 331 Output Minimum load: 5 Vdc, 10 mA MC Fault output common M1 Multi-function digital output (During run) M2 Multi-Function M3 30 Vdc, 10 mA to 1 A; 250 Vac, 10 mA to 1 A Multi-function digital output (Zero speed) 331 Digital Output Minimum load: 5 Vdc, 10 mA M4 M5 Multi-function digital output (Speed Agree 1) M6 MP Pulse train output (Output frequency) 32 kHz (max) 349 FΜ Analog monitor output 1 (Output frequency) Monitor -10 to +10 Vdc, 0 to +10 Vdc, or 4 to 20 mA. *Refer to Terminal* 347

Table 3.8 Control Circuit Output Terminals

<1> Refrain from assigning functions to digital relay outputs that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

AM/FM Signal Selection on page 173 for details.

Disable channels are closed. Up to +48 Vdc 50 mA

Outputs status of Safe Disable function. Closed when both Safe

<2> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Connect a suppression diode as shown in *Figure 3.28* when driving a reactive load such as a relay coil. Ensure the diode rating is greater than the circuit voltage.

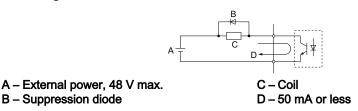


Figure 3.28 Connecting a Suppression Diode

Analog monitor output 2 (Output current)

Monitor common

Safety monitor output

Safety monitor output

Serial Communication Terminals

Table 3.9 Control Circuit Terminals: Serial Communications

Туре	No.	Signal Name Function (Signal Name		Level)	
	R+	Communications input (+)		RS-422/RS-485	
MEMOBUS/Modbus Communication </td <td>R-</td> <td>Communications input (-)</td> <td>I MIE MICIBI IS/Modbils commitnication: Lise an I</td> <td>MEMOBUS/Modbus</td>	R-	Communications input (-)	I MIE MICIBI IS/Modbils commitnication: Lise an I	MEMOBUS/Modbus	
	S+	Communications output (+)	put (+) RS-422 or RS-485 cable to connect the drive.	communication protocol	
	S- Communications output (-)			115.2 kbps (max.)	
	IG	Shield ground	0 V		

<1> Enable the termination resistor in the last drive in a MEMOBUS/Modbus network by setting DIP switch S2 to the ON position. Refer to the manual section on *Control I/O Connections* for more information.

◆ Terminal Configuration

The control circuit terminals are arranged as shown in Figure 3.29.

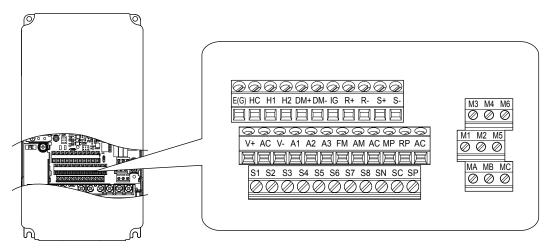


Figure 3.29 Control Circuit Terminal Arrangement

■ Wire Size and Torque Specifications

Select appropriate wire type and gauges from *Table 3.10*. For simpler and more reliable wiring, use crimp ferrules on the wire ends. Refer to *Table 3.11* for ferrule terminal types and sizes.

Table 3.10 Wire Gauges

			Tightening Bare Wire Terminal		Ferrule-Typ		
Terminal	Screw Size	Torque N•m (lb. in)	Recomm. wire size mm² (AWG)	Applicable wire size mm² (AWG)	Recomm. wire size mm² (AWG)	Applicable wire size mm² (AWG)	Wire Type
S1-S8, SC, SN, SP							
H1, H2, HC							
RP, V+, V-, A1, A2, A3, AC				Stranded wire: 0.2 to 1.0			
MA, MB, MC	M3	0.5 to 0.6 (4.4 to 5.3)	0.75 (18)	(24 to 16) Solid wire:	0.5 (20)	0.25 to 0.5 (24 to 20)	Shielded wire,
M1-M6		(4.4 to 3.3)	, ,	0.2 to 1.5		(24 to 20)	etc.
MP, FM, AM, AC				(24 to 16)			
DM+, DM-							
R+, R-, S+, S-, IG							

■ Ferrule-Type Wire Terminals

Yaskawa recommends using CRIMPFOX 6, a crimping tool manufactured by PHOENIX CONTACT, to prepare wire ends with insulated sleeves before connecting to the drive. See *Table 3.11* for dimensions.

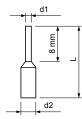


Figure 3.30 Ferrule Dimensions

Table 3.11 Ferrule Terminal Types and Sizes

Size mm ² (AWG)	Туре	L (mm)	d1 (mm)	d2 (mm)	Manufacturer	
0.25 (24)	AI 0.25-8YE	12.5	0.8	1.8	PHOENIX CONTACT	
0.34 (22)	AI 0.34-8TQ	10.5	0.8	1.8		
0.5 (20)	AI 0.5-8WH or AI 0.5-8OG	14	1.1	2.5		

◆ Wiring the Control Circuit Terminal

This section describes the proper procedures and preparations for wiring the control terminals.

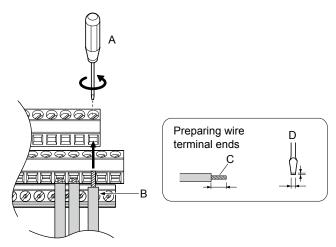
WARNING! Electrical Shock Hazard. Do not remove covers or touch the circuit boards while the power is on. Failure to comply could result in death or serious injury.

NOTICE: Separate control circuit wiring from main circuit wiring (terminals R/L1, S/L2, T/L3, B1, B2, U/T1, V/T2, W/T3, \ominus , \oplus 1, \oplus 2) and other high-power lines. Improper wiring practices could result in drive malfunction due to electrical interference.

NOTICE: Separate wiring for digital output terminals MA, MB, MC, and M1 to M6 from wiring to other control circuit lines. Improper wiring practices could result in drive or equipment malfunction or nuisance trips.

NOTICE: Use a class 2 power supply when connecting to the control terminals. Improper application of peripheral devices could result in drive performance degradation due to improper power supply. Refer to NEC Article 725 Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power Limited Circuits for requirements concerning class 2 power supplies.

NOTICE: Insulate shields with tape or shrink tubing to prevent contact with other signal lines and equipment. Improper wiring practices could result in drive or equipment malfunction due to short circuit.


NOTICE: Connect the shield of shielded cable to the appropriate ground terminal. Improper equipment grounding could result in drive or equipment malfunction or nuisance trips.

NOTICE: Do not tighten screws beyond the specified tightening torque. Failure to comply may result in erroneous operation, damage to the terminal block, or cause a fire.

NOTICE: Use shielded twisted-pair cables as indicated to prevent operating faults. Improper wiring practices could result in drive or equipment malfunction due to electrical interference.

Wire the control circuit only after terminals have been properly grounded and main circuit wiring is complete. *Refer to Terminal Board Wiring Guide on page 168* for details. Prepare the ends of the control circuit wiring as shown in *Figure 3.33*. *Refer to Wire Gauges on page 166*.

Connect control wires as shown in *Figure 3.31* and *Figure 3.32*.

- A Loosen screw to insert wire.
- B Single wire or stranded wire
- C Avoid fraying wire strands when stripping insulation from wire. Strip length 5.5 mm.
- D Blade depth of 0.4 mm or less Blade width of 2.5 mm or less

Figure 3.31 Terminal Board Wiring Guide

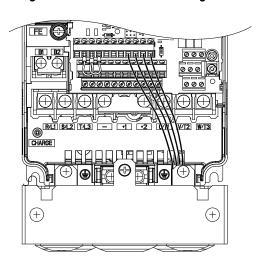
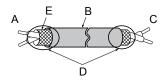



Figure 3.32 Terminal Board Location Inside the Drive

When setting the frequency by analog reference from an external potentiometer, use shielded twisted-pair wires (preparing wire ends as shown in *Figure 3.33*) and connect the shield to the ground terminal of the drive.

- A Drive side
- B Insulation
- C Control device side

- D Shield sheath (insulate with tape)
- E Shield

Figure 3.33 Preparing the Ends of Shielded Cables

NOTICE: The analog signal wiring between the drive and the operator station or peripheral equipment should not exceed 50 meters when using an analog signal from a remote source to supply the frequency reference. Failure to comply could result in poor system performance.

Switches and Jumpers on the Terminal Board

The terminal board is equipped with several switches used to adapt the drive I/Os to the external control signals. *Figure 3.34* shows the location of these switches. *Refer to Control I/O Connections on page 170* for setting instructions.

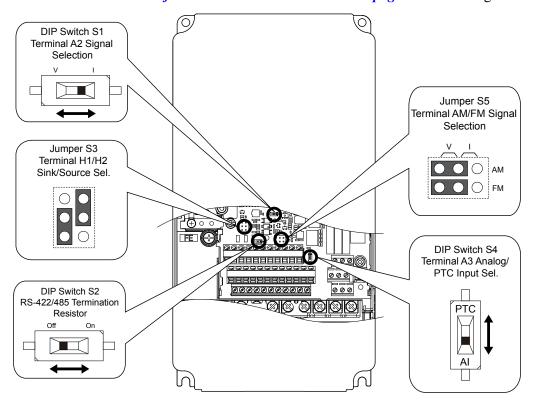
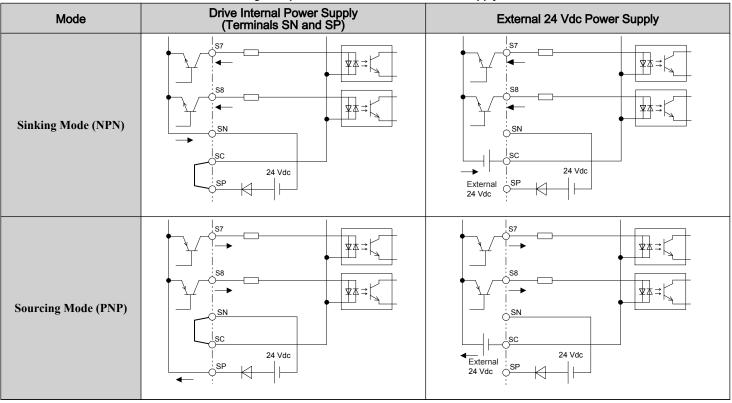


Figure 3.34 Locations of Jumpers and Switches on the Terminal Board


3.10 Control I/O Connections

Sinking/Sourcing Mode for Digital Inputs

Use the wire jumper between terminals SC and SP or SC and SN to select between Sink mode, Source mode or external power supply for the digital inputs S1 to S8 as shown in *Table 3.12* (Default: Sink mode, internal power supply).

NOTICE: Do not short terminals SP and SN. Failure to comply will damage the drive.

Table 3.12 Digital Input Sink/Source/External Power Supply Selection

◆ Sinking/Sourcing Mode Selection for Safe Disable Inputs

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Use jumper S3 on the terminal board to select between Sink mode, Source mode or external power supply for the Safe Disable inputs H1 and H2 as shown in *Table 3.12* (Default: Source mode, internal power supply). *Refer to Switches and Jumpers on the Terminal Board on page 169* for locating jumper S3.

Mode **Drive Internal Power Supply** External 24 Vdc Power Supply Jumper S3 Jumper S3 24 Vdc 24 Vdc HC **Sinking Mode** Jumper S3 Jumper S3 24 Vdc 24 Vdc \Diamond External **Sourcing Mode**

Table 3.13 Safe Disable Input Sink/Source/External Power Supply Selection

Using the Pulse Train Output

The pulse train output terminal MP can supply power or be used with an external power supply.

NOTICE: Connect peripheral devices in accordance with the specifications. Failure to comply may cause unexpected drive operation, and can damage the drive or connected circuits.

Using Power from the Pulse Output Terminal (Source Mode)

The high voltage level of the pulse output terminal depends on the load impedance.

Load Impedance R_L (k Ω)	Output Voltage V _{MP} (V) (insulated)
1.5 kΩ	5 V
4 kΩ	8 V
10 kΩ	10 V

Note: The load resistance needed in order to get a certain high level voltage V_{MP} can be calculated by: $R_L = V_{MP} \cdot 2 / (12 - V_{MP})$

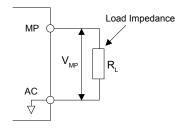


Figure 3.35 Pulse Output Connection Using Internal Voltage Supply

■ Using External Power Supply (Sink Mode)

The high voltage level of the pulse output signal depends on the external voltage applied. The voltage must be between 12 and 15 Vdc. The load resistance must be adjusted so that the current is lower than 16 mA.

External Power Supply (V)	Load Impedance (kΩ)
12 to 15 Vdc ±10%	1.0 kΩ or higher

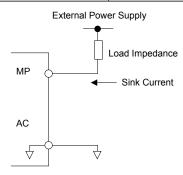


Figure 3.36 Pulse Output Connection Using External Voltage Supply

Terminal A2 Input Signal Selection

Terminal A2 can be used to input either a voltage or a current signal. Select the signal type using switch S1 as explained in *Table 3.14*. Set parameter H3-09 accordingly as shown in *Table 3.15*. *Refer to Switches and Jumpers on the Terminal Board on page 169* for locating switch S1.

Note: If terminals A1 and A2 are both set for frequency bias (H3-02 = 0 and H3-10 = 0), both input values will be combined to create the frequency reference

Table 3.14 DIP Switch S1 Settings

Setting	Description
V (left position)	Voltage input (-10 to +10 V or 0 to 10 V)
I (right position)	Current input (4 to 20 mA or 0 to 20 mA): default setting

Table 3.15 Parameter H3-09 Details

No.	Parameter Name	Description	Setting Range	Default Setting
Н3-09		Selects the signal level for terminal A2. 0: 0 to 10 Vdc 1: -10 to 10 Vdc 2: 4 to 20 mA 3: 0 to 20 mA	0 to 3	2

◆ Terminal A3 Analog/PTC Input Selection

Terminal A3 can be configured either as multi-function analog input or as PTC input for motor thermal overload protection. Use switch S4 to select the input function as described in *Table 3.16*. *Refer to Switches and Jumpers on the Terminal Board on page 169* for locating switch S4.

Table 3.16 DIP Switch S4 Settings

Setting	Description
AI (lower position) (default)	Analog input for the function selected in parameter H3-06
PTC (upper position)	PTC input. Parameter H3-06 must be set to E (PTC input)

◆ Terminal AM/FM Signal Selection

The signal type for terminals AM and FM can be set to either voltage or current output using jumper S5 on the terminal board as explained in *Table 3.17*. When changing the setting of jumper S5, parameters H4-07 and H4-08 must be set accordingly. The default selection is voltage output for both terminals. *Refer to Switches and Jumpers on the Terminal Board on page 169* for locating jumper S5.

Table 3.17 Jumper S5 Settings

Terminal	Voltage Output	Current Output
Terminal AM	O O O	
Terminal FM	V O FM AM	O O V

Table 3.18 Parameter H4-07 and H4-08 Details

No.	Parameter Name	Description	Setting Range	Default Setting
H4-07	Terminal AM signal level selection	0: 0 to 10 Vdc		
H4-08	Terminal FM signal level selection	1: -10 to 10 Vdc 2: 4 to 20 mA	0 to 2	0

◆ MEMOBUS/Modbus Termination

This drive is equipped with a built-in termination resistor for the RS-422/485 communication port. DIP switch S2 enables or disabled the termination resistor as shown in *Table 3.19*. The OFF position is the default. The termination resistor should be placed to the ON position when the drive is the last in a series of slave drives. *Refer to Switches and Jumpers on the Terminal Board on page 169* to locate switch S2.

Table 3.19 MEMOBUS/Modbus Switch Settings

S2 Position	Description
ON	Internal termination resistor ON
OFF	Internal termination resistor OFF (default setting)

Note: Refer to MEMOBUS/Modbus Communications on page 713 for details on MEMOBUS/Modbus.

◆ Terminal DM+ and DM- Output Signal Selection

Slide switch S6 selects N.C. or N.O. as the state of the DM+ and DM- terminals for EDM output. The switch is initially set to N.C. Slide switch S6 is available on terminal board ETC74030 .

Table 3.20 EDM Switch Settings

S2 Position	Description	
N.O.	Normally open	
N.C.	Normally closed (default setting)	

Note: Refer to Safe Disable Input Function on page 779 for details on EDM.

3.11 Connect to a PC

This drive is equipped with a USB port (type-B).

The drive can connect to a USB port on a PC using a USB 2.0, AB-type cable (sold separately). After connecting the drive to a PC, Yaskawa DriveWizard Industrial software can be used to monitor drive performance and manage parameter settings. Contact Yaskawa for more information on DriveWizard Industrial.

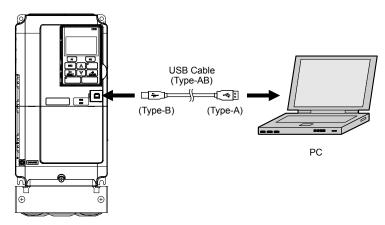


Figure 3.37 Connecting to a PC (USB)

3.12 External Interlock

Systems that may be affected during drive fault conditions should be interlocked with the drive fault output and ready signal.

Drive Ready

When the "Drive ready" signal has been set to one of the multi-function contact outputs, that output will close whenever the drive is ready to accept a Run command or is already running. Under the following conditions the Drive ready signal will switch off and remain off, even if a Run command is entered:

- when the power supply is shut off
- · during a fault
- when there is problem with the control power supply
- when a parameter setting error makes the drive unable to run even if a Run command has been entered
- when a fault such as overvoltage or undervoltage is triggered as soon as the Run command is entered
- when the drive is in the Programming mode and will not accept a Run command even when entered

■ Interlock Circuit Example

Two drives running a single application might interlock with the controller using the Drive Ready and Fault output signals as shown below. *Figure 3.38* illustrates how the application would not be able to run if either drive experiences a fault or is unable to supply a Drive Ready signal.

Terminal	Output Signal	Parameter Setting
MA, MB, MC	Fault	_
M1-M2	Drive Ready	H2-01 = 06

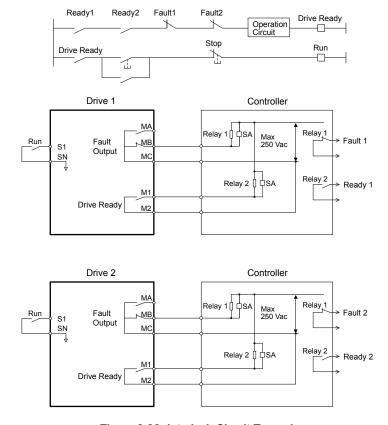


Figure 3.38 Interlock Circuit Example

3.13 Wiring Checklist

囡	No.	Item	Page(s)
Drive, Peripherals, Option Cards			
	1	Check drive model number to ensure receipt of correct model.	35
	2	Make sure you have the correct braking resistors, DC link chokes, noise filters, and other peripheral devices.	518
	3	Check the option card model number.	518
		Installation Area and Physical Setup	
	4	Ensure that the area surrounding the drive complies with specifications.	54
		Power Supply Voltage, Output Voltage	
	5	The voltage from the power supply should be within the input voltage specification range of the drive.	293
	6	The voltage rating for the motor should match the drive output specifications.	35
	7	Verify that the drive is properly sized to run the motor.	656
		Main Circuit Wiring	
	8	Confirm proper branch circuit protection as specified by national and local codes.	138
		Properly wire the power supply to drive terminals R/L1, S/L2, and T/L3.	
		Note: Confirm the following when wiring models 4A0930 and 4A1200:	
	9	• Remove the jumpers shorting terminals R/L1-R1/L11, S/L2-S1/L21, and T/L3-T1/L31 when	141
		operating with 12-phase rectification. <i>Refer to 12-Phase Rectification on page 143</i> for details. • When operating without 12-phase rectification, properly wire terminals R1/L11, S1/L21, and	
		T1/L31 in addition to terminals R/L1, S/L2, and T/L3.	
	10	Properly wire the drive and motor together. The motor lines and drive output terminals U/T1, V/T2, and W/T3 should match in order to produce the desired phase	162
	10	order. If the phase order is incorrect, the drive will rotate in the opposite direction.	102
	11	Use 600 Vac vinyl-sheathed wire for the power supply and motor lines.	155
		Use the correct wire gauges for the main circuit. Refer to Main Circuit Wire Gauges and Tightening Torque on page	155
		 155. Consider the amount of voltage drop when selecting wire gauges. Increase the wire gauge when the voltage drop is 	
	12	greater than 2% of motor rated voltage. Ensure the wire gauge is suitable for the terminal block. Use the following formula to calculate the amount of voltage drop:	162
		Line drop voltage (V) = $\sqrt{3}$ × wire resistance (Ω /km) × wire length (m) × current (A) × 10 ⁻³	102
		• If the cable between the drive and motor exceeds 50 m, adjust the carrier frequency set to C6-02 accordingly.	
	13	Properly ground the drive. Review page 162.	162
	14	Tighten control circuit and grounding terminal screws. Refer to Main Circuit Wire Gauges and Tightening Torque on	155
		page 155.	100
		Set up overload protection circuits when running multiple motors from a single drive. Power supply Drive MC1 OL1	
		Drive MC1 OL1 MM1	
	15	MC2 OL2 MC1 - MCn magnetic contactor	-
		MCn OLn thermal relay	
		Note: Close MC1 – MCn before operating the drive. MC1 – MCn cannot be switched off during run.	
	16	Install a magnetic contactor when using a dynamic braking option. Properly install the resistor and ensure that overload protection shuts off the power supply using the magnetic contactor.	532
П	17	Verify phase advancing capacitors, input noise filters, or GFCIs are NOT installed on the output side of the drive.	_
_		Control Circuit Wiring	<u> </u>
	18	Use twisted-pair line for all drive control circuit wiring.	167
	19	Ground the shields of shielded wiring to the GND terminal.	167
$-\overline{\Box}$	20	For 3-Wire sequence, set parameters for multi-function contact input terminals S1 – S8, and wire control circuits.	_
	21	Properly wire any option cards.	167
\Box	22	Check for any other wiring mistakes. Only use a multimeter to check wiring.	_
		Properly fasten drive control circuit terminal screws. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on</i>	-
Ш	23	page 155.	155

瓦	No.	Item	Page(s)
	24	Pick up all wire clippings.	-
	25	Ensure that no frayed wires on the terminal block are touching other terminals or connections.	-
	26	Properly separate control circuit wiring and main circuit wiring.	-
	27	Analog signal line wiring should not exceed 50 m.	-
	28	Safe Disable input wiring should not exceed 30 m.	=

3.13 Wiring Checklist

This Page Intentionally Blank

Start-Up Programming & Operation

This chapter explains the functions of the digital operator and how to program the drive for initial operation.

4.1	SECTION SAFETY	180
4.2	USING THE DIGITAL OPERATOR	181
4.3	THE DRIVE AND PROGRAMMING MODES	186
4.4	START-UP FLOWCHARTS	192
4.5	POWERING UP THE DRIVE	197
4.6	APPLICATION SELECTION	198
4.7	AUTO-TUNING	201
4.8	NO-LOAD OPERATION TEST RUN	215
4.9	TEST RUN WITH LOAD CONNECTED	217
4.10	VERIFYING PARAMETER SETTINGS AND BACKING UP CHANGES	218
4.11	TEST RUN CHECKLIST	220

179

4.1 Section Safety

⚠ DANGER

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply will result in death or serious injury.

A WARNING

Electrical Shock Hazard

Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may include drives without covers or safety shields to illustrate details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Prepare a separate holding brake.

Wire the holding brake so when a fault occurs, it is activated by an external sequence and shuts the power off or triggers an emergency switch. Failure to comply could result in death or serious injury.

4.2 Using the Digital Operator

Use the digital operator to enter Run and Stop commands, edit parameters, and display data including fault and alarm information.

Keys and Displays

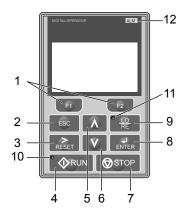


Figure 4.1 Keys and Displays on the Digital Operator

No.	Display	Name	Function
1	F1 F2	Function Key (F1, F2)	The functions assigned to F1 and F2 vary depending on the currently displayed menu. The name of each function appears in the lower half of the display window.
2	ESC	ESC Key	 Returns to the previous display. Moves the cursor one space to the left. Pressing and holding this button will return to the Frequency Reference display.
3	RESET	RESET Key	 Moves the cursor to the right. Resets the drive to clear a fault situation.
4	RUN	RUN Key	Starts the drive in LOCAL mode.
5		Up Arrow Key	Scrolls up to display the next item, selects parameter numbers, and increments setting values.
6	V	Down Arrow Key	Scrolls down to display the previous item, selects parameter numbers, and decrements setting values.
7	⊘ STOP	STOP Key <1>	Stops drive operation.
8	ENTER	ENTER Key	Enters parameter values and settings.Selects a menu item to move between displays
9	LO RE	LO/RE Selection Key <2>	Switches drive control between the operator (LOCAL) and an external source (REMOTE) for the Run command and frequency reference.
10	♦ RUN	RUN Light	Lit while the drive is operating the motor. Refer to page 183 for details.
11	LO RE	LO/RE Light	Lit while the operator is selected to run the drive (LOCAL mode). Refer to page 183 for details.
12	ALM	ALM LED Light	Refer to ALARM (ALM) LED Displays on page 183.

<1> The STOP key has highest priority. Pressing the STOP key will always cause the drive to stop the motor, even if a Run command is active at any external Run command source. To disable the STOP key priority, set parameter o2-02 to 0.

The LO/RE key can only switch between LOCAL and REMOTE when the drive is stopped. To disable the LO/RE key to prohibit switching between LOCAL and REMOTE, set parameter o2-01 to 0.

◆ LCD Display

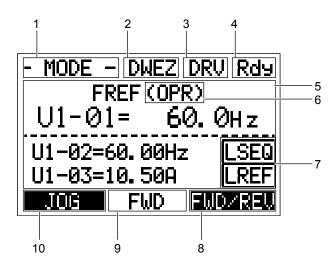


Figure 4.2 LCD Display

Table 4.1 Display and Contents

No.	Name	Display	Content	
		MODE	Displayed when in Mode Selection.	
		MONITR	Displayed when in Monitor Mode.	
1	Operation Mode Menus	VERIFY	Indicates the Verify Menu.	
1	Operation Mode Menus	PRMSET	Displayed when in Parameter Setting Mode.	
		A.TUNE	Displayed during Auto-Tuning.	
		SETUP	Displayed when in Setup Mode.	
2	DriveWorksEZ Function Selection	DWEZ	Displayed when DriveWorksEZ is set to enable. (A1-07 = 1 or 2)	
3	Modo Dianley Area	DRV	Displayed when in Drive Mode.	
3	Mode Display Area	PRG	Displayed when in Programming Mode.	
4	Ready	Rdy	Indicates the drive is ready to run.	
5	Data Display	_	Displays specific data and operation data.	
		OPR	Displayed when the frequency reference is assigned to the LCD Operator Option.	
	Frequency Reference Assignment <1>	AI	Displayed when the frequency reference is assigned to the Analog Input of the drive.	
6		COM	Displayed when the frequency reference is assigned to the MEMOBUS/Modbus Communication Inputs of the drive.	
		OP	Displayed when the frequency reference is assigned to an Option Unit of the drive.	
		RP	Displayed when the frequency reference is assigned to the Pulse Train Input of the drive.	
		RSEQ	Displayed when the run command is supplied from a remote source.	
7	LO/RE	LSEQ	Displayed when the run command is supplied from the operator keypad.	
/	Display <2>	RREF	Displayed when the frequency reference is supplied from a remote source.	
		LREF	Displayed when the frequency reference is supplied from the operator keypad.	
		FWD/REV	Pressing switches between forward and reverse.	
8	Function Key 2	DATA	Pressing scrolls to the next display.	
	(F2)	\rightarrow	Pressing scrolls the cursor to the right.	
		RESET	Pressing resets the existing drive fault error.	
9	FWD/REV	FWD	Indicates forward motor operation.	
	T W D/ KE V	REV	Indicates reverse motor operation.	

No.	Name	Display	Content	
		JOG	Pressing executes the Jog function.	
		HELP	Pressing displays the Help menu.	
10	Function Key 1 (F1)	←	Pressing scrolls the cursor to the left.	
		HOME	Pressing returns to the top menu (Frequency Reference).	
		ESC	Pressing returns to the previous display.	

- <1> Displayed when in Frequency Reference Mode.
- <2> Displayed when in Frequency Reference Mode and Monitor Mode.

◆ ALARM (ALM) LED Displays

Table 4.2 ALARM (ALM) LED Status and Contents

State	Content	Display
Illuminated	When the drive detects an alarm or error.	[ALM]
Flashing	When an alarm occurs.When an oPE is detected.When a fault or error occurs during Auto-Tuning.	[ALM]
Off	Normal operation (no fault or alarm).	ALM

◆ LO/RE LED and RUN LED Indications

Table 4.3 LO/RE LED and RUN LED Indications

LED	Lit	Flashing	Flashing Quickly <1>	Off	
• <u>LO</u> RE	When the operator is selected for Run command and frequency reference control (LOCAL)		_	When a device other than the operator is selected for Run command and frequency reference control (REMOTE)	
	During run		• While the drive was set to LOCAL, a Run command was entered to the input terminals then the drive was switched to REMOTE.		
		During deceleration to stop When a Run command is input and frequency reference is 0 Hz	• A Run command was entered via the input terminals while the drive was not in Drive Mode.		
♦ RUN			• During deceleration when a Fast Stop command was entered.	During stop	
			• The drive output is shut off by the Safe Disable function.		
			• The STOP key was pressed while drive was running in REMOTE.		
			• The drive was powered up with b1-17 = 0 (default) while the Run command is active.		
Examples	• RUN	♦ RUN	₩ RUN	∳RUN	

<1> Refer to *Figure 4.3* for the difference between "flashing" and "flashing quickly".

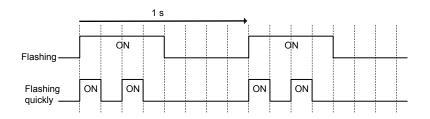


Figure 4.3 RUN LED Status and Meaning

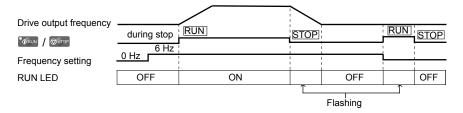


Figure 4.4 RUN LED and Drive Operation

◆ Menu Structure for Digital Operator

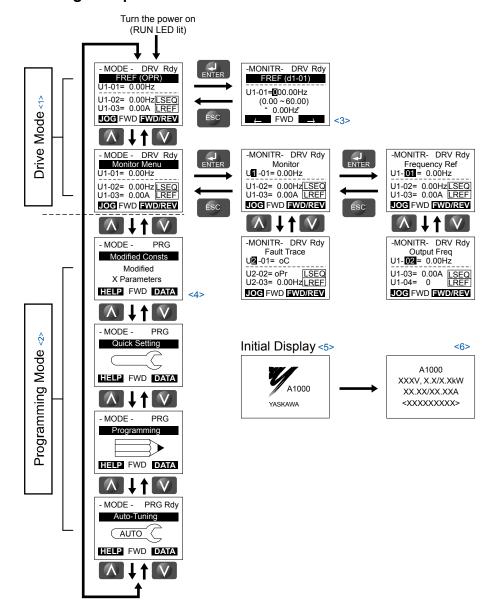


Figure 4.5 Digital Operator Menu and Screen Structure

- Pressing will start the motor.
- <2> Drive cannot operate motor.
- <3> Flashing characters are shown as **Q**.
- <4> "X" characters are used as examples in this manual. The LCD Operator will display the actual setting values.
- <5> The Frequency Reference appears after the initial display that shows the product name.
- <6> The information that appears on the display will vary depending on the drive.

4.3 The Drive and Programming Modes

The drive has a Drive Mode to operate the motor and a Programming Mode to edit parameter settings.

Drive Mode: In Drive Mode the user can operate the motor and observe U Monitor parameters. Parameter settings cannot be edited or changed when in Drive Mode.

Programming Mode: In Programming Mode the user can edit and verify parameter settings and perform Auto-Tuning. When the drive is in Programming Mode it will not accept a Run command unless b1-08 is set to 1.

Note:

- 1. If b1-08 is set to 0, the drive will only accept a Run command in Drive Mode. After editing parameters, the user must exit the Programming Mode and enter Drive Mode before operating the motor.
- 2. Set b1-08 to 1 to allow motor operation from the drive while in Programming Mode.

Navigating the Drive and Programming Modes

The drive is set to operate in Drive Mode when it is first powered up. Switch between display screens by using the A and keys.

Mode	Contents	Operator Display	Description
Power Up	Frequency Reference (default)	- MODE - DRV Rdy FREF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz[SEQ] U1-03= 0.00A [LREF] JOG FWD [WD/REV]	This display screen allows the user to monitor and change the frequency reference while the drive is running. <i>Refer to The Drive and Programming Modes on page 186</i> . Note: The user can select the data displayed when the drive is first powered up with parameter o1-02.
Drive Mode	Monitor Display	- MODE - DRV Rdy Monitor Menu U1-01= 0.00Hz U1-02= 0.00Hz SEQ U1-03= 0.00A LREF JOG FWD FWD/REV	Lists the monitor parameters (U□-□□ parameters) available in the drive. Press the Enter Key and then use the Up, Down, ESC, and Reset keys to navigate through the drive monitors.
	Verify Menu	- MODE - PRG Modified Consts Modified X Parameters HELP FWD DATA	Lists all parameters that have been edited or changed from default settings. → Refer to Verifying Parameter Changes: Verify Menu on page 189.
	Setup Group	- MODE - PRG Quick Setting HELP FWD DATA	A select list of parameters necessary to get the drive operating quickly. → Refer to Using the Setup Group on page 190. Note: Parameters listed in the Setup Group differ depending the Application Preset in parameter A1-06. Refer to Application Selection on page 198.
Programming Mode			
	Parameter Setting Mode	- MODE - PRG Programming HELP FWD DATA	Allows the user to access and edit all parameter settings. → Refer to Parameter List on page 573.
	Auto-Tuning Mode	- MODE - PRG Rdy Auto-Tuning AUTO HELP FWD DATA	Motor parameters are calculated and set automatically. → Refer to Auto-Tuning on page 201.

Mode	Contents	Operator Display	Description
Drive Mode	Frequency Reference	- MODE - DRV Rdy FREF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz LSEQ U1-03= 0.00A LREF JOG FWD FWD/REV	Returns to the frequency reference display screen.

Drive Mode Details

The following actions are possible in the Drive Mode:

- Run and stop the drive
- Monitor the operation status of the drive (frequency reference, output frequency, output current, output voltage, etc.)
- View information on an alarm
- View a history of alarms that have occurred

Figure 4.6 illustrates how to change the frequency reference from F 0.00 (0 Hz) to F 6.00 (6 Hz) while in the Drive Mode. This example assumes the drive is set to LOCAL.

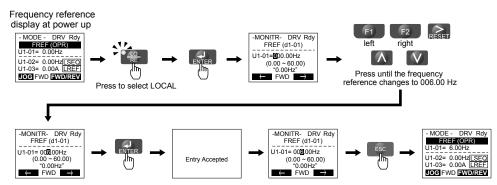


Figure 4.6 Setting the Frequency Reference while in the Drive Mode

Note: The drive will not accept a change to the frequency reference until the ENTER key is pressed after the frequency reference is entered. This feature prevents accidental setting of the frequency reference. To have the drive accept changes to the frequency reference as soon as changes are made without requiring the ENTER key, set o2-05 to 1.

■ Programming Mode Details

The following actions are possible in the Programming Mode:

- Parameter Setting Mode: Access and edit all parameter settings.
- Verify Menu: View a list of parameters that have been changed from the default values.
- Setup Group: Access a list of commonly used parameters to simplify setup (*Refer to Simplified Setup Using the Setup Group on page 190*).
- Auto-Tuning Mode: Automatically calculate and set motor parameters to optimize drive performance.

◆ Changing Parameter Settings or Values

This example explains changing C1-02 (Deceleration Time 1) from 10.0 seconds (default) to 20.0 seconds.

	Step		Display/Result
1.	Turn on the power to the drive. The initial display appears.	→	- MODE - DRV Rdy REF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz[SEQ] U1-03= 0.00A [REF] LOG FWD [FWD/REV]
2.	Press or until the Parameter Setting Mode screen appears.	→	- MODE - PRG Programming HELP FWD DATA

4.3 The Drive and Programming Modes

	Step		Display/Result
3.	Press to enter the parameter menu tree.	→	-PRMSET- PRG Initialization 1-00= 0 Select Language FWD +
4.	Press or to select the C parameter group.	→	-PRMSET- PRG Basic Setup
5.	Press two times.		-PRMSET- PRG
6.	Press or to select parameter C1-02.	→	-PRMSET- PRG Decel Time 1 C1-102= 10.0Sec (0.0-6000.0)
7.	Press to view the current setting value (10.0 s). The leftmost digit flashes.	→	-PRMSET- PRG
8.	Press [F1], or RESET until the desired number is selected. "1" flashes.	→	-PRMSET- PRG Decel Time 1
9.	Press and enter 0020.0.	→	-PRMSET- PRG
10.	Press to confirm the change.	→	Entry Accepted
11.	The display automatically returns to the screen shown in Step 4.	→	-PRMSET- PRG Decel Time 1 C1-102= 20.0Sec (0.0-6000.0)
12.	Press as many times as necessary to return to the initial display.	→	- MODE - DRV Rdy FREF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz[LSEO] U1-03= 0.00A [LREF] LOG FWD FWD/REV

Verifying Parameter Changes: Verify Menu

The Verify Menu lists edited parameters from the Programming Mode or as a result of Auto-Tuning. The Verify Menu helps determine which settings have been changed, and is particularly useful when replacing a drive. If no settings have been changed, the Verify Menu will read "None". The Verify Menu also allows users to quickly access and re-edit any parameter settings that have been changed.

Note: The Verify Menu will not display parameters from the A1 group (except for A1-02) or E5-01 even if those parameters have been changed from their default settings.

The following example is a continuation of the steps above. Here, parameter C1-02 is accessed using the Verify Menu, and is changed again from 10.0 s to 20.0 s.

To check the list of edited parameters:

	Step		Display/Result
1.	Turn on the power to the drive. The initial display appears.	→	- MODE - DRV Rdy FREF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz[SEQ] U1-03= 0.00A [REF] JOG FWD [WD]REV
2.	Press or until the display shows the top of the Verify Menu.	→	- MODE - PRG Modified Consts Modified X Parameters HELP FWD DATA
3.	Press to enter the list of parameters that have been edited from their original default settings. If parameters other than C1-02 have been changed, use or to scroll until C1-02 appears.	→	- VERIFY - PRG Rdy Accel Time 1
4.	Press to access the setting value. Left digit flashes.	→	- VERIFY - PRG Rdy Accel Time 1 C1-01=020.0sec (0.0-6000.0) "10.0sec" Home FWD DATA

Simplified Setup Using the Setup Group

The Setup Group lists the basic parameters necessary to set up the drive for an application. This group expedites the startup process for an application by showing only the most important parameters for the application.

■ Using the Setup Group

Figure 4.7 illustrates how to enter and how to change parameters in the Setup Group.

The first display shown when entering the Setup Group is the Application Selection menu. Skipping this display will keep the current Setup Group parameter selection. The default setting for the Setup Group is a group of parameters most commonly use in general-purpose applications. Pressing the ENTER key from the Application Selection menu and selecting an Application Preset will change the Setup Group to parameters optimal for the application selected. *Refer to Application Selection on page 198*.

In this example, the Setup Group is accessed to change b1-01 from 1 to 0. This changes the source of the frequency reference from the control circuit terminals to the digital operator.

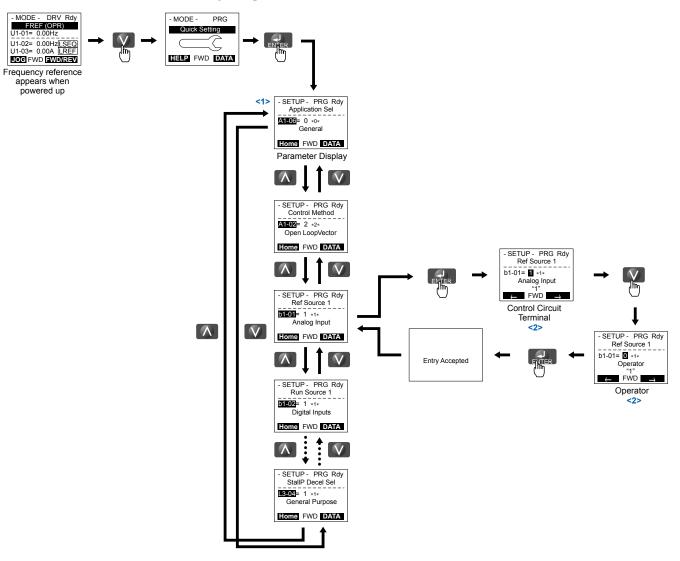


Figure 4.7 Setup Group Example

- <1> Use the up and down arrow keys to scroll through the Setup Group. Press the ENTER key to view or change parameter settings.
- <2> To return to the previous menu without saving changes, press the ESC key.

■ Setup Group Parameters

Table 4.4 lists the parameters available by default in the Setup Group. Selecting an Application Preset in parameter A1-06 or from the Application Selection Menu of the Setup Group automatically changes the parameters selected for the Setup Group. **Refer to Application Selection on page 198** for more information.

Use the Programming Mode to access parameters not displayed in the Setup Group.

Table 4.4 Setup Group Parameters

Parameter	Name	Parameter	Name
A1-02	Control Method Selection	E1-01	Input Voltage Setting
b1-01	Frequency Reference Selection 1	E1-03	V/f Pattern Selection
b1-02	Run Command Selection 1	E1-04	Maximum Output Frequency
b1-03	Stopping Method Selection	E1-05	Maximum Voltage
C1-01	Acceleration Time 1	E1-06	Base Frequency
C1-02	Deceleration Time 1	E1-09	Minimum Output Frequency
C6-01	Drive Duty Mode	E1-13	Base Voltage
C6-02	Carrier Frequency Selection	E2-01	Motor Rated Current
d1-01	Frequency Reference 1	E2-04	Number of Motor Poles
d1-02	Frequency Reference 2	E2-11	Motor Rated Power
d1-03	Frequency Reference 3	H4-02	Multi-Function Analog Output Terminal FM Gain
d1-04	Frequency Reference 4	L1-01	Motor Overload Protection Function Selection
d1-17	Jog Frequency Reference	L3-04	Stall Prevention Selection during Deceleration

Note: Parameter availability depends on the control mode set in A1-02; some parameters listed above may not be accessible in all control modes.

Switching Between LOCAL and REMOTE

LOCAL mode is when the drive is set to accept the Run command from the digital operator RUN key. REMOTE mode is when the drive is set to accept the Run command from an external device (i.e., input terminals or serial communications).

WARNING! Sudden Movement Hazard. The drive may start unexpectedly if the Run command is already applied when switching from LOCAL mode to REMOTE mode when b1-07 = 1, resulting in death or serious injury. Be sure all personnel are clear of rotating machinery.

Switch the operation between LOCAL and REMOTE using the LO/RE key on the digital operator or via a digital input.

Note:

- 1. After selecting LOCAL, the LO/RE light will remain lit.
- 2. The drive will not allow the user to switch between LOCAL and REMOTE during run.

■ Using the LO/RE Key on the Digital Operator

	Step		Display/Result
1.	Turn on the power to the drive. The initial display appears.	→	- MODE - DRV Rdy
2.	Press . The LO/RE light will light up. The drive is now in LOCAL. To set the drive for REMOTE operation, press the key again.	→	TO RE

■ Using Input Terminals S1 through S8 to Switch between LOCAL and REMOTE

It is possible to switch between LOCAL and REMOTE modes using one of the digital input terminals S1 through S8 (set the corresponding parameter H1- $\square\square$ to "1").

Setting H1- \square to 1 disables the LO/RE key on the digital operator. *Refer to H1: Multi-Function Digital Inputs on page 320* for details.

4.4 Start-Up Flowcharts

These flowcharts summarize steps required to start the drive. Use the flowcharts to determine the most appropriate start-up method for a given application. The charts are quick references to help familiarize the user with start-up procedures.

Note:

- 1. Refer to Application Selection on page 198 to set up the drive using one of the Application Presets.
- 3. Function availability differs for drive models 4A0930 and 4A1200. Refer to Parameter Differences for Drive Models 4A0930 and 4A1200 on page 576 for details.

Flowchart	Subchart	Objective	
A	_	Basic start-up procedure and motor tuning	
	A-1	Simple motor setup using V/f mode	194
 A-2 High-performance operation using Open Loop Vector or Closed Loop Vector m 		High-performance operation using Open Loop Vector or Closed Loop Vector motor control	195
	A-3	Setting up the drive to run a permanent magnet (PM) motor	196

Flowchart A: Basic Start-Up and Motor Tuning

Flowchart A in *Figure 4.8* describes a basic start-up sequence that varies slightly depending on the application. Use the drive default parameter settings in simple applications that do not require high precision.

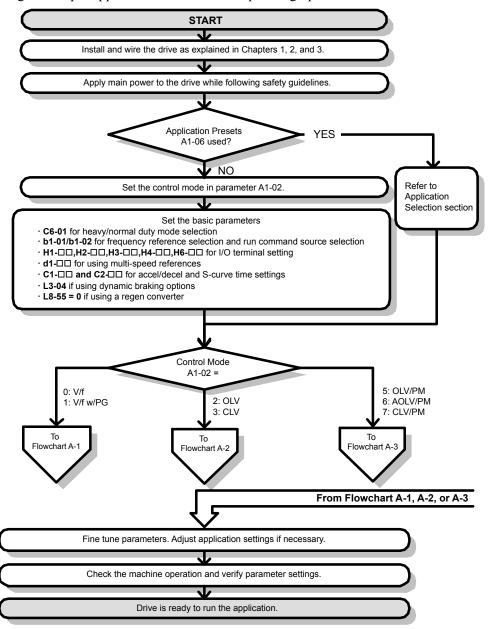


Figure 4.8 Basic Start-Up

Note:

- 1. Execute Stationary Auto-Tuning for Line-to-Line Resistance if the drive has been Auto-Tuned and then moved to a different location where the motor cable length exceeds 50 m.
- 2. Perform Auto-Tuning again after installing an AC reactor or other such components to the output side of the drive.

◆ Subchart A-1: Simple Motor Setup Using V/f Control

Flowchart A1 in *Figure 4.9* describes simple motor setup for V/f Control, with or without PG feedback. V/f Control is suited for more basic applications such as fans and pumps. This procedure illustrates Energy Savings and Speed Estimation Speed Search.

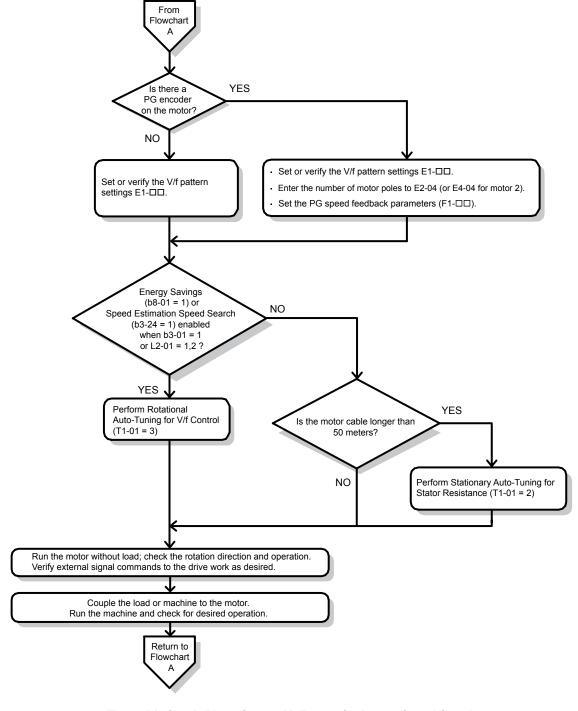


Figure 4.9 Simple Motor Setup with Energy Savings or Speed Search

◆ Subchart A-2: High Performance Operation Using OLV or CLV

Flowchart A2 in *Figure 4.10* describes the setup procedure for high-performance with Open Loop Vector Control or Closed Loop Vector Control, which is appropriate for applications requiring high starting torque and torque limits.

Note: Although the drive sets parameters for the PG encoder during Auto-Tuning, sometimes the direction of the motor and direction of the PG get reversed. Use parameter F1-05 to switch the direction of the PG so that it matches the motor direction.

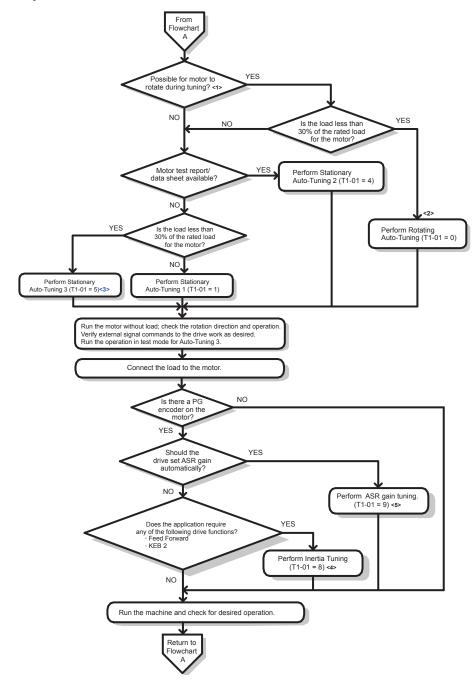


Figure 4.10 Flowchart A2: High Performance Operation Using OLV or CLV

- <1> Decouple the load from the motor to properly perform Rotational Auto-Tuning.
- <2> Rotational Auto-Tuning can still be performed if the load is 30% or less, though Stationary Auto-Tuning may yield better control performance.
- <3> Make sure the motor and load can run freely (i.e., if a brake is mounted, make sure it is released).
- <4> ASR Gain Tuning automatically performs Inertia Tuning and sets parameters related to Feed Forward and the KEB Ride-Thru function.

Subchart A-3: Operation with Permanent Magnet Motors

Flowchart A3 in *Figure 4.11* describes the setup procedure for running a PM motor in Open Loop Vector Control. PM motors can be used for more energy-efficient operation in reduced or variable torque applications.

Note:

- 1. Although the drive sets parameters for the PG encoder during Auto-Tuning, sometimes the direction of the motor and direction of the PG get reversed. Use parameter F1-05 to switch the direction of the PG so that it matches the motor direction.
- 2. Realign the Z Pulse if the PG encoder is replaced. Set T2-01 to 3 to recalibrate the drive for the new encoder.

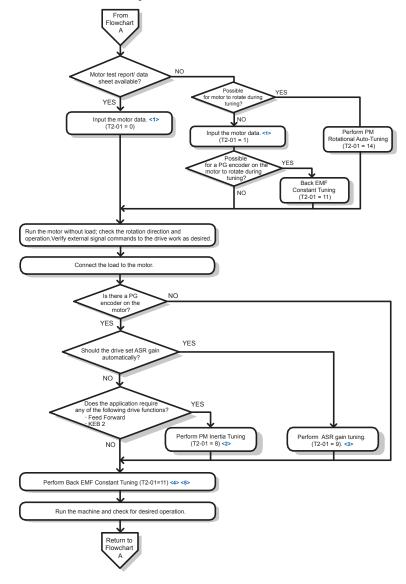


Figure 4.11 Operation with Permanent Magnet Motors

- <1> Enter the motor code to E5-01 when using a Yaskawa PM motor (SMRA Series, SSR1 Series, and SST4 Series). If using a motor from another manufacturer, enter "FFFF".
- <2> Make sure the motor and load can run freely (i.e., if a brake is mounted, make sure it is released).
- <3> ASR Gain Tuning automatically performs Inertia Tuning and sets parameters related to Feed Forward and the KEB Ride-Thru function.
- <4> Back EMF Constant Tuning automatically measures motor induced voltage and then sets E5-09 when the motor report or data sheets are not available.
- <5> This type of Auto-Tuning is available in drive software versions PRG: 1015 and later.

4.5 Powering Up the Drive

◆ Powering Up the Drive and Operation Status Display

■ Powering Up the Drive

Review the following checklist before turning the power on.

Item to Check	Description		
Power supply voltage	200 V class: Three-phase 200 to 240 Vac 50/60 Hz 400 V class: Three-phase 380 to 480 Vac 50/60 Hz 600 V class: Three-phase 500 to 600 Vac 50/60 Hz		
Tower supply voltage	Properly wire the power supply input terminals (R/L1, S/L2, T/L3). <1>		
	Check for proper grounding of drive and motor.		
Drive output terminals and motor terminals	Properly wire drive output terminals U/T1, V/T2, and W/T3 with motor terminals U, V, and W.		
Control circuit terminals	Check control circuit terminal connections.		
Drive control terminal status	Open all control circuit terminals (off).		
Status of the load and connected machinery	Decouple the motor from the load.		

<1> Confirm the following when connecting models 4A0930 and 4A1200: Remove the jumpers on R1/L11, S1/L21, and T1/L31 when using 12-phase rectification. *Refer to 12-Phase Rectification on page 143* for details. When operating without 12-phase rectification, properly wire terminals R1/L11, S1/L21, and T1/L31 in addition to terminals R/L1, S/L2, and T/L3.

■ Status Display

When the power supply to the drive is turned on, the digital operator lights will appear as follows:

Status	Name	Description
Normal Operation	-MODE - DRV Rdy FREE (OR) U1-01-0 000Hz U1-02-0 000Hz U1-03-0 00 A LEEF U006 FWD EWDREY	The data display area displays the frequency reference. DRV is lit.
Fault	-MODE - DRV EF3 Ext Fault s3	Data displayed varies by the type of fault. Refer to Fault Displays, Causes, and Possible Solutions on page 423 for more information. ALM and DRV are lit.

4.6 Application Selection

Several Application Presets are available to facilitate drive setup for commonly used applications. Selecting one of these Application Presets automatically assigns functions to the input and output terminals and sets a predefined group of parameters to values appropriate for the selected application.

In addition, the parameters most likely to be changed are assigned to the group of User Parameters, A2-01 through A2-16. User Parameters are part of the Setup Group, which provides quicker access by eliminating the need to scroll through multiple menus

An Application Preset can either be selected from the Application Selection menu in the Setup Group (*Refer to Simplified Setup Using the Setup Group on page 190*) or in parameter A1-06. The following presets can be selected:

Note:

- 1. Application Presets can only be selected if all drive parameters are at their original default settings. It may be necessary to initialize the drive by setting A1-03 to "2220" or "3330" prior to selecting an Application Preset.
- 2. Do not set any value outside the allowable range for A1-06 (Application Presets). If an out-of-range value is set, "APPL" will be displayed flashing in the Setup group and the up and down arrow keys cannot be used. If this happens, press the ESC key to return to the Setup group. It will then be possible to switch to another mode using the up and down arrow keys.

WARNING! Sudden Movement Hazard. Confirm the drive I/O signals and external sequence before performing a test run. Setting parameter A1-06 may automatically change the I/O terminal function from the default setting. Failure to comply may result in death or serious injury.

No.	Parameter Name	Setting Range	Default
A1-06	Application Presets	0: Disabled 1: Water supply pump 2: Conveyor 3: Exhaust fan 4: HVAC 5: Compressor	0

Setting 1: Water Supply Pump Application

Table 4.5 Water Supply Pump: Parameter Settings

Table 4.5 Water Supply Fullip. Farameter Settings			
No.	Name	Default Setting	
A1-02	Control Method Selection	0: V/f Control	
b1-04	Reverse Operation Selection	1: Reverse Prohibited	
C1-01	Acceleration Time 1	1.0 s	
C1-02	Deceleration Time 1	1.0 s	
C6-01	Duty Rating	1: Normal Duty (ND)	
E1-03	V/f Pattern Selection	F: V/f Pattern Selection	
E1-07	Mid Output Frequency	30.0 Hz	
E1-08	Mid Output Frequency Voltage	50.0 V	
L2-01	Momentary Power Loss Operation Selection 1: Enabled		
L3-04	Stall Prevention Selection during Deceleration	Deceleration 1: Enabled	

Table 4.6 Water Supply Pump: User Parameters (A2-01 to A2-16)

No.	Parameter Name	
b1-01	Frequency Reference Selection	
b1-02	Run Command Selection	
b1-04	Reverse Operation Selection	
C1-01	Acceleration Time 1	
C1-02	Deceleration Time 1	
E1-03	V/f Pattern Selection	
E1-07	Mid Output Frequency	
E1-08	Mid Output Frequency Voltage	

No.	Parameter Name	
E2-01	Motor Rated Current	
H1-05	Multi-Function Digital Input Terminal S5 Function Selection	
H1-06	Multi-Function Digital Input Terminal S6 Function Selection	
H1-07	Multi-Function Digital Input Terminal S7 Function Selection	
L5-01	Number of Auto Restart Attempts	

◆ Setting 2: Conveyor Application

Table 4.7 Conveyor: Parameter Settings

No.	Parameter Name	Default Setting	
A1-02	Control Method Selection	0: V/f Control	
C1-01	Acceleration Time 1	3.0 s	
C1-02	Deceleration Time 1	3.0 s	
C6-01	Duty Rating	0: Heavy Duty (HD)	
L3-04	Stall Prevention Selection during Deceleration	1: Enabled	

Table 4.8 Conveyor: User Parameters (A2-01 to A2-16)

No.	Parameter Name	No.	Parameter Name
A1-02	Control Method Selection	C1-02	Deceleration Time 1
b1-01	Frequency Reference Selection	E2-01	Motor Rated Current
b1-02	Run Command Selection	L3-04	Stall Prevention Selection during Deceleration
C1-01	Acceleration Time 1	1	_

◆ Setting 3: Exhaust Fan Application

Table 4.9 Exhaust Fan: Parameter Settings

No.	Parameter Name	Default Setting
A1-02	Control Method Selection	0: V/f Control
b1-04	Reverse Operation Selection	1: Reverse Prohibited
C6-01	Duty Selection	1: Normal Duty (ND)
E1-03	V/f Pattern Selection	F: V/f Pattern Selection
E1-07	Mid Output Frequency	30.0 Hz
E1-08	Mid Output Frequency Voltage	50.0 V
L2-01	Momentary Power Loss Operation Selection	1: Enabled
L3-04	Stall Prevention Selection during Deceleration	1: Enabled

Table 4.10 Exhaust Fan: User Parameters (A2-01 to A2-16)

No.	Parameter Name	No.	Parameter Name
b1-01	Frequency Reference Selection	E1-07	Mid Output Frequency
b1-02	Run Command Selection	E1-08	Mid Output Frequency Voltage
b1-04	Reverse Operation Selection	E2-01	Motor Rated Current
b3-01	Speed Search Selection at Start	H1-05	Multi-Function Digital Input Terminal S5 Function Selection
C1-01	Acceleration Time 1	H1-06	Multi-Function Digital Input Terminal S6 Function Selection
C1-02	Deceleration Time 1	H1-07	Multi-Function Digital Input Terminal S7 Function Selection
E1-03	V/f Pattern Selection	L5-01	Number of Auto Restart Attempts

Setting 4: HVAC Fan Application

Table 4.11 HVAC Fan: Parameter Settings

No.	Parameter Name	Default Setting
A1-02	Control Method Selection	0: V/f Control
b1-04	Reverse Operation Selection	1: Reverse Prohibited
b1-17	Run Command at Power Up	1: Run command issued, motor operation start
C6-01	Duty Rating	1: Normal Duty (ND)
C6-02	Carrier Frequency Selection	3: 8.0 kHz
H2-03	Terminals P2 Function Selection	39: Watt Hour Pulse Output
L2-01	Momentary Power Loss Operation Selection	2: CPU Power Active - Drive will restart if power returns prior to control power supply shut down.
L8-03	Overheat Pre-Alarm Operation Selection	4: Operation at lower speed
L8-38	Carrier Frequency Reduction	2: Enabled across entire frequency range.

Table 4.12 HVAC Fan: User Parameters (A2-01 to A2-16)

No.	Parameter Name	No.	Parameter Name		
b1-01	Frequency Reference Selection	d2-02	Frequency Reference Lower Limit		
b1-02	Run Command Selection	E1-03	V/f Pattern Selection		
b1-03	Stopping Method Selection	E1-04	Max Output Frequency		
b1-04	Reverse Operation Selection	E2-01	Motor Rated Current		
C1-01	Acceleration Time 1	H3-11	Terminal A2 Gain Setting		
C1-02	Deceleration Time 1	H3-12	Terminal A2 Input Bias		
C6-02	Carrier Frequency Selection	L2-01	Momentary Power Loss Operation Selection		
d2-01	Frequency Reference Upper Limit	o4-12	kWh Monitor Initial Value Selection		

Setting 5: Compressor Application

Table 4.13 Compressor: Parameter Settings

No.	Parameter Name	Default Setting
A1-02	Control Method Selection	0: V/f Control
b1-04	Reverse Operation Selection	1: Reverse Prohibited
C1-01	Acceleration Time 1	5.0 s
C1-02	Deceleration Time 1	5.0 s
C6-01	Duty Rating	0: Heavy Duty (HD)
E1-03	V/f Pattern Selection	F: V/f Pattern Selection
L2-01	Momentary Power Loss Operation Selection	1: Enabled
L3-04	Stall Prevention Selection during Deceleration	1: Enabled

Table 4.14 Compressor: User Parameters (A2-01 to A2-16):

No.	Parameter Name	No.	Parameter Name
b1-01	Frequency Reference Selection	E1-03	V/f Pattern Selection
b1-02	Run Command Selection	E1-07	Mid Output Frequency
b1-04	Reverse Operation Selection	E1-08	Mid Output Frequency Voltage
C1-01	Acceleration Time 1	E2-01	Motor Rated Current
C1-02	Deceleration Time 1	_	-

4.7 Auto-Tuning

◆ Types of Auto-Tuning

The drive offers different types of Auto-Tuning for induction motors and permanent magnet motors. The type of Auto-Tuning used differs further based on the control mode and other operating conditions. Refer to the tables below to select the type of Auto-Tuning that bests suits the application. *Refer to Start-Up Flowcharts on page 192* for directions on executing Auto-Tuning.

Note:

The drive will only show Auto-Tuning parameters that are valid for the control mode that has been set in A1-02. If the control mode is for an induction motor, the Auto-Tuning parameters for PM motors will not be available. If the control mode is for a PM motor, the Auto-Tuning parameters for induction motors will not be available. Inertia Tuning and ASR Gain Tuning parameters and setting options will be visible only when the drive is set for operation with CLV or CLV/PM.

Auto-Tuning for Induction Motors

This feature automatically sets the V/f pattern and motor parameters $E1-\Box\Box$ and $E2-\Box\Box$ ($E3-\Box\Box$, $E4-\Box\Box$ for motor 2) for an induction motor. Additionally, the feature also sets some $F1-\Box\Box$ parameters for speed feedback detection in Closed Loop Vector.

Table 4.15 Types of Auto-Tuning for Induction Motors

T. m. a	Oo#ina	Application Conditions and Bonefits	Control Mode					
Туре	Setting	Application Conditions and Benefits	V/f	V/f w/PG	OLV	CLV		
Rotational Auto-Tuning	T1-01 = 0	 Motor can be decoupled from the load and rotate freely while Auto-Tuning is performed. Motor and load cannot be decoupled but the motor load is below 30%. 	_	_	YES	YES		
		Rotational Auto-Tuning gives the most accurate results, and is recommended if possible.						
Shadian ann		Motor and load cannot be decoupled and the load is higher than 30%.						
Stationary Auto-Tuning 1	T1-01 = 1	A motor test report listing motor data is not available. Automatically calculates motor parameters needed for vector control.	-	_	YES	YES		
Stationary	T1 01 4	Motor and load cannot be decoupled and the load is higher than 30%.			VEC	MEG		
Auto-Tuning 2	T1-01 = 4	A motor test report is available. After entering the no-load current and the rated slip, the drive calculates and sets all other motor-related parameters.	_	_	YES	YES		
		The drive is used in V/f Control and other Auto-Tuning selections are not possible.						
Stationary Auto-Tuning for Line-to-Line Resistance	T1-01 = 2	 Drive and motor capacities differ. Tunes the drive after the cable between the drive and motor has been replaced with a cable over 50 m long. Assumes Auto-Tuning has already been performed. 	YES	YES	YES	YES		
		Should not be used for any vector control modes unless the motor cable has changed.						
Rotational Auto-Tuning		Recommended for applications using Speed Estimation Speed Search or using the Energy Saving function in V/f Control.						
for V/f Control	T1-01 = 3	Assumes motor can rotate while Auto-Tuning is executed. Increases accuracy for certain functions like torque compensation, slip compensation, Energy Saving, and Speed Search.	YES	YES	_	_		
		A motor test report listing motor data is not available. Motor can be driven with a normal duty mode after Auto-						
Stationary Auto-Tuning 3	T1-01 = 5	Tuning. A trial run is performed after Auto-Tuning to automatically calculate motor parameters needed for vector control.	-	_	YES	YES		

Table 4.16 lists the data that must be entered for Auto-Tuning. Make sure this data is available before starting Auto-Tuning. The necessary information is usually listed on the motor nameplate or in the motor test report provided by the motor manufacturer. Refer to Subchart A-1: Simple Motor Setup Using V/f Control on page 194 and Refer to Subchart A-2: High Performance Operation Using OLV or CLV on page 195 for details on Auto-Tuning processes and selections.

Table 4.16 Auto-Tuning Input Data

			Tuning Type (T1-01)								
Input Value	Input Parameter	Unit	0 Standard	1 Stationary 1	2 Line-to-Line Resistance	3 Rotational for V/f Control	4 Stationary 2	5 Stationary 3			
Control Mode	A1-02	-	2, 3	2, 3	0, 1, 2, 3	0, 1	2, 3	2, 3			
Motor rated power	T1-02	kW	YES	YES	YES	YES	YES	YES			
Motor rated voltage	T1-03	Vac	YES	YES	_	YES	YES	YES			
Motor rated current	T1-04	A	YES	YES	YES	YES	YES	YES			
Motor rated frequency	T1-05	Hz	YES	YES	_	YES	YES	YES			
Number of motor poles	T1-06	-	YES	YES	_	YES	YES	YES			
Motor rated Speed	T1-07	r/min	YES	YES	-	YES	YES	YES			
PG Number of pulses per revolution	T1-08	-	YES <1>	YES <1>	_	_	YES <1>	YES <1>			
Motor no-load current	T1-09	A	-	YES <2>	_	_	YES	YES			
Motor rated Slip	T1-10	Hz	_	_	_	-	YES	YES			
Motor iron loss	T1-11	W	-	-	-	YES	-	YES			

<1> Input data is needed for CLV/PM only.

■ Auto-Tuning for Permanent Magnet Motors

Automatically sets the V/f pattern and motor parameters E1- \square and E5- \square when a PM motor is used. Additionally, the feature also sets some F1- \square parameters for speed feedback detection in Closed Loop Vector.

Table 4.17 Types of Auto-Tuning for Permanent Magnet Motors

T	0-44	Application Conditions and Danofite		Control Mode	
Туре	Setting	Application Conditions and Benefits	OLV/PM	AOLV/PM	CLV/PM
PM Motor Parameter Settings	T2-01 = 0	 Motor does not rotate during Auto-Tuning. Motor test report or motor data similar to <i>Table 4.18</i> are available. 	YES	YES	YES
PM Stationary Auto- Tuning	T2-01 = 1	 A motor test report listing motor data is not available. Drive automatically calculates and sets motor parameters. 	YES	YES	YES
PM Stationary Auto- Tuning for Stator Resistance	T2-01 = 2	Useful to tune the drive when the motor data were set up manually or by motor code and the cable is longer than 50 m. Should also be performed if the cable length has changed after prior tuning.	YES	YES	YES
Z Pulse Offset Tuning	T2-01 = 3	 PG encoder has been replaced. Calculates the Z Pulse offset. Requires the motor to rotate with no load or very low load. 	-	_	YES
Back EMF Constant Tuning	T2-01 = 11	 Use when a motor test is not available. Tunes the motor induction voltage only. Should be performed after motor data are set and the encoder offset is adjusted. The motor must be uncoupled from the mechanical system (remove loads). 	-	-	YES
High Frequency Injection Parameter Tuning	T2-01 = 13	 The motor rotated in reverse or STo fault (Motor Step-Out) occurred at startup in OLV/PM. Low speed and no torque after activating the high frequency injection control (n8-57 = 1) in AOLV/PM. Faults, such as the motor rotating in reverse, occurred when the power was turned on during initial startup in CLV/PM. 	-	YES	YES
PM Rotational Auto- Tuning	T2-01 = 14	 A motor test report listing motor data is not available. Motor can be decoupled from the load and rotate freely while Auto-Tuning is performed. Drive automatically calculates and sets motor parameters. PM Rotational Auto-Tuning gives more accurate results than Stationary Auto-Tuning. 	YES	YES	YES

<2> Motor no-load current is required. If the no-load current is not shown on the motor nameplate, use the default value. The default value is set for Yaskawa standard motors.

Table 4.18 lists the data that must be entered for Auto-Tuning. Make sure the data is available before starting Auto-Tuning. The necessary information is usually listed on the motor nameplate or in the motor test report provided by the motor manufacturer. *Refer to Subchart A-3: Operation with Permanent Magnet Motors on page 196* for details on the Auto-Tuning process and selection.

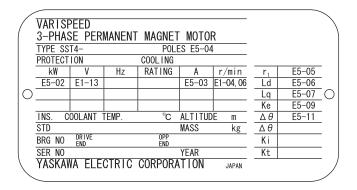


Figure 4.12 Motor Nameplate Example

Table 4.18 Auto-Tuning Input Data

			Tuning Type (T2-01)											
Input Value	Input Param.	Unit	Motor P	0 arameter	Settings		1 ionary	2 Stationary Stator Resis.	3 Z-Pulse Offset	11 Back EMF Const.	13 High Freq. Injection		14 Rotational	
Control Mode	A1-02	-	5, 6, 7	5	6, 7	5	6, 7	5, 6, 7	7	7	6, 7	5	6	7
Motor Code (Hex.)	T2-02	-	<1>	<1>	<1>	-	_	-	_	-	-	-	-	1
Motor Type	T2-03	-	-	-	-	YES	YES	-	-	-	-	YES	YES	YES
Motor Rated Power	T2-04	kW	-	YES	YES	YES	YES	-	-	-	-	YES	YES	YES
Motor Rated Voltage	T2-05	Vac	-	YES	YES	YES	YES	-	-	-	-	YES	YES	YES
Motor Rated Current	T2-06	A	-	YES	YES	YES	YES	YES	-	-	-	YES	YES	YES
Motor Rated Frequency	T2-07	Hz	-	YES	_	YES	-	-	-	-	-	YES	-	-
Number of Motor Poles	T2-08	-	-	YES	YES	YES	YES	-	-	-	-	YES	YES	YES
Motor Rated Speed	T2-09	r/min	-	-	YES	-	YES	-	-	-	-	-	YES	YES
Stator Single-phase Resistance	T2-10	Ω	YES	YES	YES	-	-	-	-	-	-	-	-	-
d-Axis Inductance	T2-11	mH	YES	YES	YES	-	-	-	-	-	-	-	-	-
q-Axis Inductance	T2-12	mH	YES	YES	YES	-	_	-	-	_	-	_	-	_
Induced Voltage Constant Unit Selection	T2-13	mVs/ rad (elec.)	YES	YES	YES	I	_	-	ı	I	-	I	-	ı
Voltage Constant	T2-14	mVmin (mech.)	YES	YES	YES	-	_	_	-	-	_	-	-	-
Tuning Pull-in Current	T2-15	A	-	-	-	YES	YES	-	-	-	-	YES	YES	YES
PG Number of Pulses Per Revolution	T2-16	_	YES <2>	-	YES <2>	_	YES <2>	_	_	-	-	-	_	YES
Z Pulse Offset	T2-17	deg (mech.)	YES <2>	_	YES <2>	_	YES <2>	-	-	_	-	_	_	_

<1> Input the motor code when using a Yaskawa motor. Select "FFFF" when using a motor from another manufacturer.

<2> Input data is needed for CLV/PM only.

<3> Dependent upon T2-13 setting.

■ Inertia Tuning and Speed Control Loop Auto-Tuning

Inertia Tuning can be performed when the drive is using CLV control for either IM or PM motors. Inertia Tuning automatically calculates load and motor inertia, and optimizes settings related to the KEB Ride-Thru function (KEB 2) and Feed Forward control.

ASR Gain Auto-Tuning performs the same operation as Inertia Tuning, while also optimizing speed control loop settings.

Table 4.19 Inertia and Speed Control Loop Tuning

				·
Туре	Setting		Control Mode	Application Conditions and Benefits
Inertia Tuning	IM Motor	T1-01 = 8	CLV	Allows the motor to rotate at a certain speed and applies a test signal. The response to the test signal is analyzed and the necessary adjustments are made to parameters
	PM Motor	T2-01 = 8	CLV/PM	controlling the Feed Forward and KEB Ride-Thru functions (KEB 2, L2-29 = 1).
ASR Gain Auto-	IM Motor	T1-01 = 9	CLV	Performs the same operation as Inertia Tuning, while also adjusting the ASR gain
Tuning	PM Motor	T2-01 = 9	CLV/PM	according to the test signal response.

Note: Inertia Tuning and ASR Gain Auto-Tuning may not be available when gears are between the machine and the motor shaft.

Table 4.20 explains the data that must be entered to perform the Inertia Tuning and ASR Gain Auto-Tuning. **Refer to Auto-Tuning for Permanent Magnet Motors on page 202** for details.

Table 4.20 Auto-Tuning Input Data

			Tuning Type (T1-01 or T2-01)			
Input Value	Input Parameter	Unit	8 Inertia Tuning	9 ASR Gain Tuning		
Control Mode	A1-02	-	3, 7	3, 7		
Test signal frequency	T3-01	Hz	YES	YES		
Test signal amplitude	T3-02	rad	YES	YES		
Motor inertia	T3-03	kgm ²	YES	YES		
System response frequency	T3-04	Hz	_	YES		

Before Auto-Tuning the Drive

Check the items below before Auto-Tuning the drive.

■ Basic Auto-Tuning Preparations

- Auto-Tuning requires the user to input data from the motor nameplate or motor test report. Make sure this data is available before Auto-Tuning the drive.
- For best performance, the drive input supply voltage must be at least equal to or greater than the motor rated voltage.

Note: Better performance is possible when using a motor with a base voltage that is lower than the input supply voltage (20 V for 200 V class models, 40 V for 400 V class models, and 60 V for 600 V class models). This is particularly important when operating the motor above 90% of base speed, where high torque precision is required.

- To cancel Auto-Tuning, press the STOP key on the digital operator.
- When using a motor contactor, make sure it is closed throughout the Auto-Tuning process.
- When using Auto-Tuning for motor 2, make sure motor 2 is connected to the drive output when performing the tuning. *Table 4.21* describes digital input and output terminal operation while Auto-Tuning is executed.

Table 4.21 Auto-Tuning Input Data

Motor Type	Auto-Tuning Type	Digital Input	Digital Output		
	Rotational Auto-Tuning		Functions the same as during normal operation.		
	Stationary Auto-Tuning 1				
IM Motor	Stationary Auto-Tuning 2		Maintains the status at the start of Auto-Tuning.		
INI MIOTOL	Stationary Auto-Tuning for Line-to-Line Resistance				
	Rotational Auto-Tuning for V/f Control		Functions the same as during normal operation.		
	Stationary Auto-Tuning 3		Maintains the status at the start of Auto-Tuning		
	PM Motor Parameter Settings		Digital output functions are disabled.		
	PM Stationary Auto-Tuning	Digital input functions are disabled.			
	PM Stationary Auto-Tuning for Stator Resistance	are disabled.	Maintains the status at the start of Auto-Tuning.		
PM Motor	Z Pulse Offset Tuning				
	Back EMF Constant Tuning		Functions the same as during normal operation.		
	High Frequency Injection Parameter Tuning		Digital output functions are disabled.		
	PM Rotational Auto-Tuning		Functions the same as during normal operation.		
IM and PM	Inertia Tuning		Experience the same as during normal expertion		
Motors	ASR Gain Auto-Tuning		Functions the same as during normal operation.		

WARNING! Sudden Movement Hazard. Ensure that the motor and the load are not connected when performing Auto-Tuning. Failure to comply may cause damage to equipment or injury to personnel.

WARNING! Electrical Shock Hazard. When executing Auto-Tuning, voltage is applied to the motor before the motor rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock. If PM Rotational Auto-Tuning is performed, the motor will remain stopped for approximately one minute with power applied and then the motor will rotate for one minute.

Notes on Rotational Auto-Tuning

- Decouple the load from the motor to achieve optimal performance from Rotational Auto-Tuning. Rotational Auto-Tuning is best suited for applications requiring high performance over a wide speed range.
- If it is not possible to decouple the motor and load, reduce the load so it is less than 30% of the rated load. Performing Rotational Auto-Tuning with a higher load will set motor parameters incorrectly, and can cause irregular motor rotation.
- Ensure the motor-mounted brake is fully released, if installed.
- Connected machinery should be allowed to rotate the motor.

Notes on Stationary Auto-Tuning

Stationary Auto-Tuning modes analyze motor characteristics by injecting current into the motor for approximately one minute.

WARNING! Electrical Shock Hazard. When executing stationary Auto-Tuning, voltage is applied to the motor before the motor rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock.

WARNING! Sudden Movement Hazard. If installed, do not release the mechanical brake during Stationary Auto-Tuning. Inadvertent brake release may cause damage to equipment or injury to personnel. Ensure that the mechanical brake release circuit is not controlled by the drive multi-function digital outputs.

Stationary Auto-Tuning 1 and 2

- Perform when using a vector control mode and Rotational Auto-Tuning cannot be performed.
- Check the area around the motor to ensure that nothing will accidentally cause the motor to rotate during the Auto-Tuning process.
- Use Stationary Auto-Tuning 1 when the motor test report is not available. Use Stationary Auto-Tuning 2 when the motor test report is available.

Stationary Auto-Tuning 3

WARNING! Electrical Shock Hazard. When executing Stationary Auto-Tuning 3, voltage is applied to the motor before the motor rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury from electrical shock.

WARNING! Sudden Movement Hazard. If installed, do not release the mechanical brake during Stationary Auto-Tuning 3. Inadvertent brake release may cause damage to equipment or injury to personnel. Ensure that the mechanical brake release circuit is not controlled by the drive multi-function digital outputs.

Stationary Auto-Tuning 3 can be used in either OLV or CLV control by setting T1-01 to 5 and entering the input data from the motor nameplate. Pressing the RUN key stops the motor for approximately one minute to automatically calculate the necessary motor parameters. Motor parameters E2-02 and E2-03 are set automatically when using the motor for the first time in Drive Mode after Auto-Tuning has been performed.

After performing Stationary Auto-Tuning 3, make sure the following conditions are met and use the following procedures to perform the operation in test mode:

- 1. Check the E2-02 and E2-03 values in Verify Mode or Parameter Setting Mode.
- 2. Operate the motor in Drive Mode with the following conditions:

Do not disconnect the wiring between the motor and drive.

Do not lock the motor shaft with a mechanical brake or other device.

The maximum motor load should be 30% of the rated load.

Maintain a constant speed of 30% of E1-06 (base frequency, default value = maximum frequency) or higher for one second or longer.

- 3. After the motor is stopped, recheck the E2-02 and E2-03 values in Verify Mode or Parameter Setting Mode.
- **4.** Confirm that the input data is correct.

Note:

- 1. If the aforementioned conditions are not met before using the motor for the first time, there will be large discrepancies between the values set for the motor rated slip (E2-02), motor no-load current (E2-03), the motor test report, and the default values based on o2-04, Drive Model Selection and C6-01, Drive Duty Rating.
- 2. If midway initialization is performed, restart the entire tuning procedure from the beginning.
- 3. Use the following guidelines for a general-purpose motor: Motor rated slip (E2-02): 1 Hz to 3 Hz; No-load current (E2-03): 30% to 65% of the rated current. Generally speaking, for larger motor capacities, the rated slip is smaller and the no-load current as a percentage of the rated current is smaller. *Refer to Defaults by Drive Model and Duty Rating ND/HD on page 677* for details.

Stationary Auto-Tuning for Line-to-Line Resistance and PM Motor Stator Resistance

- Perform when entering motor data manually while using motor cables longer than 50 m.
- If the motor cables have been replaced with cables more than 50 m long after Auto-Tuning has already been performed, use Stationary Auto-Tuning for line-to-line resistance.

WARNING! Electrical Shock Hazard. When executing Stationary Auto-Tuning for Line-to-line resistance, voltage is applied to the motor even before it rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock.

Notes on Inertia Tuning and ASR Gain Auto-Tuning

WARNING! Electrical Shock Hazard. When executing Inertia Tuning or ASR Gain Auto-Tuning, voltage is applied to the motor even before it rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock.

- Perform both tuning methods with the machine connected to the motor, but without the load applied.
- The motor will rotate during the Auto-Tuning process. Make sure the areas around the motor and connected machinery are clear.
- The drive will let the system rotate at a certain speed while superimposing a sine wave test signal. Make sure this tuning process does not cause any problem or malfunction in the machine before using it.
- Ensure the motor-mounted brake is fully released if installed.
- Connected machinery should be allowed to rotate the motor.

Auto-Tuning Interruption and Fault Codes

If tuning results are abnormal or the STOP key is pressed before completion, Auto-Tuning will be interrupted and a fault code will appear on the digital operator.

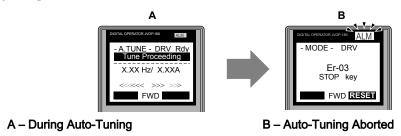


Figure 4.13 Auto-Tuning Aborted Display

◆ Auto-Tuning Operation Example

The following example demonstrates Rotational Auto-Tuning when using OLV (A1-02 = 2) and CLV (A1-02 = 3).

■ Selecting the Type of Auto-Tuning

	Step		Display/Result
1.	Turn on the power to the drive. The initial display appears.	→	- MODE - DRV Rdy FREF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz[LSEQ] U1-03= 0.00A [REF] LOG FWD [FWD/REV]
2.	Press or until the Auto-Tuning display appears.	→	- MODE - PRG Auto-Tuning AUTO HELP FWD DATA
3.	Press to begin setting parameters.	→	- A.TUNE - PRG Rdy Tuning Mode Sel T1-0]= 0 • 0 • StandardTuning
4.	Press to display the value for T1-01. <1>	→	-A.TUNE - PRG Rdy Tuning Mode Sel T1-01= 0 -0* StandardTuning "0" FWD +>
5.	Save the setting by pressing ENTER.	→	Entry Accepted
6.	The display automatically returns to the display shown in Step 3.	→	-A.TUNE - PRG Rdy Tuning Mode Sel T1-0 = 0 *0* StandardTuning ESC FWD DATA

<1> T1-00 will appear on the display when one of the multi-function inputs has been set to switch between motor 1 and motor 2 (H1- $\square\square$ = 16).

■ Enter Data from the Motor Nameplate

After selecting the type of Auto-Tuning, enter the data required from the motor nameplate.

Note: These instructions continue from Step 6 in "Selecting the Type of Auto-Tuning".

	Step		Display/Result
1.	Press to access the motor output power parameter T1-02.	→	- A.TUNE - PRG Rdy Mtr Rated Power T1-02= 0.75kW (0.00 ~ 650.00) "0.75kW" ESC FWD DATA
2.	Press to view the default setting.	→	- A.TUNE - PRG Rdy Mtr Rated Power T1-02= 000.75kW (0.00 ~ 650.00) "0.75kW" ← FWD →
3.	Press left , right , RESET , A , and V to enter the motor power nameplate data in kW.	+	- A.TUNE - PRG Rdy Mtr Rated Power T1-02= 000.40kW (0.00 ~ 650.00) "0.75kW" FWD +
4.	Press to save the setting.	→	Entry Accepted

	Step		Display/Result
5.	The display automatically returns to the display in Step 1.	→	-A.TUNE - PRG Rdy Mtr Rated Power T1-02= 0.40kW (0.00 ~ 650.00) "0.75kW" ESC FWD DATA
6.	Repeat Steps 1 through 5 to set the following parameters: • T1-03, Motor Rated Voltage • T1-04, Motor Rated Current • T1-05, Motor Base Frequency • T1-06, Number of Motor Poles • T1-07, Motor Base Frequency • T1-09, Motor No-Load Current (Stationary Auto-Tuning 1 or 2 only) • T1-10, Motor Rated Slip (Stationary Auto-Tuning 2 only)	→	-A.TUNE - PRG Rated Voltage T1-08 = 200.0VAC (0.0 ~ 255.0) "200.0VAC" ESC FWD DATA -A.TUNE - PRG Mtr Rated Slip T1-10 = X.XX Hz (0.00 ~ 20.00) "X.XX Hz" ESC FWD DATA

Note:

- 1. For details on each setting, Refer to T1: Parameter Settings during Induction Motor Auto-Tuning on page 208.
- 2. To execute Stationary Auto-Tuning for line-to-line resistance only, set parameters T1-02 and T1-04.

Starting Auto-Tuning

WARNING! Sudden Movement Hazard. The drive and motor may start unexpectedly during Auto-Tuning, which could result in death or serious injury. Ensure the area surrounding the drive motor and load are clear before proceeding with Auto-Tuning.

WARNING! Electrical Shock Hazard. High voltage will be supplied to the motor when Stationary Auto-Tuning is performed even with the motor stopped, which could result in death or serious injury. Do not touch the motor until Auto-Tuning has been completed.

NOTICE: Rotational Auto-Tuning will not function properly if a holding brake is engaged on the load. Failure to comply could result in improper operation of the drive. Ensure the motor can freely spin before beginning Auto-Tuning.

Enter the required information from the motor nameplate. Press to proceed to the Auto-Tuning start display.

Note: These instructions continue from Step 6 in "Enter Data from the Motor Nameplate".

	Step		Display/Result
1.	After entering the data listed on the motor nameplate, press to confirm.	→	- A.TUNE - DRV Rdy Auto-Tuning 0.00 Hz/ 0.00A Tuning Ready ? Press RUN key ESC FWD
2.	Press to activate Auto-Tuning. DRV flashes. The drive begins by injecting current into the motor for about 1 min, and then starts to rotate the motor. Note: The first digit on the display indicates which motor is undergoing Auto-Tuning (motor 1 or motor 2). The second digit indicates the type of Auto-Tuning being performed.	→	-A.TUNE - DRV Rdv Tune Proceeding X.XX Hz/ X.XXA
3.	Auto-Tuning finishes in approximately one to two minutes.	→	- MODE - DRV End Tune Successful FWD [RESE]

◆ T1: Parameter Settings during Induction Motor Auto-Tuning

The T1- \square parameters set the Auto-Tuning input data for induction motor tuning.

Note: For motors operating in the field weakening range, first perform the Auto-Tuning with the base data. After Auto-Tuning is complete, change E1-04, Maximum Output Frequency, to the desired value.

■ T1-00: Motor 1/Motor 2 Selection

Selects the motor to be tuned when motor 1/2 switching is enabled (i.e., a digital input is set for function H1- $\square\square$ = 16). This parameter is not displayed if motor 1/2 switching is disabled.

No.	Name	Setting Range	Default
T1-00	Motor 1/Motor 2 Selection	1, 2	1

Setting 1: Motor 1

Auto-Tuning automatically sets parameters $E1-\Box\Box$ and $E2-\Box\Box$ for motor 1.

Setting 2: Motor 2

Auto-Tuning automatically sets parameters $E3-\Box\Box$ and $E4-\Box\Box$ for motor 2. Make sure that motor 2 is connected to the drive for Auto-Tuning.

■ T1-01: Auto-Tuning Mode Selection

Sets the type of Auto-Tuning to be used. *Refer to Auto-Tuning for Induction Motors on page 201* for details on the different types of Auto-Tuning.

No.	Name	Setting Range	Default
T1-01	Auto-Tuning Mode Selection	V/f: 2, 3 V/f w/PG: 2, 3 OLV: 0, 1, 2, 4, 5 CLV: 0, 1, 2, 4, 5, 8, 9	V/f, V/f w/PG: 2 OLV, CLV: 0

Setting 0: Rotational Auto-Tuning

Setting 1: Stationary Auto-Tuning 1

Setting 2: Stationary Auto-Tuning for Line-to-Line Resistance

Setting 3: Rotational Auto-Tuning for V/f Control

Setting 4: Stationary Auto-Tuning 2 Setting 5: Stationary Auto-Tuning 3

Note: Stationary Auto-Tuning 3 is not available in models 4A0930 and 4A1200.

Setting 8: Inertia Tuning

Setting 9: ASR Gain Auto-Tuning

Note: Inertia Tuning and ASR Gain Auto-Tuning may not be available when gears are between the machine and the motor shaft.

T1-02: Motor Rated Power

Sets the motor rated power according to the motor nameplate value.

No.	Name	Setting Range	Default
T1-02	Motor Rated Power	0.00 to 650.00 kW	Determined by o2-04 and C6-01

■ T1-03: Motor Rated Voltage

Sets the motor rated voltage according to the motor nameplate value. Enter the voltage base speed here if the motor is operating above base speed.

Enter the voltage needed to operate the motor under no-load conditions at rated speed to T1-03 for better control precision around rated speed when using a vector control mode. The no-load voltage can usually be found in the motor test report available from the manufacturer. If the motor test report is not available, enter approximately 90% of the rated voltage printed on the motor nameplate. This may increase the output current and reduce the overload margin.

No.	Name	Setting Range	Default
T1-03	Motor Rated Voltage	0.0 to 255.5 V <1>	200.0 V <1>

<1> Values shown are specific to 200 V class drives. Double value for 400 V class drives. Multiply value by 2.875 for 600 V class drives.

■ T1-04: Motor Rated Current

Sets the motor rated current according to the motor nameplate value. Set the motor rated current between 50% and 100% of the drive rated current for optimal performance in OLV or CLV. Enter the current at the motor base speed.

No.	Name	Setting Range	Default
T1-04	Motor Rated Current	10 to 200% of drive rated current	02-04

■ T1-05: Motor Base Frequency

Sets the motor rated frequency according to the motor nameplate value. If a motor with an extended speed range is used or the motor is used in the field weakening area, enter the maximum frequency to E1-04 (E3-04 for motor 2) after Auto-Tuning is complete.

No.	Name	Setting Range	Default
T1-05	Motor Base Frequency	0.0 to 400.0 Hz	60.0 Hz

■ T1-06: Number of Motor Poles

Sets the number of motor poles according to the motor nameplate value.

No.	Name	Setting Range	Default
T1-06	Number of Motor Poles	2 to 48	4

■ T1-07: Motor Base Speed

Sets the motor rated speed according to the motor nameplate value. Enter the speed at base frequency when using a motor with an extended speed range or if using the motor in the field weakening area.

No.	Name	Setting Range	Default
T1-07	Motor Base Speed	0 to 24000 r/min	1750 r/min

■ T1-08: PG Number of Pulses Per Revolution

Sets the number of pulses from the PG encoder. Set the actual number of pulses for one full motor rotation.

No.	Name	Setting Range	Default
T1-08	PG Number of Pulses Per Revolution	1 to 60000 ppr	1024 ppr

Note: T1-08 will only be displayed in CLV.

■ T1-09: Motor No-Load Current

Sets the no-load current for the motor. The default setting displayed is no-load current automatically calculated from the output power set in T1-02 and the motor rated current set to T1-04. Enter the data listed on the motor test report. Leave this data at the default setting if the motor test report is not available.

No.	Name	Setting Range	Default
T1-09	Motor No-Load Current	0 A to [T1-04] (Max: 0 to 2999.9) <1>	-

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

■ T1-10: Motor Rated Slip

Sets the rated slip for the motor. The default setting displayed is the rated slip for a Yaskawa motor calculated from the output power set in T1-02. Enter the data listed on the motor test report.

No.	Name	Setting Range	Default
T1-10	Motor Rated Slip	0.00 to 20.00 Hz	-

■ T1-11: Motor Iron Loss

Provides iron loss information to determine the Energy Saving coefficient. T1-11 will first display the value for the motor iron loss that the drive automatically calculated the when motor capacity was entered to T1-02. Enter the motor iron loss value listed to T1-11 if the motor test report is available.

No.	Name	Setting Range	Default
T1-11	Motor Iron Loss	0 to 65535 W	E2-11 (E4-11)

◆ Parameter Settings during PM Motor Auto-Tuning: T2

The T2- \square parameters are used to set the Auto-Tuning input data for PM motor tuning.

■ T2-01: PM Motor Auto-Tuning Mode Selection

Note: Setting 11 is valid in drive software versions PRG: 1015 and later.

Selects the type of Auto-Tuning to be performed. *Refer to Auto-Tuning for Permanent Magnet Motors on page 202* for details on different types of Auto-Tuning.

No.	Name	Setting Range	Default
T2-01	PM Motor Auto-Tuning Mode Selection	OLV/PM: 0, 1, 2, 14 AOLV/PM: 0, 1, 2, 13, 14 CLV/PM: 0, 1, 2, 3, 8, 9, 11, 13, 14	0

Setting 0: PM Motor Parameter Settings

Setting 1: PM Stationary Auto-Tuning

Setting 2: PM Stationary Auto-Tuning for Stator Resistance

Setting 3: Z-Pulse Offset Tuning

Setting 8: Inertia Tuning

Note: Inertia Tuning may not be available when gears are between the machine and the motor shaft.

Setting 9: ASR Gain Auto-Tuning

Note: ASR Gain Auto-Tuning may not be available when gears are between the machine and the motor shaft.

Setting 11: Back EMF Constant Tuning

Note: 1. Back EMF Constant Tuning may not be available when gears are between the machine and the motor shaft.

 For special-purpose motors, Yaskawa recommends performing Back EMF Constant Tuning after performing Stationary Auto-Tuning. Back EMF Constant Tuning rotates the motor to measure the actual induction voltage constants, which allows for more accurate control than Stationary Auto-Tuning alone.

Setting 13: High Frequency Injection Parameter Tuning

Note: Setting 13 is not available for models 4A0930 and 4A1200.

Setting 14: PM Rotational Auto-Tuning

Note: Setting 14 is not available for models 4A0930 and 4A1200.

■ T2-02: PM Motor Code Selection

If the drive is operating a Yaskawa PM motor from the SMRA, SSR1, or SST4 series, enter the motor code in T2-02 to automatically set parameters T2-03 through T2-14. If the drive is operating a specialized motor or a motor designed by a manufacturer other than Yaskawa, set T2-02 to FFFF and enter the data from the motor nameplate or the motor test report as prompted.

Only the designated PM motor codes may be entered. The PM motor codes accepted by the drive will differ depending on the selected control mode. *Refer to E5: PM Motor Settings on page 303* for motor codes.

No.	Name	Setting Range	Default
T2-02	PM Motor Code Selection	0000 to FFFF	Determined by A1-02 and o2-04

■ T2-03: PM Motor Type

Selects the type of PM motor the drive will operate.

No.	Name	Setting Range	Default
T2-03	PM Motor Type	0, 1	1

Setting 0: IPM motor

Setting 1: SPM motor

■ T2-04: PM Motor Rated Power

Specifies the motor rated power in kilowatts.

No.	Name	Setting Range	Default
T2-04	PM Motor Rated Power	0.00 to 650.00 kW	Determined by o2-04 and C6-01

■ T2-05: PM Motor Rated Voltage

Sets the motor rated voltage.

No.	Name	Setting Range	Default
T2-05	PM Motor Rated Voltage	0.0 to 255.0 V <1>	200.0 V <1>

<1> Values shown are specific to 200 V class drives; double the value for 400 V class drives.

■ T2-06: PM Motor Rated Current

Enter the motor rated current in amps.

No.	Name	Setting Range	Default
T2-06	PM Motor Rated Current	10% to 200% of the drive rated current.	Determined by o2-04

■ T2-07: PM Motor Base Frequency

Enter the motor base frequency in Hz.

Note: T2-07 will be displayed when in OLV/PM.

No.	Name	Setting Range	Default
T2-07	PM Motor Base Frequency	0.0 to 400.0 Hz	87.5 Hz

■ T2-08: Number of PM Motor Poles

Enter the number of motor poles.

No.	Name	Setting Range	Default
T2-08	Number of PM Motor Poles	2 to 48	6

■ T2-09: PM Motor Base Speed

Enter the motor rated speed in r/min.

Note: T2-09 will be displayed when in AOLV/PM and CLV/PM.

No.	Name	Setting Range	Default
T2-09	PM Motor Base Speed	0 to 24000 r/min	1750 r/min

■ T2-10: PM Motor Stator Resistance

Enter the motor stator resistance per motor phase.

No.	Name	Setting Range	Default
T2-10	PM Motor Stator Resistance	0.000 to $65.000~\Omega$	Determined by T2-02

■ T2-11: PM Motor d-Axis Inductance

Enter the d-Axis inductance per motor phase.

No.	Name	Setting Range	Default
T2-11	PM Motor d-Axis Inductance	0.00 to 600.00 mH	Determined by T2-02

■ T2-12: PM Motor q-Axis Inductance

Enter the q-Axis inductance per motor phase.

No.	Name	Setting Range	Default
T2-12	PM Motor q-Axis Inductance	0.00 to 600.00 mH	Determined by T2-02

■ T2-13: Induced Voltage Constant Unit Selection

Selects the units used for setting the induced voltage coefficient.

No.	Name	Setting Range	Default
T2-13	Induced Voltage Constant Unit Selection	0, 1	1

Setting 0: mV (r/min)

Setting 1: mV (rad/sec)

Note: If T2-13 is set to 0, then the drive will use E5-24 (Motor Induction Voltage Constant 2), and will automatically set E5-09 (Motor Induction Voltage Constant 1) to 0.0. If T2-13 is set to 1, then the drive will use E5-09 and will automatically set E5-25 to 0.0.

■ T2-14: PM Motor Induced Voltage Constant (Ke)

Enter the motor induced voltage constant (Ke).

No.	Name	Setting Range	Default
T2-14	PM Motor Induced Voltage Constant	0.0 to 2000.0	Determined by T2-02

■ T2-15: Pull-In Current Level for PM Motor Tuning

Sets the amount of pull-in current used to tune the d-Axis and q-Axis inductance. Set as a percentage of the motor rated current.

No.	Name	Setting Range	Default
T2-15	Pull-In Current Level for PM Motor Tuning	0 to 120%	30%

■ T2-16: PG Number of Pulses Per Revolution for PM Motor Tuning

Enter the number of pulses from the PG encoder per motor rotation. Set the actual number of pulses for one full motor rotation.

No.	Name	Setting Range	Default
T2-16	PG Number of Pulses Per Revolution for PM Motor Tuning	0 to 15000 ppr	1024 ppr

■ T2-17: Encoder Z Pulse Offset (ΔΘ)

Sets the amount of compensation or offset in 0.1 degree units to fine-tune the home position. Perform Z Pulse tuning when the amount of offset needed for the Z Pulse is unknown or if the PG encoder is replaced.

No.	Name	Setting Range	Default
T2-17	Encoder Z Pulse Offset	-180.0 to 180.0 deg	0.0 deg

Parameter Settings during Inertia and Speed Control Loop Auto-Tuning: T3

These tuning methods apply a sine wave test signal to the system. The drive estimates the system inertia by the measuring the response and automatically sets the parameters listed in *Table 4.22*.

Table 4.22 Parameters Adjusted by Inertia and Speed Loop Auto-Tuning

		T1-01 or T2-01	
Parameter	Description	8 Inertia Tuning	9 Speed Control Loop (ASR) Tuning
C5-01	ASR Proportional Gain 1	_	YES
C5-17 (C5-37)	Motor Inertia	YES	YES
C5-18 (C5-38)	Motor Inertia Ratio	YES	YES
L3-24	Motor Acceleration Time for Inertia Calculations	YES	YES
L3-25	Load Inertia Ratio	YES	YES
n5-02	Motor Acceleration Time	YES	YES
n5-03	Feed Forward Control Ratio Gain	YES	YES

■ T3-01: Inertia Tuning Frequency Reference

Sets the frequency of the test signal applied to the motor during Inertia Tuning. Although this setting rarely needs to be changed, increasing the value may be beneficial when working with high inertia loads.

4.7 Auto-Tuning

No.	Name	Setting Range	Default
T3-01	Inertia Tuning Frequency Reference	0.1 to 20.0 Hz	3.0 Hz

■ T3-02: Inertia Tuning Reference Amplitude

Enter the amplitude of the test signal applied to the motor during Inertia Tuning. Although this setting rarely needs to be changed, decrease the setting if a large load inertia causes problems during Inertia Tuning. Adjust T3-02 if a fault occurs when T3-01 is set to a low value.

No.	Name	Setting Range	Default
T3-02	Inertia Tuning Reference Amplitude	0.1 to 10.0 rad	0.5 rad

■ T3-03: Motor Inertia

Enter the inertia of the motor. This value is used to determine the load inertia using the test signal response. The default setting is for a Yaskawa standard motor as listed in the motor inertia table.

No.	Name	Setting Range	Default
T3-03	Motor Inertia	0.0001 to 600.00 kgm ²	Determined by o2-04, C6-01, E5-01

Note: Capacities 0.1 to 37 kW are set in units of 0.001 kgm². Capacities 5.5 to 45 kW are set in units of 0.001 kgm². Capacities 55 kW and above are set in units of 0.01 kgm².

■ T3-04: ASR Response Frequency

Sets the response frequency (reciprocal of the step response time constant) of the system or the connected machine. The drive uses this value and the load inertia to fine-tune the speed control loop gain (C5-01, ASR Gain 1). Oscillation may result if the value input here is higher than the actual response frequency of the system.

No.	Name	Setting Range	Default
T3-04	ASR Response Frequency	0.1 to 50.0 Hz	10.0 Hz

4.8 No-Load Operation Test Run

◆ No-Load Operation Test Run

This section explains how to operate the drive with the motor decoupled from the load during a test run.

■ Before Starting the Motor

Check the following items before operation:

- Ensure the area around the motor is safe.
- Ensure external emergency stop circuitry is working properly and other safety precautions have been taken.

During Operation

Check the following items during operation:

- The motor should rotate smoothly (i.e., no abnormal noise or oscillation).
- The motor should accelerate and decelerate smoothly.

■ No-Load Operation Instructions

The following example illustrates a test run procedure using the digital operator.

Note: Before starting the motor, set the frequency reference d1-01 to 6 Hz.

	Cton Dianter/Desuit				
Step			Display/Result		
1.	Turn on the power to the drive. The initial display appears.	→	- MODE - DRV Rdy FREF (OPR) U1-01= 0.00Hz U1-02= 0.00Hz[SEQ] U1-03= 0.00A		
2.	Press to select LOCAL. The LO/RE light will turn on.	→	MODE: DRV RRY UTSTEDDER HISTORY UTSTEDDER HISTORY FRE OFF OFF OR OR		
3.	Press to give the drive a Run command. RUN will light and the motor will rotate at 6 Hz.	→	MODE DRV ROP WITH THE PROPERTY OF THE PROPERTY		
4.	Ensure the motor is rotating in the correct direction and that no faults or alarms occur.	→	Motor		
5.	If there is no error in step 4, press to increase the frequency reference. Increase the frequency in increments of 10 Hz, verifying smooth operation at all speeds. For each frequency, check the drive output current using monitor U1-03. The current should be well below the motor rated current.	-	_		

4.8 No-Load Operation Test Run

Step			Display/Result
6.	The drive should operate normally. Press to stop the motor. RUN flashes until the motor comes to a complete stop.	→	RUN Off On

4.9 Test Run with Load Connected

◆ Test Run with the Load Connected

After performing a no-load test run, connect the motor and proceed to run the motor and load together.

Precautions for Connected Machinery

WARNING! Sudden Movement Hazard. Clear all personnel from the drive, motor, and machine area before applying power. System may start unexpectedly upon application of power, causing death or serious injury.

WARNING! Sudden Movement Hazard. Always check the operation of any fast stop circuits after they are wired. Fast stop circuits are required to provide safe and quick shutdown of the drive. Prepare to initiate an emergency stop during the test run. Operating a drive with untested emergency circuits could result in death or serious injury.

- The motor should come to a complete stop without problems.
- Connect the load and machinery to the motor.
- Fasten all installation screws properly and check that the motor and connected machinery are held in place.

Checklist Before Operation

- The motor should rotate in the proper direction.
- The motor should accelerate and decelerate smoothly.

Operating the Motor under Loaded Conditions

Test run the application similarly to the no-load test procedure when connecting the machinery to the motor.

- Monitor U1-03 for overcurrent during operation.
- If the application permits running the load in the reverse direction, change the motor direction and the frequency reference while watching for abnormal motor oscillation or vibration.
- Correct any problems that occur with hunting, oscillation, and other control-related issues.

4.10 Verifying Parameter Settings and Backing Up Changes

Use the Verify Menu to check all changes to parameter settings. *Refer to Verifying Parameter Changes: Verify Menu on page 189*.

Save the verified parameter settings. Change the access level or set a password to the drive to prevent accidental modification of parameter settings.

Backing Up Parameter Values: o2-03

Setting o2-03 to 1 saves all parameter settings before resetting o2-03 to 0. The drive can now recall all the saved parameters by performing a User Initialization (A1-03 = 1110).

No.	Parameter Name	Description	Setting Range	Default Setting
02-03	User Defaults	Lets the user create a set of default settings for a User Initialization. 0: Saved/Not Set 1: Set Defaults - Saves current parameter settings as the default values for a User Initialization. 2: Clear All - Clears the currently saved user settings. After saving the user parameter set value, the items of 1110 (User Initialization) are displayed in A1-03 (User Parameter Default Value).	0 to 2	0
A1-03	Selects a method to initialize the parameters. 0: No Initialize 1110: User Initialization (The user must first program and store desired settings using		0 to 5550	0

◆ Parameter Access Level: A1-01

Setting the Access Level for "Operation only" (A1-01 = 0) allows the user to access parameters A1- $\Box\Box$ and U \Box - $\Box\Box$ only. Other parameters are not displayed.

Setting the Access Level for "User Parameters" (A1-01 = 1) allows the user to access only the parameters that have been previously saved as User Parameters. This is helpful when displaying only the relevant parameters for a specific application.

No.	Parameter Name	Description		Default
A1-01	Access Level Selection	elects which parameters are accessible via the digital operator. : Operation only. A1-01, A1-04, and A1-06 can be set and monitored, and U□-□□parameters an also be viewed. : User Parameters. Only recently changed parameters from application parameters A2-01 to .2-16 and A2-17 to A2 -32 can be set and monitored. : Advanced Access Level. All parameters can be set and monitored.		2
A2-01 to A2-32	User Parameters and parameters specifically selected for quick access. If parameters A2-33 is set to 1, recently viewed parameters will be listed between A2-17 and A2-32. Parameters A2-01 through A2-16 must be manually selected by the user. If A2-33 is set to 0, recently viewed parameters will not be saved to the group of User Parameters. A2-□□ parameters are now available for manual programming.		b1-01 to o□-□□	-
A2-33	User 0: Parameters A2-01 through A2-32 are reserved for the user to create a group of User Parameters.		0, 1	1

◆ Password Settings: A1-04, A1-05

The user can set a password in parameter A1-05 to restrict access to the drive. The password must be entered to A1-04 to unlock parameter access (i.e., parameter setting A1-04 must match the value programmed into A1-05). The following parameters cannot be viewed or edited until the value entered to A1-04 correctly matches the value set to A1-05: A1-01, A1-02, A1-03, A1-06, and A2-01 through A2-33.

Note: Parameter A1-05 is hidden from view. To display A1-05, access parameter A1-04 and press and simultaneously.

Copy Function

Parameter settings can be copied to another drive to simplify parameter restoration or multiple drive setup. The drive supports the following copy options:

• LCD Operator (standard in all models)

The LCD operator used to operate the drive supports copying, importing, and verifying parameter settings. *Refer to o3: Copy Function on page 402* for details.

LED Operator

The optional LED operator also supports copying, importing, and verifying parameter settings. Refer to the manual supplied with the LED operator for instructions.

• USB Copy Unit and CopyUnitManager

The copy unit is an external option connected to the drive to copy parameter settings from one drive and save those settings to another drive. Refer to the manual supplied with the USB Copy Unit for instructions.

CopyUnitManager is a PC software tool that allows the user to load parameter settings from the Copy Unit onto a PC, or from the PC onto a Copy Unit. This is useful when managing parameters for various drives or applications. Refer to the manual supplied with CopyUnitManager for instructions.

• DriveWizard Industrial

DriveWizard Industrial is a PC software tool for parameter management, monitoring, and diagnosis. DriveWizard Industrial can load, store, and copy drive parameter settings. For details, refer to Help in the DriveWizard Industrial software.

4.11 Test Run Checklist

Review the checklist before performing a test run. Check each item that applies.

区	No.	Checklist	Page
	1	Thoroughly read the manual before performing a test run.	
	2	Turn the power on.	197
	3	Set the voltage for the power supply to E1-01.	293
	4	Select the correct duty rating (C6-01) for the application.	-

Check the items that correspond to the control mode being used.

WARNING! Sudden Movement Hazard. Ensure start/stop and safety circuits are wired properly and in the correct state before energizing the drive. Failure to comply could result in death or serious injury from moving equipment. When programmed for 3-Wire control, a momentary closure on terminal S1 may cause the drive to start.

凶	No.	Checklist	Page
V/f Contr	rol (A1-0	2 = 0) and V/f Control with PG (A1-02 = 1)	
	5	Select the best V/f pattern according to the application and motor characteristics.	_
	6	Perform Rotational Auto-Tuning for V/f Control if using Energy Saving functions.	201
V/f Contr	ol with I	PG(A1-02=1)	l
	7	Set up the PG feedback parameters correctly and make sure the encoder pulse counting direction is correct.	306
	8	Set the proportional gain for ASR speed control to C5-01 and the integral time to C5-02.	272
Open Loc	op Vecto	r Control (A1-02 = 2) or Closed Loop Vector Control (A1-02 = 3)	l
	9	Decouple motor shafts and machines when performing Rotational Auto-Tuning.	208
	10	Set the Auto-Tuning mode to T1-01 (0 for Rotational Auto-Tuning).	208
	1	Enter the following data according to the information listed on the motor nameplate:	
		Motor rated power to T1-02 (kW)	
		Motor rated voltage to T1-03 (V)	
	11	• Motor rated current to T1-04 (A)	208
_		Motor base frequency to T1-05 (Hz)	
		Number of motor poles to T1-06	
		Motor base speed to T1-07 (r/min)	
Closed La	oon Vect	for Control (A1-02 = 3)	
	12	Set F1-01 and F1-05.	_
	13	Set ASR proportional gain to C5-01 and ASR integral time to C5-02. Perform ASR Tuning if possible.	272
	op Vecto	r Control for PM (A1-02 = 5)	
	14	Perform Auto-Tuning as described.	211
		oop Vector Control for PM (A1-02 = 6)	
	15	Perform Auto-Tuning as described.	211
$\overline{}$	16	Set the proportional gain for ASR speed control to C5-01 and the integral time to C5-02.	272
Closed Lo	oop Vect	for Control for PM (A1-02 = 7)	
	17	Set PM motor data using E5-□□ parameters.	211
	18	Set ASR proportional gain to C5-01 and ASR integral time to C5-02. Perform ASR Tuning if possible.	272
	19	Set F1-01 and F1-05.	_
	20	Set the offset between the rotor magnetic axis and the Z-pulse of the connected encoder to E5-11.	211
	21	The DRV should light after giving a Run command.	_
	22	To give Run command and frequency reference from the digital operator, press "LO/RE" key to set to LOCAL.	191
	23	If the motor rotates in the opposite direction during test run, switch two of U/T1, V/T2, W/T3, or change b1-14.	197
	24	In accordance with load condition, set Heavy Duty or Normal Duty mode using parameter C6-01. Normal Duty is the default setting.	_

囡	No.	Checklist		
	25	Set motor rated current (E2-01, E4-01, E5-03) and motor protection (L1-01) values for motor thermal protection.	_	
	26	Set the drive for REMOTE when control circuit terminals provide the Run command and frequency reference.	191	
	27	If the control circuit terminals should supply the frequency reference, select the correct voltage input signal level (0 to 10 V or -10 to +10 V) or the correct current input signal level (4 to 20 mA or 0 to 20 mA).	231	
	28	Apply the proper signal level to terminals A1 and A3 (0 to 10 V or -10 to +10 V).	231	
	29	Apply the proper signal level (-10 to +10 V, 4 to 20 mA or 0 to 20 mA) to terminal A2.	231	
	30	When current input is used, switch the built-in DIP switch S1 from the V-side to I-side. Set the level for current signal used to H3-09 (set "2" for 4 to 20 mA, or "3" for 0 to 20 mA).	231	
	31	Set DIP Switch S1 on the drive to "I" when using terminal A2 as current input. Set DIP Switch S1 on the drive to "V" when using terminal A2 as voltage input.	-	
	32	If an analog input supplies the frequency reference, make sure it produces the desired frequency reference. Make the following adjustments if the drive does not operate as expected: Gain adjustment: Set the maximum voltage/current signal and adjust the analog input gain (H3-03 for A1, H3-11 for A2, H3-07 for A3) until the frequency reference value reaches the desired value. Bias adjustment: Set the minimum voltage/current signal and adjust the analog input bias (H3-04 for A1, H3-12 for A2, H3-08 for A3) until the frequency reference value reaches the desired minimum value.	-	

4.11 Test Run Checklist

This Page Intentionally Blank

Parameter Details

5.1	A: INITIALIZATION	.224
5.2	B: APPLICATION	.231
5.3	C: TUNING	.263
5.4	D: REFERENCE SETTINGS	.278
5.5	E: MOTOR PARAMETERS	.293
5.6	F: OPTION SETTINGS	.306
5.7	H: TERMINAL FUNCTIONS	.320
5.8	L: PROTECTION FUNCTIONS	.352
5.9	N: SPECIAL ADJUSTMENTS	.388
5.10	O: OPERATOR RELATED SETTINGS	.399
5.11	U: MONITOR PARAMETERS	.406

5.1 A: Initialization

The initialization group contains parameters associated with initial drive setup, including parameters involving the display language, access levels, initialization, and password.

◆ A1: Initialization

■ A1-00: Language Selection

Selects the display language for the digital operator.

Note: This parameter is not reset when the drive is initialized using parameter A1-03.

No.		Parameter Name	Parameter Name Setting Range	
A1-0	00	Language Selection	0 to 12 <1>	0

<1> The setting range is 0 to 7 in models 4A0930 and 4A1200.

Setting 0: English

Setting 1: Japanese

Setting 2: German

Setting 3: French

Setting 4: Italian

Setting 5: Spanish

Setting 6: Portuguese

Setting 7: Chinese

Setting 8: Czech

Setting 9: Russian

Setting 10: Turkish

Setting 11: Polish

Setting 12: Greek

Note:

Settings 8 to 12 can only be selected from an LCD operator with version REV: F or later. The version is listed on the back of the LCD operator.

■ A1-01: Access Level Selection

Allows or restricts access to drive parameters.

No.	Parameter Name	Parameter Name Setting Range	
A1-01	Access Level Selection	0 to 2	2

Setting 0: Operation only

Access to only parameters A1-01, A1-04, and all U monitor parameters.

Setting 1: User Parameters

Access to only a specific list of parameters set to A2-01 through A2-32. These User Parameters can be accessed using the Setup Mode of the digital operator.

Setting 2: Advanced Access Level (A) and Setup Access Level (S)

All parameters can be viewed and edited.

Notes on Parameter Access

• If the drive parameters are password protected by A1-04 and A1-05, parameters A1-00 through A1-03, A1-06, and all A2 parameters cannot be modified.

225

- If a digital input terminal programmed for "Program lockout" (H1-□□ = 1B) is enabled, parameter values cannot be modified, even if A1-01 is set to 1 or 2.
- If parameters are changed via serial communication, it will not be possible to edit or change parameter settings with the digital operator until an Enter command is issued to the drive from the serial communication.

■ A1-02: Control Method Selection

Selects the Control Method (also referred to as the control mode) that the drive uses to operate the motor. Parameter A1-02 determines the control mode for motor 1 when the drive is set up to run two motors.

Note: When changing control modes, all parameter settings depending upon the setting of A1-02 will be reset to the default.

No.	Parameter Name	Setting Range	Default
A1-02	Control Method Selection	0, 1, 2, 3, 5, 6, 7	2

Control Modes for Induction Motors (IM)

Setting 0: V/f Control for Induction Motors

Use this mode for simple speed control and for multiple motor applications with low demands to dynamic response or speed accuracy. This control mode is also used when the motor parameters are unknown and Auto-Tuning cannot be performed. The speed control range is 1:40.

Setting 1: V/f Control with PG Speed Feedback

Use this mode for general-purpose applications that require high speed accuracy but do not require high dynamic response. This control mode is also used when the motor parameters are unknown and Auto-Tuning cannot be performed. The speed control range is 1:40.

Setting 2: Open Loop Vector Control

Use this mode for general, variable-speed applications with a speed control range of 1:200 that require precise speed control, quick torque response, and high torque at low speed without using a speed feedback signal from the motor.

Setting 3: Closed Loop Vector Control

Use this mode for general, variable-speed applications that require precise speed control down to zero speed, quick torque response or precise torque control, and a speed feedback signal from the motor. The speed control range is up to 1:1500.

Control Modes for Permanent Magnet Motors (SPM or IPM)

Setting 5: Open Loop Vector Control for PM

Use this mode for general, variable-speed applications with low demands on dynamic response or speed accuracy. The drive can control an SPM or IPM motor with a speed range of 1:20 in this control mode.

Setting 6: Advanced Open Loop Vector Control for PM

Use this mode for general, variable speed applications that require precise speed control and torque limit. Set High Frequency Injection parameter n8-57 to 1 to achieve a speed control range as high as 1:100. *Refer to n8-57: High Frequency Injection on page 397* for details.

Setting 7: Closed Loop Vector Control for PM

Use this mode for high-precision control of a PM motor in constant torque or variable torque applications. The speed control range reaches 1:1500. A speed feedback signal is required.

■ A1-03: Initialize Parameters

Resets parameters to default values. After initialization, the setting for A1-03 automatically returns to 0.

No.	Parameter Name	Setting Range	Default
A1-03	Initialize Parameters	0, 1110, 2220, 3330, 5550	0

Setting 1110: User Initialize

Resets parameters to the values selected by the user as User Settings. User Settings are stored when parameter o2-03 is set to "1: Set defaults".

Note: User Initialization resets all parameters to a user-defined set of default values previously saved to the drive. Set parameter o2-03 to 2 to clear the user-defined default values.

Setting 2220: 2-Wire Initialization

Resets parameters to default settings with digital inputs S1 and S2 configured as Forward run and Reverse run, respectively. Refer to Setting 40, 41: Forward Run, Reverse Run Command for 2-Wire Sequence on page 327 for more information on digital input functions.

Setting 3330: 3-Wire Initialization

Resets parameters to default settings with digital inputs S1, S2, and S5 configured as Run, Stop, and Forward/Reverse respectively. Refer to Setting 0: 3-Wire Sequence on page 321 for more information on digital input functions.

Setting 5550: oPE04 Reset

An oPE04 error appears on the digital operator when a terminal block with settings saved to its built-in memory is installed in a drive that has edited parameters. Set A1-03 to 5550 to use the parameter settings saved to the terminal block memory.

Notes on Parameter Initialization

The parameters shown in *Table 5.1* will not be reset when the drive is initialized by setting A1-03 = 2220 or 3330. Although the control mode in A1-02 is not reset when A1-03 is set to 2220 or 3330, it may change when an application preset is selected.

No. **Parameter Name** A1-00 Language Selection A1-02 Control Method Selection E1-03 V/f Pattern Selection E5-01 Motor Code Selection (for PM Motors) Motor Rated Power (for PM Motors) E5-02 E5-03 Motor Rated Current (for PM Motors) E5-04 Number of Motor Poles (for PM Motors) E5-05 Motor Stator Resistance (for PM Motors) E5-06 Motor d-Axis Inductance (for PM Motors) E5-07 Motor d-Axis Inductance (for PM Motors) E5-09 Motor Induction Voltage Constant 1 (for PM Motors) E5-24 Motor Induction Voltage Constant 2 (for PM Motors) F6-□□/F7-□□ Communication Parameters (Initialized when F6-08 = 1) L8-35 **Installation Selection** Drive/kVA Selection 02-04

Table 5.1 Parameters Not Changed by Drive Initialization

■ A1-04, A1-05: Password and Password Setting

Parameter A1-04 enters the password when the drive is locked; parameter A1-05 is a hidden parameter that sets the password.

No.	Parameter Name	Setting Range	Default
A1-04	Password	0000 to 9999	0000
A1-05	Password Setting	0000 10 9999	0000

How to Use the Password

The user can set a password in parameter A1-05 to restrict access to the drive. The password must be entered to A1-04 to unlock parameter access (i.e., parameter setting A1-04 must match the value programmed into A1-05). The following parameters cannot be viewed or edited until the value entered to A1-04 correctly matches the value set to A1-05: A1-01, A1-02, A1-03, A1-06, and A2-01 through A2-33.

The instructions below demonstrate how to set password "1234". An explanation follows on how to enter that password to unlock the parameters.

Table 5.2 Setting the Password for Parameter Lock

Step Display/Result					
1.	Turn on the power to the drive. The initial display appears.	→	-MODE - DRV Rdy Freq Ref (Al) U1-01= 0.00Hz U1-02= 0.00Hz[SEQ] U1-03= 0.00 A LREF		
2.	Press or until the Parameter Setting Mode screen appears.	→	- MODE - PRG Programming HELP FWD DATA		
3.	Press to enter the parameter menu tree.	→	-PRMSET- PRG Initialization		
4.	Select the flashing digits by pressing [F1], F2, or RESET.	→	-PRMSET- PRG Select Language A1-00= 0 -0+ English ← FWD →		
5.	Select A1-04 by pressing .	→	-PRMSET- PRG Enter Password A1- 04 = 0 (0-9999) -0" FWD →		
6.	Press while holding down or at the same time. A1-05 will appear. Note: A1-05 is hidden and will not display by pressing only .	→	-PRMSET- PRG Select Password A1- 05 = 0 (0-9999) "0" FWD →		
7.	Press Enter.	→	-PRMSET- PRG		
8.	Use F1, F2, RESET, W and A to enter the password.	→	-PRMSET- PRG Select Password A1- 05 = 123₫ (0-9999) "0" FWD		
9.	Press to save what was entered.	→	Entry Accepted		
10.	The display automatically returns to the display shown in step 6.	→	-PRMSET- PRG Select Password A1- 05 = 0 (0~9999) "0" ← FWD →		

Table 5.3 Check if A1-02 is Locked (continuing from step 10 above)

	Step		Display/Result
1.	Press to display A1-02.	→	-PRMSET- PRG Control Method A1-127= 2 *2* Open Loop Vector FWD →
2.	Press , making sure that the setting values cannot be changed.		

	Step		Display/Result
3.	Press to return to the first display.	→	- MODE - PRG Programming HELP FWD DATA

Table 5.4 Enter the Password to Unlock Parameters (continuing from step 3 above)

	Step	Display/Result
1.	Press to enter the parameter setup display.	PRMSET- PRG Initialization Ati-00= 0 Select Language ← FWD →
2.	Press F1, F2, RESET to select the flashing digits as shown.	PRMSET- PRG Select Language A1 00= 0 +0+ English ← FWD →
3.	Press to scroll to A1-04 and ENTER.	-PRMSET- PRG Enter Password A1-02 = 0 (0~9999) "0" ← FWD →
4.	Enter the password "1234".	-PRMSET- PRG Enter Password A1-04= 123 V/f Control
5.	Press to save the new password.	→ Entry Accepted
6.	Drive returns to the parameter display.	-PRMSET- PRG Enter Password A1-D2 = 0 (0-9999) (0"0"
7.	Press and scroll to A1-02.	-PRMSET- PRG Control Method A1-172= 2 *2* Open Loop Vector
8.	Press to display the value set to A1-02. If the first "0" blinks, parameter settings are unlocked.	PRMSET- PRG Control Method A1-02= 2 °2 °2 Open Loop Vector ← FWD →
9.	Use RESET and to change the value if desired (though changing the control mode at this point is not typically done).	PRMSET- PRG Control Method A1-02= 0
10.	Press to save the setting, or press to return to the previous display without saving changes.	→ Entry Accepted
11.	The display automatically returns to the parameter display.	PRMSET- PRG Control Method A1-72= 0 *0* V/F Control ← FWD →

Note:

- 1. Parameter settings can be edited after entering the correct password.
- 2. Performing a 2-Wire or 3-Wire initialization resets the password to "0000".

■ A1-06: Application Preset

Several Application Presets are available to facilitate drive setup for commonly used applications. Selecting one of these Application Presets automatically assigns functions to the input and output terminals and sets a predefined group of parameters to values appropriate for the selected application.

In addition, the parameters most likely to be changed are assigned to the group of User Parameters, A2-01 through A2-16. User Parameters are part of the Setup Group, which provides quicker access by eliminating the need to scroll through multiple menus.

Refer to Application Selection on page 198 for details on parameter A1-06.

■ A1-07: DriveWorksEZ Function Selection

Enables and disables the DriveWorksEZ program inside the drive.

DriveWorksEZ is a software package for customizing drive functionality or adding PLC functionality by the interconnection and configuration of basic software function blocks. The drive performs user-created programs in 1 ms cycles.

Note

- 1. If DriveWorksEZ has assigned functions to any of the multi-function output terminals, those functions will remain set to those terminals even after disabling DriveWorksEZ.
- 2. For more information on DriveWorksEZ, contact a Yaskawa representative.

No.	No. Parameter Name		Default
A1-07	DriveWorksEZ Function Selection	0 to 2	0

Setting 0: DWEZ disabled

Setting 1: DWEZ enabled

Setting 2: Digital input

If a digital input is programmed for DWEZ enable/disable (H1- $\Box\Box$ = 9F), DWEZ will be enabled when the input is opened.

A2: User Parameters

■ A2-01 to A2-32: User Parameters 1 to 32

The user can select up to 32 parameters and assign them to parameters A2-01 through A2-32 to provide quicker access by eliminating the need to scroll through multiple menus. The User Parameter list can also save the most recently edited parameters.

No.	Parameter Name	Setting Range	Default
A2-01 to A2-32	User Parameters 1 to 32	b1-01 to o4-13	Determined by A1-06 <1>

<1> A1-06 determines how parameters edited by the user are saved to the list of User Parameters, A2-01 through A2-32. *Refer to Application Selection on page 198* for details.

Saving User Parameters

To save specific parameters to A2-01 through A2-32, set parameter A1-01 to 2 to allow access to all parameters, then enter the parameter number to one of the A2- $\square\square$ parameters to assign it to the list of User Parameters. Finally, set A1-01 to 1 to restrict access so users can only set and refer to the parameters saved as User Parameters.

■ A2-33: User Parameter Automatic Selection

Determines whether recently edited parameters are saved to the second half of the User Parameters (A2-17 to A2-32) for quicker access.

No.	Parameter Name	Setting Range	Default
A2-33	User Parameter Automatic Selection	0, 1	Determined by A1-06

Setting 0: Do not save list of recently edited parameters

Set A2-33 to 0 to manually select the parameters listed in the User Parameter group.

5.1 A: Initialization

Setting 1: Save list of recently edited parameters

Set A2-33 to 1 to automatically save recently edited parameters to A2-17 through A2-32. A total of 16 parameters are saved with the most recently edited parameter set to A2-17, the second most recently to A2-18, and so on. Access the User Parameters using the Setup Mode of the digital operator.

5.2 b: Application

◆ b1: Operation Mode Selection

■ b1-01: Frequency Reference Selection 1

Selects the frequency reference source 1 for the REMOTE mode.

Note:

- 1. If a Run command is input to the drive but the frequency reference entered is 0 or below the minimum frequency, the RUN indicator LED on the digital operator will light and the STOP indicator will flash.
- 2. Press the LO/RE key to set the drive to LOCAL and use the operator keypad to enter the frequency reference.

No.	Parameter Name	Setting Range	Default
b1-01	Frequency Reference Selection 1	0 to 4	1

Setting 0: Operator keypad

Using this setting, the frequency reference can be input by:

- switching between the multi-speed references in the d1-□□ parameters.
- entering the frequency reference on the operator keypad.

Setting 1: Terminals (analog input terminals)

Using this setting, an analog frequency reference can be entered as a voltage or current signal from terminals A1, A2, or A3.

Voltage Input

Voltage input can be used at any of the three analog input terminals. Make the settings as described in *Table 5.5* for the input used.

Table 5.5 Analog Input Settings for Frequency Reference Using Voltage Signals

			Parameter Settings			
Terminal	Signal Level	Signal Level Selection	Function Selection	Gain	Bias	Notes
A 1	0 to 10 Vdc	H3-01 = 0	H3-02 = 0	H3-03	H3-04	
A1	-10 to +10 Vdc	H3-01 = 1	(Frequency Reference Bias)	П3-03	П3-04	_
A2	0 to 10 Vdc	H3-09 = 0	H3-10 = 0 (Frequency Reference Bias)	Н3-11	Н3-12	Set DIP switch S1 on the
	-10 to +10 Vdc	H3-09 = 1				terminal board to "V" for voltage input.
A3	0 to 10 Vdc	H3-05 = 0	H3-06 = 0	H3-07	Н3-08	Set DIP switch S4 on the
	-10 to +10 Vdc	H3-05 = 1	(Frequency Reference Bias)	H3-0/		terminal board to "AI".

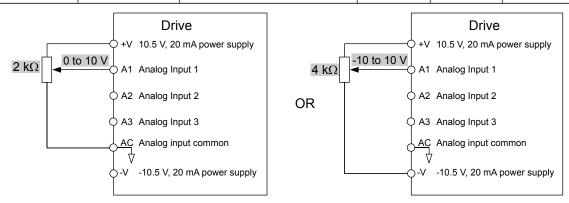


Figure 5.1 Setting the Frequency Reference as a Voltage Signal at Terminal A1

Use the wiring example shown in the figure above for any other analog input terminals. When using input A2 make sure DIP switch S1 is set for voltage input.

Current Input

Input terminal A2 can accept a current input signal. Refer to *Table 5.6* to set terminal A2 for current input.

Table 5.6 Analog Input Settings for Frequency Reference Using a Current Signal

Torminal	Signal		Parameter S	Settings		Notes
Terminal		Signal Level Selection	Function Selection	Gain	Bias	Notes
A2	4 to 20 mA	H3-09 = 2	H3-10=0	***	***	Make sure to set DIP switch S1 on
		(Frequency Bias)	H3-11	H3-12	the terminal board to "I" for current input.	

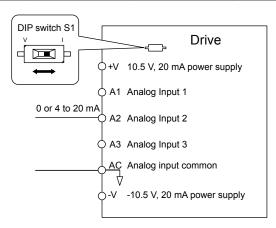


Figure 5.2 Setting the Frequency Reference as a Current Signal to Terminal A2

Switching between Main/Auxiliary Frequency References

The frequency reference input can be switched between the analog terminals A1, A2, and A3 using multi-speed inputs. *Refer to Multi-Step Speed Selection on page 278* for details on using this function.

Setting 2: MEMOBUS/Modbus Communications

This setting requires entering the frequency reference via the RS-485/422 serial communications port (control terminals R+, R-, S+, S-). *Refer to MEMOBUS/Modbus Configuration on page 714* for instructions.

Setting 3: Option card

This setting requires entering the frequency reference via an option board plugged into connector CN5-A on the drive control board. Consult the option board manual for instructions on integrating the drive with the communication system.

Note: If the frequency reference source is set for Option PCB (b1-01 = 3), but an option board is not installed, an oPE05 Operator Programming Error will be displayed on the digital operator and the drive will not run.

Setting 4: Pulse Train Input

This setting requires a pulse train signal to terminal RP to provide the frequency reference. Follow the directions below to verify that the pulse signal is working properly.

Verifying the Pulse Train is Working Properly

- Set b1-01 to 4 and set H6-01 to 0.
- Set the H6-02 to the pulse train frequency value that equals 100% of the frequency reference.
- Enter a pulse train signal to terminal RP and check for the correct frequency reference on the display.

■ b1-02: Run Command Selection 1

Determines the Run command source 1 in the REMOTE mode.

No.	Parameter Name	Setting Range	Default
b1-02	Run Command Selection 1	0 to 3	1

Setting 0: Operator

This setting requires entering the Run command via the digital operator RUN key and also illuminates the LO/RE indicator on the digital operator.

Setting 1: Control Circuit Terminal

This setting requires entering the Run command via the digital input terminals using one of following sequences:

• 2-Wire sequence 1:

Two inputs (FWD/Stop-REV/Stop). Set A1-03 to 2220 to initialize the drive and preset terminals S1 and S2 to these functions. This is the default setting of the drive. *Refer to Setting 40, 41: Forward Run, Reverse Run Command for 2-Wire Sequence on page 327*.

• 2-Wire sequence 2:

Two inputs (Start/Stop-FWD/REV). Refer to Setting 42, 43: Run and Direction Command for 2-Wire Sequence 2 on page 328.

• 3-Wire sequence:

Three inputs (Start-Stop-FWD/REV). Set A1-03 to 3330 to initialize the drive and preset terminals S1, S2, and S5 to these functions. *Refer to Setting 0: 3-Wire Sequence on page 321*.

Setting 2: MEMOBUS/Modbus Communications

This setting requires entering the Run command via serial communications by connecting the RS-485/422 serial communication cable to control terminals R+, R-, S+, and S- on the removable terminal block. *Refer to MEMOBUS/Modbus Configuration on page 714* for instructions.

Setting 3: Option Card

This setting requires entering the Run command via the communication option board by plugging a communication option board into the CN5-A port on the control PCB. Refer to the option board manual for instructions on integrating the drive into the communication system.

Note: If b1-02 is set to 3, but an option board is not installed in CN5-A, an oPE05 operator programming error will be displayed on the digital operator and the drive will not run.

■ b1-03: Stopping Method Selection

Selects how the drive stops the motor when the Run command is removed or when a Stop command is entered.

No.	Parameter Name	Setting Range	Default
b1-03	Stopping Method Selection	0 to 3 <1>	0

<1> The setting range is 0, 1, or 3 in CLV, OLV/PM, AOLV/PM, and CLV/PM.

Setting 0: Ramp to Stop

When the Run command is removed, the drive will decelerate the motor to stop. The deceleration rate is determined by the active deceleration time. The default deceleration time is set to parameter C1-02.

When the output frequency falls below the level set in parameter b2-01, the drive will start DC injection, Zero Speed Control, or Short Circuit Braking, depending on the selected control mode. *Refer to b2-01: DC Injection Braking Start Frequency on page 239* for details.

V/f, V/f w/PG and OLV (A1-02 = 0, 1, 2)

For these control modes, parameter b2-01 sets the starting frequency for DC Injection Braking at Stop. When the output frequency falls below the setting of b2-01, DC Injection Braking is enabled for the time set in parameter b2-04.

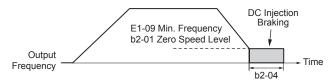


Figure 5.3 DC Injection Braking at Stop for V/f, V/f w/PG, and OLV

Note: If b2-01 is set to a smaller value than E1-09 (Minimum Frequency), then DC Injection Braking will begin when the frequency falls to the E1-09 value.

OLV/PM and AOLV/PM (A1-02 = 5, 6)

For these control modes, parameter b2-01 sets the starting frequency for Short-Circuit Braking at Stop. When the output frequency falls below the setting of b2-01, Short-Circuit Braking is enabled for the time set in parameter b2-13.

If DC Injection Braking Time is enabled at stop, then DC Injection Braking is performed for the time set in b2-04 after Short-Circuit Braking is complete.

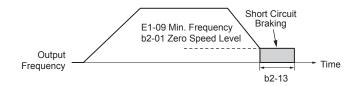


Figure 5.4 Short-Circuit Braking at Stop in OLV/PM and AOLV/PM

Note: If b2-01 is set to a smaller value than E1-09 (Minimum Frequency), then DC Injection Braking will begin when the frequency falls to the

E1-09 value.

The drive will not perform short-circuit braking when b2-01 = E1-09 = 0 Hz.

CLV and CLV/PM (A1-02 = 3, 7)

For these control modes, parameter b2-01 sets the starting frequency for Zero Speed Control (not position lock) at Stop. When the output frequency falls below the setting of b2-01, Zero Speed Control is enabled for the time set in parameter b2-04.

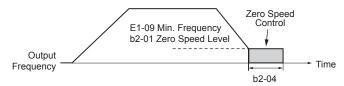


Figure 5.5 Zero Speed Control at Stop in CLV and CLV/PM

Note: If b2-01 is set to lower than E1-09 (Minimum Frequency), then Zero Speed Control begins at the frequency set to E1-09.

Setting 1: Coast to Stop

When the Run command is removed, the drive will shut off its output and the motor will coast (uncontrolled deceleration) to stop. The stopping time is determined by the inertia and the friction in the driven system.

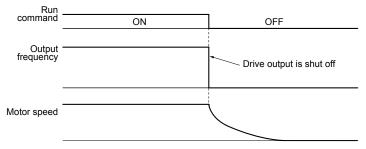


Figure 5.6 Coast to Stop

Note: After a stop is initiated, any subsequent Run command entered will be ignored until the minimum baseblock time (L2-03) has expired. Do not enter Run command until it has come to a complete stop. Use DC Injection at Start (*Refer to b2-03: DC Injection Braking Time at Start on page 240*) or Speed Search (*Refer to b3: Speed Search on page 242*) to restart the motor before it has completely stopped.

Setting 2: DC Injection Braking to Stop

When the Run command is removed, the drive will enter baseblock (turn off its output) for the minimum baseblock time (L2-03). When the minimum baseblock time has expired, the drive will inject the amount DC Injection Braking is set in parameter b2-02 into the motor windings to brake the motor. The stopping time in DC Injection Braking to Stop is significantly faster compared to Coast to Stop.

Note: This function is not available in CLV or in control modes for PM motors (A1-02 = 5, 6, 7).

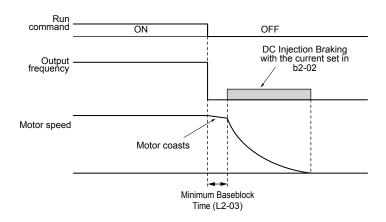


Figure 5.7 DC Injection Braking to Stop

DC Injection Braking time is determined by the value set to b2-04 and the output frequency at the time the Run command is removed. It can be calculated by:

DC Injection brake time = $\frac{(b2-04) \times 10 \times Output \text{ frequency}}{Max. \text{ output frequency (E1-04)}}$

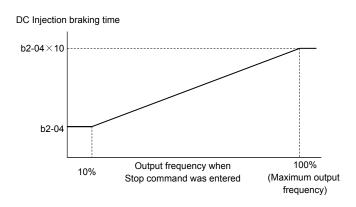


Figure 5.8 DC Injection Braking Time Depending on Output Frequency

Note: If an overcurrent (oC) fault occurs during DC Injection Braking to Stop, lengthen the minimum baseblock time (L2-03) until the fault no longer occurs.

Setting 3: Coast to Stop with Timer

When the Run command is removed, the drive will turn off its output and the motor will coast to stop. The drive will not start if a Run command is input before the time t (C1-02) has expired. Cycle the Run command that was activated during time t after t has expired to start the drive.

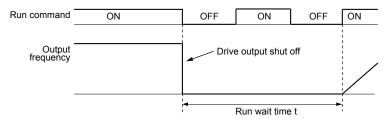


Figure 5.9 Coast to Stop with Timer

The wait time t is determined by the output frequency when the Run command is removed and by the active deceleration time.

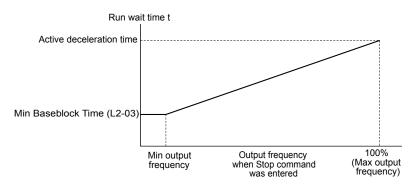


Figure 5.10 Run Wait Time Depending on Output Frequency

■ b1-04: Reverse Operation Selection

Enables and disables Reverse operation. For some applications, reverse motor rotation is not appropriate and may cause problems (e.g., air handling units, pumps, etc.).

No.	Parameter Name	Setting Range	Default
b1-04	Reverse Operation Selection	0, 1	0

Setting 0: Reverse operation enabled

Possible to operate the motor in both forward and reverse directions.

Setting 1: Reverse operation disabled

Drive disregards a Reverse run command or a negative frequency reference.

■ b1-05: Action Selection below Minimum Output Frequency (CLV and CLV/PM)

Sets the operation when the frequency reference is lower than the minimum output frequency set in parameter E1-09.

No.	Parameter Name	Setting Range	Default
b1-05	Action Selection below Minimum Output Frequency	0 to 3	0

Setting 0: Follow the Frequency Reference

The drive adjusts the motor speed following the speed reference, even if the frequency reference is below the setting of parameter E1-09. When the Run command is removed and the motor speed is smaller than the setting of b2-01, Zero Speed Control (not position lock) is performed for the time set in parameter b2-04 before the drive output shuts off.

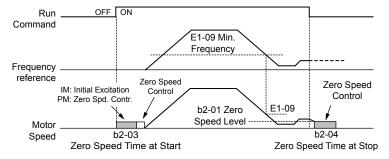


Figure 5.11 Run at the Frequency Reference

Setting 1: Coast to Stop

The motor starts when the frequency reference exceeds the parameter E1-09 setting. When the motor is running and the frequency reference falls below E1-09, the drive output shuts off and the motor coasts. When the motor speed falls below the zero speed level set in b2-01, Zero Speed Control is activated for the time set in b2-04.

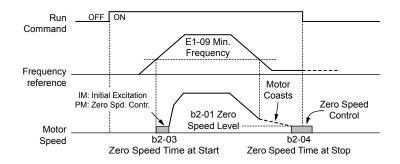


Figure 5.12 Coast to Stop

Setting 2: Run at the Minimum Frequency

When a Run command is active and the frequency reference is smaller than the parameter E1-09 setting, the drive runs the motor at the speed set in E1-09. When the Run command is removed, the drive decelerates the motor. As soon as the motor speed reaches the zero speed level set in b2-01, Zero Speed Control is activated for the time set in b2-04.

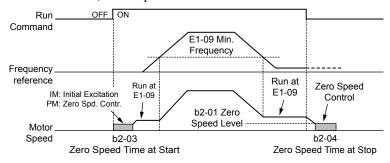


Figure 5.13 Run at the Minimum Frequency

Setting 3: Zero Speed Control

The drive applies Zero Speed Control whenever the frequency reference setting is below the value of parameter E1-09. When the Run command is removed, Zero Speed Control is activated for the time set in b2-04, even if it was already active before.

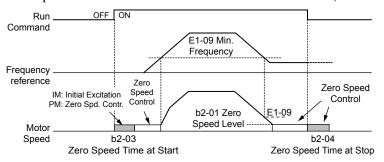


Figure 5.14 Zero Speed Control

■ b1-06: Digital Input Reading

Defines how the digital inputs are read. The inputs are acted upon every 1 ms or 2 ms depending upon the setting.

No.	Name	Setting Range	Default
b1-06	Digital Input Reading	0, 1	1

Setting 0: Read once (1 ms scan)

The state of a digital input is read once. If the state has changed, the input command is immediately processed. With this setting the drive responds more quickly to digital inputs, but a noisy signal could cause erroneous operation.

Setting 1: Read twice (2 ms scan)

The state of a digital input is read twice. The input command is processed only if the state does not change during the double reading. This reading process is slower than the "Read once" process, but it is more resistant to noisy signals.

■ b1-07: LOCAL/REMOTE Run Selection

The drive has three separate control sources that can be switched using digital inputs (H1-\(\pi\) = 1 (LOCAL/REMOTE Selection) or 2 (External reference 1/2)) or the LO/RE key on the digital operator. **Refer to Setting 1: LOCAL/REMOTE Selection on page 321, Refer to Setting 2: External Reference 1/2 Selection on page 322** and **Refer to 02-01: LO/RE (LOCAL/REMOTE) Key Function Selection on page 400** for details.

- LOCAL: Digital operator. The digital operator sets the frequency reference and Run command.
- REMOTE: External reference 1. The frequency reference and Run command source are set by b1-01 and b1-02.
- REMOTE: External reference 2. The frequency reference and Run command source are set by b1-15 and b1-16.

When switching from LOCAL to REMOTE, or between External reference 1 and External reference 2, the Run command may already be present at the location at which the source is being switched. In this case, use parameter b1-07 to determine how the Run command is treated.

No.	Parameter Name	Setting Range	Default
b1-07	LOCAL/REMOTE Run Selection	0, 1	0

Setting 0: Run command must be cycled

When the Run command source differs between the old source and the new source (e.g., the old source was the terminals and the new source is serial communication), and the Run command is active at the new source as the switchover occurs, the drive will not start or the drive will stop operation if it was previously running. The Run command must be cycled at the new source to restart the drive.

Setting 1: Accept Run command at the new source

When the Run command is active at the new source, the drive starts or continues operation if it was previously running.

WARNING! Sudden Movement Hazard. The drive may start unexpectedly if switching control sources when b1-07 = 1. Clear all personnel from rotating machinery and electrical connections prior to switching control sources. Failure to comply may cause death or serious injury.

■ b1-08: Run Command Selection while in Programming Mode

As a safety precaution, the drive will not normally respond to a Run command input when the digital operator is being used to adjust parameters in Programming Mode (Verify Menu, Setup Mode, Parameter Settings Mode, and Auto-Tuning Mode). If required by the application, set b1-08 to allow the drive to run while in Programming Mode.

No.	Parameter Name	Setting Range	Default
b1-08	Run Command Selection while in Programming Mode	0 to 2	0

Setting 0: Disabled

A Run command is not accepted while the digital operator is in Programming Mode.

Setting 1: Enabled

A Run command is accepted in any digital operator mode.

Setting 2: Prohibit programming during run

It is not possible to enter the Programming Mode as long as the drive output is active. The Programming Mode cannot be displayed during Run.

■ b1-14: Phase Order Selection

Sets the phase order for drive output terminals U/T1, V/T2, and W/T3.

Switching motor phases will reverse the direction of the motor.

No.	Parameter Name	Setting Range	Default
b1-14	Phase Order Selection	0, 1	0

Setting 0: Standard Phase Order Setting 1: Switched Phase Order

■ b1-15: Frequency Reference Selection 2

Enabled when H1- $\Box\Box$ = 2 and the terminal is closed. Refer to Setting 2: External Reference 1/2 Selection on page 322 and Refer to b1-02: Run Command Selection 1 on page 232 for details.

No.	Parameter Name	Setting Range	Default
b1-15	Frequency Reference Selection 2	0 to 4	0

■ b1-16: Run Command Selection 2

Enabled when H1- $\Box\Box$ = 2 and the terminal is closed. Refer to Setting 2: External Reference 1/2 Selection on page 322 and Refer to b1-01: Frequency Reference Selection 1 on page 231 for details.

No		Parameter Name	Setting Range	Default
b1-1	16	Run Command Selection 2	0 to 3	0

■ b1-17: Run Command at Power Up

Determines whether an external Run command that is active during power up will start the drive.

No.	Parameter Name	Setting Range	Default
b1-17	Run Command at Power Up	0, 1	0

Setting 0: Run Command at Power Up Is Not Issued

Cycle the Run command to start the drive.

Note: For safety reasons, the drive is initially programmed not to accept a Run command at power up (b1-17 = 0). If a Run command is issued at power up, the RUN indicator LED will flash quickly.

Setting 1: Run Command at Power Up Is Issued

If an external Run command is active when the drive is powered up, the drive will begin operating the motor after the internal start up process is complete.

WARNING! Sudden Movement Hazard. If b1-17 is set to 1 and an external Run command is active during power up, the motor will begin rotating as soon as the power is switched on. Proper precautions must be taken to ensure that the area around the motor is safe prior to powering up the drive. Failure to comply may cause serious injury.

■ b1-21: Start Condition Selection at Closed Loop Vector Control

Selects a condition to start Closed Loop Vector Control. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
b1-21	Start Condition Selection at Closed Loop Vector Control	0, 1	0

Setting 0: Run command is not accepted when b2-01 ≤ motor speed < E1-09

Setting 1: Run command is accepted when b2-01 ≤ motor speed < E1-09

b2: DC Injection Braking and Short Circuit Braking

These parameters determine operation of the DC Injection Braking, Zero Speed Control, and Short Circuit Braking features.

■ b2-01: DC Injection Braking Start Frequency

Active when "Ramp to Stop" is selected as the stopping method (b1-03 = 0).

No.	Name	Setting Range	Default
b2-01	DC Injection Braking Start Frequency	0.0 to 10.0 Hz	Determined by A1-02

The function triggered by parameter b2-01 depends on the control mode that has been selected.

V/f, V/f w/PG and OLV (A1-02 = 0, 1, 2)

For these control modes, parameter b2-01 sets the starting frequency for DC Injection Braking at Stop. When the output frequency falls below the setting of b2-01, DC Injection Braking is enabled for the time set in parameter b2-04.

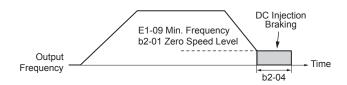


Figure 5.15 DC Injection Braking at Stop for V/f, V/f w/PG, and OLV

Note: If b2-01 is set to a smaller value than E1-09 (Minimum Frequency), then DC Injection Braking will begin when the frequency falls to the E1-09 value.

OLV/PM and AOLV/PM (A1-02 = 5, 6)

For these control modes, parameter b2-01 sets the starting frequency for Short-Circuit Braking at Stop. When the output frequency falls below the setting of b2-01, Short-Circuit Braking is enabled for the time set in parameter b2-13.

If DC Injection Braking Time is enabled at stop, then DC Injection Braking is performed for the time set in b2-04 after Short-Circuit Braking is complete.

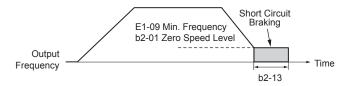


Figure 5.16 Short-Circuit Braking at Stop in OLV/PM and AOLV/PM

Note: If b2-01 is set to a smaller value than E1-09 (Minimum Frequency), then DC Injection Braking will begin when the frequency falls to the E1-09 value. The drive will not perform short-circuit braking when b2-01 = E1-09 = 0 Hz.

CLV and CLV/PM (A1-02 = 3, 7)

For these control modes, parameter b2-01 sets the starting frequency for Zero Speed Control (not position lock) at Stop. When the output frequency falls below the setting of b2-01, Zero Speed Control is enabled for the time set in parameter b2-04.

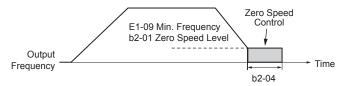


Figure 5.17 Zero Speed Control at Stop in CLV and CLV/PM

Note: If b2-01 is set to lower than E1-09 (Minimum Frequency), then Zero Speed Control begins at the frequency set to E1-09.

■ b2-02: DC Injection Braking Current

Sets the DC Injection Braking current as a percentage of the drive rated current. The carrier frequency is automatically reduced to 1 kHz when this parameter is set to more than 50%.

Note: This parameter is not available in AOLV/PM in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b2-02	DC Injection Braking Current	0 to 100%	50%

The level of DC Injection Braking current affects the strength of the magnetic field attempting to lock the motor shaft. Increasing the current level will increase the amount of heat generated by the motor windings. Do not set this parameter higher than the level necessary to hold the motor shaft.

■ b2-03: DC Injection Braking Time at Start

Sets the time of DC Injection Braking (Zero Speed Control in CLV and CLV/PM) at start. Used to stop a coasting motor before restarting it or to apply braking torque at start. Disabled when set to 0.00 s.

Note: This parameter is not available in AOLV/PM in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b2-03	DC Injection Braking Time at Start	0.00 to 10.00 s	0.00 s

Note: Before starting an uncontrolled rotating motor (e.g., a fan motor driven by windmill effect), use DC Injection or Speed Search to stop the motor or detect motor speed before starting it. Otherwise, motor stalling and other faults can occur.

■ b2-04: DC Injection Braking Time at Stop

Sets the time of DC Injection Braking (Zero Speed Control in CLV and CLV/PM) at stop. Used to completely stop a motor with high inertia load after ramp down. Increase the value if the motor still coasts by inertia after it should have stopped. Disabled when set to 0.00 s.

Note: This parameter is not available in AOLV/PM in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b2-04	DC Injection Braking Time at Stop	0.00 to 10.00 s	Determined by A1-02

■ b2-08: Magnetic Flux Compensation Value

Sets the magnetic flux compensation at start as a percentage of the no-load current value (E2-03). This function allows for the development of more flux to facilitate starting machines that require high starting torque or motors with a large rotor time constant.

No.	Name	Setting Range	Default
b2-08	Magnetic Flux Compensation Value	0 to 1000%	0%

When a Run command is issued, the DC current level injected into the motor changes linearly from the level set to b2-08 to the level set to E2-03 within the time set to b2-03.

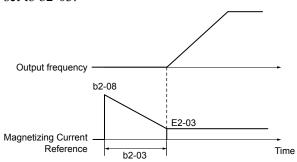


Figure 5.18 Magnetic Flux Compensation

The level of the DC current injected to the motor is limited to 80% of the drive rated current or to the motor rated current, whichever value is smaller.

Note:

- 1. If b2-08 is set below 100%, it can take a relatively long time for flux to develop.
- 2. If b2-08 is set to 0%, the DC current level will be the DC Injection current set to b2-02.
- 3. As DC Injection can generate a fair amount of noise, b2-08 may need to be adjusted to keep noise levels acceptable.

■ b2-12: Short Circuit Brake Time at Start

Short Circuit Braking can be used in OLV/PM and AOLV/PM. Shorting all three motor phases produces a braking torque in the motor and can stop a coasting motor before starting it again. Disabled when set to 0.00 s.

No.	Name	Setting Range	Default
b2-12	Short Circuit Brake Time at Start	0.00 to 25.50 s	0.00 s

Note: Short Circuit Braking cannot prevent a PM motor from being rotated by an external force. Use DC Injection to prevent the load from rotating the motor.

■ b2-13: Short Circuit Brake Time at Stop

The Short Circuit Braking described for parameter b2-12 can also be applied at the end of deceleration to completely stop high inertia loads. Short Circuit Braking is initiated for the time set in b2-13 when the output frequency falls below the higher of the values b1-02 and E1-09. Disabled when set to 0.00 s.

No.	Name	Setting Range	Default
b2-13	Short Circuit Brake Time at Stop	0.00 to 25.50 s	0.50 s

■ b2-18: Short Circuit Braking Current

Sets the current level for Short Circuit Braking operation as a percentage of the motor rated current. The Short Circuit Braking current cannot be higher than the drive rated current (120% for Normal Duty, 150% for Heavy Duty), although a higher current level can be set using b2-18.

No.	Name	Setting Range	Default
b2-18	Short Circuit Braking Current	0.0 to 200.0%	100.0%

b3: Speed Search

The Speed Search function allows the drive to detect the speed of a rotating motor shaft that is driven by external forces and start the motor operation directly from the detected speed without first stopping the machine.

Example: When a momentary loss of power occurs, the drive output shuts off and the motor coasts. When power returns, the drive can find the speed of the coasting motor and restart it directly.

For PM motors, only parameter b3-01 is needed to enable Speed Search.

For induction motors, the drive offers two types of Speed Search than can be selected by parameter b3-24 (Speed Estimation and Current Detection). Both methods are explained below and followed by a description of all relevant parameters.

■ Current Detection Speed Search (b3-24 = 0)

Current Detection Speed Search detects the motor speed by looking at motor current in IM motors. When Speed Search is started it reduces the output frequency starting from either the maximum output frequency or the frequency reference while increasing the output voltage using the time set in parameter L2-04. As long as the current is higher than the level set to b3-02, the output frequency is lowered using the time constant set to b3-03. If the current falls below b3-02, the drive assumes that the output frequency and motor speed are the same and accelerates or decelerates to the frequency reference.

Be aware that sudden acceleration may occur when using this method of Speed Search with relatively light loads.

Figure 5.19 illustrates Current Detection Speed Search operation after a momentary power loss (L2-01 must be set to 1 or 2):

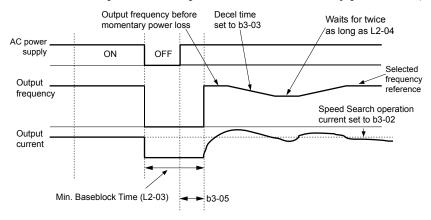


Figure 5.19 Current Detection Speed Search after Power Loss

Note: After power is restored, the drive waits until the time set to b3-05 has passed before performing Speed Search. Thereby the Speed Search may start not at the end of L2-03 but even later.

When Speed Search is applied automatically with the Run command, the drive waits for the minimum baseblock time set to L2-03 before starting Speed Search. If L2-03 is lower than the time set to parameter b3-05, then b3-05 is used as the wait time.

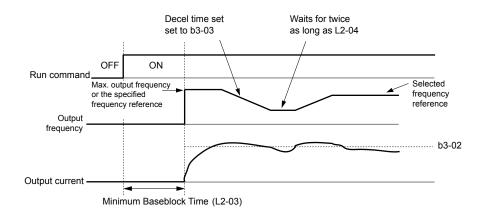


Figure 5.20 Current Detection Speed Search at Start or Speed Search Command by Digital Input

Notes on Using Current Detection Type Speed Search

- Shorten the Speed Search deceleration time set to b3-03 if an oL1 fault occurs while performing Current Detection Speed Search.
- Current Detection Speed Search is not available when using OLV Control for PM motors.
- Increase the minimum baseblock time set to L2-03 if an overcurrent or overvoltage fault occurs when performing Speed Search after power is restored following a momentary power loss.

■ Speed Estimation Type Speed Search (b3-24 = 1)

This method can be used for a single induction motor connected to a drive. Do not use this method if the motor is one or more frame size smaller than the drive, at motor speeds above 200 Hz, or when using a single drive to operate more than one motor.

Speed Estimation is executed in the two steps described below:

Step 1: Back EMF Voltage Estimation

This method is used by Speed Search after baseblock (e.g., a power loss where the drive CPU continued to run and the Run command was kept active). Here, the drive estimates the motor speed by analyzing the back EMF voltage and outputs the estimated frequency and increases the voltage using the time constant set in parameter L2-04. After that, the motor is accelerated or decelerated to the frequency reference starting from the detected speed. If there is not enough residual voltage in the motor windings to perform the calculations described above, the drive will automatically proceed to step 2.

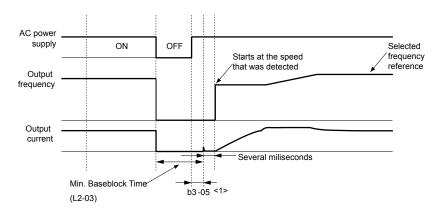


Figure 5.21 Speed Search after Baseblock

<1> After AC power is restored, the drive will wait for at least the time set to b3-05. If the power interruption is longer than the minimum baseblock time set to L2-03, the drive will wait until the time set to b3-05 has passed after power is restored before starting Speed Search.

Step 2: Current Injection

Current Injection is performed when there is insufficient residual voltage in the motor after extended power losses, when Speed Search is applied with the Run command (b3-01 = 1), or when an External search command is used.

This feature injects the amount of DC current set to b3-06 to the motor and detects the speed by measuring the current feedback. The drive then outputs the detected frequency and increases the voltage using the time constant set to parameter L2-04 while looking at the motor current.

The output frequency is reduced if the current is higher than the level in b3-02. When the current falls below b3-02, the motor speed is assumed to be found and the drive starts to accelerate or decelerate to the frequency reference.

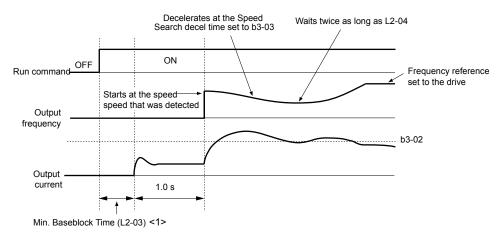


Figure 5.22 Speed Search at Start

The wait time for Speed Search (b3-05) determines the lower limit.

Notes on Using Speed Estimation Speed Search

- Perform Rotational Auto-Tuning for V/f Control (T1-01 = 3) prior to using Speed Estimation in V/f Control and perform Stationary Auto-Tuning for Line-to-Line Resistance (T1-01 = 2) again if the there is a change in the cable length between the drive and motor.
- Use Current Detection to search for speeds beyond 200 Hz if the application is running multiple motors from the same drive or if the motor is considerably smaller than the capacity of the drive.
- Speed Estimation may have trouble finding the actual speed if the motor cable is very long. Use Current Detection in these instances.
- Use Current Detection instead of Speed Estimation when operating motors smaller than 1.5 kW because Speed Estimation might not be able to detect the speed or rotation of these smaller motors, in which case Speed Estimation would stop the motor.
- Use Short Circuit Braking instead of Speed Search when using OLV/PM and AOLV/PM with a long motor cable.
- Use Short Circuit Braking instead of Speed Search when attempting to find the speed of a motor coasting faster than 200 Hz in OLV/PM and AOLV/PM.

Speed Search Activation

Speed Search can be activated using any of the methods 1 through 5 described below. The Speed Search type must be selected in parameter b3-24 independent of the activation method.

Method 1. Automatically activate Speed Search with every Run command. External Speed Search commands are ignored.

Method 2. Activate Speed Search using the digital input terminals.

Use the input functions for H1- \square in *Table 5.7*.

Table 5.7 Speed Search Activation by Digital Inputs

Setting	Description	b3-24 = 0	b3-24 = 1
61		Closed: Activate Current Detection Speed Search from the maximum output frequency (E1-04).	Activate Speed Estimation
62	External Search Command 2	Closed: Activate Current Detection Speed Search from the frequency reference.	Speed Search

To activate Speed Search by a digital input, the input must be set together with the Run command or the Run command must be entered after giving the Speed Search command.

Method 3. After automatic fault restart.

When the number of maximum fault restarts in parameter L5-01 is set higher than 0, the drive will automatically perform Speed Search as specified by b3-24 following a fault.

Method 4. After momentary power loss.

This mode requires that the Power Loss Ride-Thru function is enabled during CPU operation (L2-01 = 1 or 2). *Refer to L2-01: Momentary Power Loss Operation Selection on page 359*.

Method 5. After external baseblock is released.

The drive will resume the operation starting with Speed Search if the Run command is present and the output frequency is above the minimum frequency when the Baseblock command (H1- $\Box\Box$ = 8 or 9) is released.

■ b3-01: Speed Search Selection at Start

Determines if Speed Search is automatically performed when a Run command is issued.

No.	Parameter Name	Setting Range	Default
b3-01	Speed Search Selection at Start	0, 1	Determined by A1-02

Setting 0: Disabled

This setting starts operating the drive at the minimum output frequency when the Run command is entered. If external Speed Search 1 or 2 is already enabled by a digital input, the drive will start operating with Speed Search.

Setting 1: Enabled

This setting performs Speed Search when the Run command is entered. The drive begins running the motor after Speed Search is complete.

■ b3-02: Speed Search Deactivation Current

Sets the operating current for Speed Search as a percentage of the drive rated current. Normally there is no need to change this setting. Lower this value if the drive has trouble restarting.

No.	Name	Setting Range	Default
b3-02	Speed Search Deactivation Current	0 to 200%	Determined by A1-02

Note:

When parameter A1-02 = 0 (V/f Control) the factory default setting is 120. When parameter A1-02 = 2 (Open Loop Vector) the factory default setting is 100.

■ b3-03: Speed Search Deceleration Time

Sets the output frequency reduction ramp used by Current Detection Speed Search (b3-24=0) and by the Current Injection Method of Speed Estimation (b3-24=1). The time entered into b3-03 will be the time to decelerate from maximum frequency (E1-04) to minimum frequency (E1-09).

No.	Name	Setting Range	Default
b3-03	Speed Search Deceleration Time	0.1 to 10.0 s	2.0 s

■ b3-04: V/f Gain During Speed Search

During Speed Search, the output voltage calculated from the V/f pattern is multiplied with this value. Changing this value can help reduce the output current during Speed Search.

No.	Name	Setting Range	Default
b3-04	V/f Gain During Speed Search	10 to 100%	Determined by C6-01 and o2-04

Note:

Available control modes for parameter b3-04 vary by drive model: Models 2A0004 to 2A0415 and 4A0002 to 4A0675: Available when A1-02 = 0.

Models 4A0930 and 4A1200: Available when A1-02 = 0, 2.

■ b3-05: Speed Search Delay Time

In cases where an output contactor is used between the drive and the motor, the contactor must be closed before Speed Search can be performed. This parameter can be used to delay the Speed Search operation, giving the contactor enough time to close completely.

No.	Name	Setting Range	Default
b3-05	Speed Search Delay Time	0.0 to 100.0 s	0.2 s

■ b3-06: Output Current 1 During Speed Search

Sets the current injected to the motor at the beginning of Speed Estimation Speed Search as a factor of the motor rated current set in E2-01 (E4-01 for motor 2). If the motor speed is relatively slow when the drive starts to perform Speed Search after a long period of baseblock, it may be helpful to increase the setting value. The output current during Speed Search is automatically limited by the drive rated current.

No.	Name	Setting Range	Default
b3-06	Output Current 1 during Speed Search	0.0 to 2.0	Determined by o2-04

Note: Use Current Detection Speed Search if Speed Estimation is not working correctly even after adjusting b3-06.

■ b3-07: Output Current 2 during Speed Search (Speed Estimation Type)

Sets the amount of output current during Speed Estimation Speed Search as a coefficient for the no-load current. Output current during Speed Search is automatically limited by the drive rated current. Increase this setting value in increments of 0.1 if the drive fails to perform Speed Estimation

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b3-07	Output Current 2 during Speed Search (Speed Estimation Type)	0.0 to 5.0	Determined by C6-01 and o2-04

■ b3-08: Current Control Gain during Speed Search (Speed Estimation Type)

Sets the proportional gain for the current controller during Speed Search. There is normally no need to change this parameter from the default value.

No.	Name	Setting Range	Default
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	0.00 to 6.00	A1-02 = 0 to 3: Determined by o2-04 A1-02 = 5, 6: 0.30

■ b3-10: Speed Search Detection Compensation Gain

Sets the gain for the detected motor speed of the Speed Estimation Speed Search. Increase the setting only if an overvoltage fault occurs when the drive restarts the motor.

No.	Name	Setting Range	Default
b3-10	Speed Search Detection Compensation Gain	1.00 to 1.20	1.05

■ b3-12: Minimum Current Detection Level during Speed Search

Sets the minimum current detection level during Speed Search. Increase this setting value in increments of 0.1 if the drive fails to perform Speed Estimation.

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b3-12	Minimum Current Detection Level during Speed Search	2.0 to 10.0	6.0

■ b3-14: Bi-Directional Speed Search Selection

Sets how the drive determines the motor rotation direction when performing Speed Estimation Speed Search.

No.	Parameter Name	Setting Range	Default
b3-14	Bi-Directional Speed Search Selection	0, 1	Determined by A1-02

Setting 0: Disabled

The drive uses the frequency reference to determine the direction of motor rotation to restart the motor.

Setting 1: Enabled

The drive detects the motor rotation direction to restart the motor.

■ b3-17: Speed Search Restart Current Level

Sets the current level at which Speed Estimation is restarted as a percentage of drive rated current to avoid overcurrent and overvoltage problems since a large current can flow into the drive if the difference between the estimated frequency and the actual motor speed is too big when performing Speed Estimation.

No.	Name	Setting Range	Default
b3-17	Speed Search Restart Current Level	0 to 200%	150%

■ b3-18: Speed Search Restart Detection Time

Sets the time for which the current must be above the level set in b3-17 before restarting Speed Search.

No.	Name	Setting Range	Default
b3-18	Speed Search Restart Detection Time	0.00 to 1.00 s	0.10 s

■ b3-19: Number of Speed Search Restarts

Sets the number of times the drive should attempt to find the speed and restart the motor. If the number of restart attempts exceeds the value set to b3-19, the SEr fault will occur and the drive will stop.

No.	Name	Setting Range	Default
b3-19	Number of Speed Search Restarts	0 to 10	3

■ b3-24: Speed Search Method Selection

Sets the Speed Search method.

No.	Parameter Name	Setting Range	Default
b3-24	Speed Search Method Selection	0, 1	0

Setting 0: Current Detection

Setting 1: Speed Estimation

Note: Refer to Current Detection Speed Search (b3-24 = 0) on page 242 and Refer to Speed Estimation Type Speed Search (b3-24 = 1) on page 243 for explanations of the Speed Search methods.

■ b3-25: Speed Search Wait Time

Sets the wait time between Speed Search restarts. Increase the wait time if problems occur with overcurrent, overvoltage, or if the SEr fault occurs.

No.	Name	Setting Range	Default
b3-25	Speed Search Wait Time	0.0 to 30.0 s	0.5 s

■ b3-26: Direction Determining Level

Sets the level that determines the direction of motor rotation. Increase this value if the drive fails to detect the direction of the motor correctly.

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b3-26	Direction Determining Level	40 to 60000	Determined by C6-01 and o2-04

■ b3-27: Start Speed Search Select

Selects a condition to activate Speed Search Selection at Start (b3-01) or External Speed Search Command 1 or 2 from the multi-function input.

No.	Name	Setting Range	Default
b3-27	Start Speed Search Select	0, 1	0

Setting 0: Triggered when a Run Command Is Issued (Normal)

Setting 1: Triggered when an External Baseblock Is Released

■ b3-29: Speed Search Induced Voltage Level

Lower this value in small increments if changes are necessary. Setting this value too low will prevent the drive from performing Speed Search. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b3-29	Speed Search Induced Voltage Level	0 to 10%	10%

■ b3-33: Speed Search Selection when Run Command is Given during Uv

Activates and deactivates Speed Search at start in accordance with whether a Run command was issued during an undervoltage (Uv) condition. Function is active when a momentary power loss (L2-01 = 1 or 2), Speed Search at start (b3-01 = 1), and coasting to a stop (b1-03 = 1) are enabled.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b3-33	Speed Search Selection when Run Command is Given during Uv	0, 1	0

Setting 0: Disabled Setting 1: Enabled

b4: Delay Timers

The timer function is independent of drive operation and can delay the switching of a digital output triggered by a digital input signal and help eliminate chattering switch noise from sensors. An on-delay and off-delay can be set separately.

To enable the timer function, set a multi-function input to "Timer input" (H1- $\Box\Box$ = 18) and set a multi-function output to "Timer output" (H2- $\Box\Box$ = 12). Only one timer can be used.

■ b4-01, b4-02: Timer Function On-Delay, Off-Delay Time

b4-01 sets the on-delay time for switching the timer output. b4-02 sets the off-delay time for switching the timer output.

No.	Name	Setting Range	Default
b4-01	Timer Function On-Delay Time	0.0 to 3000.0 s	0.0 s
b4-02	Timer Function Off-Delay Time	0.0 to 3000.0 s	0.0 s

■ Timer Function Operation

The timer function switches on when the timer function input closes for longer than the value set to b4-01. The timer function switches off when the timer function input is open for longer than the value set to b4-02. *Figure 5.23* illustrates the timer function operation:

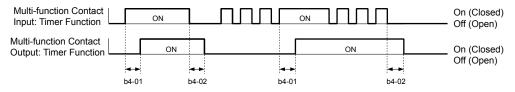
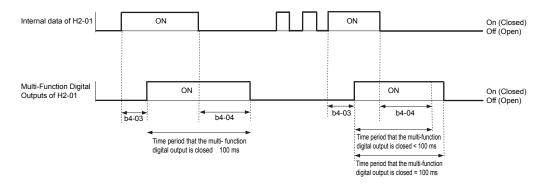


Figure 5.23 Timer Operation


■ b4-03 to b4-08: H2-□□ ON-Delay and OFF-Delay Time

Sets the length of the delay time for contact outputs to open or close for the related functions set in $H2-\square\square$.

Note: These parameters are not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
b4-03	H2-01 ON Delay Time	0 to 65536 ms	0 ms
b4-04	H2-01 OFF Delay Time	0 to 65536 ms	0 ms
b4-05	H2-02 ON Delay Time	0 to 65536 ms	0 ms

No.	Name	Setting Range	Default
b4-06	H2-02 OFF Delay Time	0 to 65536 ms	0 ms
b4-07	H2-03 ON Delay Time	0 to 65536 ms	0 ms
b4-08	H2-03 OFF Delay Time	0 to 65536 ms	0 ms

Note: The multi-function digital output closes for at least 100 ms even when the length of the off-delay time and on-delay time for multi-function digital output are each shorter than 100 ms,

b5: PID Control

The drive has a built-in Proportional + Integral + Derivative (PID) controller that uses the difference between the target value and the feedback value to adjust the drive output frequency to minimize deviation and provide accurate closed loop control of system variables such as pressure or temperature.

■ P Control

The output of P control is the product of the deviation and the P gain so that it follows the deviation directly and linearly. With P control, only an offset between the target and feedback remains.

I Control

The output of I control is the integral of the deviation. It minimizes the offset between target and feedback value that typically remains when pure P control is used. The integral time (I time) constant determines how fast the offset is eliminated.

D Control

D control predicts the deviation signal by multiplying its derivative (slope of the deviation) with a time constant, then adds this value to the PID input. This way the D portion of a PID controller provides a braking action to the controller response and can reduce the tendency to oscillate and overshoot.

D control tends to amplify noise on the deviation signal, which can result in control instability. Only use D control when absolutely necessary.

■ PID Operation

To better demonstrate PID functionality, *Figure 5.24* illustrates how the PID output changes when the PID input (deviation) jumps from 0 to a constant level.

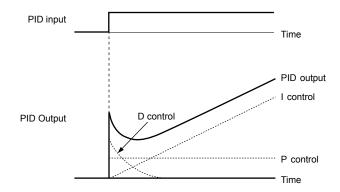


Figure 5.24 PID Operation

■ Using PID Control

Applications for PID control are listed in *Table 5.8*.

Table 5.8 Using PID Control

Application	Description	Sensors Used	
Speed Control	Machinery speed is fed back and adjusted to meet the target value. Synchronous control is performed using speed data from other machinery as the target value	Tachometer	
Pressure	Maintains constant pressure using pressure feedback.	Pressure sensor	
Fluid Control	Keeps flow at a constant level by feeding back flow data.	Flow rate sensor	
Temperature Control	Maintains a constant temperature by controlling a fan with a thermostat.	Thermocoupler, Thermistor	

■ PID Setpoint Input Methods

The PID setpoint input depends on the PID function setting in parameter b5-01.

If parameter b5-01 is set to 1 or 2, the frequency reference source in b1-01 (or b1-15) or one of the inputs listed in *Table 5.9* becomes the PID setpoint.

If b5-01 is set to 3 or 4, then the PID setpoint can be input from one of the sources listed in *Table 5.9*.

Table 5.9 PID Setpoint Sources

PID Setpoint Source	Settings
Analog Input A1	Set $H3-02 = C$
Analog Input A2	Set $H3-10 = C$
Analog Input A3	Set $H3-06 = C$
MEMOBUS/Modbus Register 0006 H	Set bit 1 in register 000F H to 1 and input the setpoint to register 0006 H
Pulse Input RP	Set $H6-01 = 2$
Parameter b5-19	Set parameter b5-18 = 1 and input the PID setpoint to b5-19

Note: A duplicate allocation of the PID setpoint input will cause an oPE alarm.

■ PID Feedback Input Methods

Input one feedback signal for normal PID control or input two feedback signals can for controlling a differential process value.

Normal PID Feedback

Input the PID feedback signal from one of the sources listed in *Table 5.10*:

Table 5.10 PID Feedback Sources

PID Feedback Source	Settings
Analog Input A1	Set H3-02 = B
Analog Input A2	Set H3-10 = B
Analog Input A3	Set H3-06 = B
Pulse Input RP	Set H6-01 = 1

Note: A duplicate allocation of the PID feedback input will cause an oPE alarm.

Differential Feedback

The second PID feedback signal for differential feedback can come from the sources listed in *Table 5.11*. The differential feedback function is automatically enabled when a differential feedback input is assigned.

Table 5.11 PID Differential Feedback Sources

PID Differential Feedback Source	Settings
Analog Input A1	Set H3-02 = 16
Analog Input A2	Set H3-10 = 16
Analog Input A3	Set H3-06 = 16

Note: A duplicate allocation of the PID differential feedback input will cause an oPE alarm.

■ PID Block Diagram

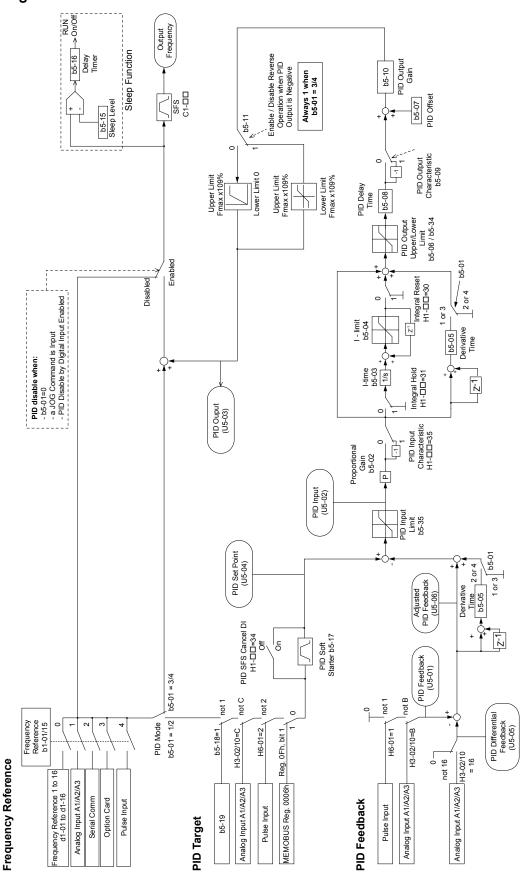


Figure 5.25 PID Block Diagram

■ b5-01: PID Function Setting

Enables or disables the PID operation and selects the PID operation mode.

No.	Parameter Name	Setting Range	Default
b5-01	PID Function Setting	0 to 8	0

Setting 0: PID disabled

Setting 1: Output frequency = PID output 1

The PID controller is enabled and the PID output builds the frequency reference. The PID input is D controlled.

Setting 2: Output frequency = PID output 2

The PID controller is enabled and the PID output builds the frequency reference. The PID feedback is D controlled.

Setting 3: Output frequency = frequency reference + PID output 1

The PID controller is enabled and the PID output is added to the frequency reference. The PID input is D controlled.

Setting 4: Output frequency = frequency reference + PID output 2

The PID controller is enabled and the PID output is added to the frequency reference. The PID feedback is D controlled.

Setting 5: Mode compatible with setting 1 of similar products from a previous product line

Setting 6: Mode compatible with setting 2 of similar products from a previous product line

Setting 7: Mode compatible with setting 3 of similar products from a previous product line

Setting 8: Mode compatible with setting 4 of similar products from a previous product line

1. If the drive is replaced with Varispeed F7 drive or a similar product from a previous product line, use settings 5 to 8 instead of settings 1 to 4.

2. Settings 5 to 8 are not available for models 4A0930 and 4A1200.

b5-02: Proportional Gain Setting (P)

Sets the P gain applied to the PID input. Larger values will tend to reduce the error but may cause oscillations if set too high, while lower values may allow too much offset between the setpoint and feedback.

No.	Name	Setting Range	Default
b5-02	Proportional Gain Setting (P)	0.00 to 25.00	1.00

b5-03: Integral Time Setting (I)

Sets the time constant used to calculate the integral of the PID input. The shorter the integral time set to b5-03, the faster the offset will be eliminated. If the integral time is set too short, however, overshoot or oscillation may occur. To turn off the integral time, set b5-03 to 0.00.

No.	Name	Setting Range	Default
b5-03	Integral Time Setting (I)	0.0 to 360.0 s	1.0 s

■ b5-04: Integral Limit Setting

Sets the maximum output possible from the integral block as a percentage of the maximum frequency (E1-04).

No.	Name	Setting Range	Default
b5-04	Integral Limit Setting	0.0 to 100.0%	100.0%

On some applications, especially those with rapidly varying loads, the output of the PID function may show a fair amount of oscillation. Note: Program b5-04 to apply a limit to the integral output and suppress this oscillation.

b5-05: Derivative Time (D)

Sets the time the drive predicts the PID input/PID feedback signal based on the derivative of the PID input/PID feedback. Longer time settings improve the response but can cause vibrations, while shorter time settings reduce the overshoot but reduce controller responsiveness. D control is disabled by setting b5-05 to zero seconds.

No.	Name	Setting Range	Default
b5-05	Derivative Time (D)	0.00 to 10.00 s	0.00 s

■ b5-06: PID Output Limit

Sets the maximum output possible from the entire PID controller as a percentage of the maximum frequency (E1-04).

No.	Name	Setting Range	Default
b5-06	PID Output Limit	0.0 to 100.0%	100.0%

■ b5-07: PID Offset Adjustment

Sets the offset added to the PID controller output as a percentage of the maximum frequency (E1-04).

No.	Name	Setting Range	Default
b5-07	PID Offset Adjustment	-100.0 to 100.0%	0.0%

■ b5-08: PID Primary Delay Time Constant

Sets the time constant for the filter applied to the output of the PID controller. Normally, change is not required.

No.	Name	Setting Range	Default
b5-08	PID Primary Delay Time Constant	0.00 to 10.00 s	0.00 s

Note:

Useful when there is a fair amount of oscillation or when rigidity is low. Set to a value larger than the cycle of the resonant frequency. Increasing this time constant may reduce the responsiveness of the drive.

■ b5-09: PID Output Level Selection

Reverses the sign of the PID controller output signal. Normally a positive PID input (feedback smaller than setpoint) leads to positive PID output.

No.	Parameter Name	Setting Range	Default
b5-09	PID Output Level Selection	0, 1	0

Setting 0: Normal Output

A positive PID input causes an increase in the PID output (direct acting).

Setting 1: Reverse Output

A positive PID input causes a decrease in the PID output (reverse acting).

■ b5-10: PID Output Gain Setting

Applies a gain to the PID output and can be helpful when the PID function is used to trim the frequency reference (b5-01 = 3 or 4).

No.	Name	Setting Range	Default
b5-10	PID Output Gain Setting	0.00 to 25.00	1.00

■ b5-11: PID Output Reverse Selection

Determines whether a negative PID output reverses the direction of drive operation. This parameter has no effect when the PID function trims the frequency reference (65-01=3 or 4) and the PID output will not be limited (same as 65-11=1).

No.	Parameter Name	Setting Range	Default
b5-11	PID Output Reverse Selection	0, 1	0

Setting 0: Reverse Disabled

Negative PID output will be limited to 0 and the drive output will be stopped.

Setting 1: Reverse Enabled

Negative PID output will cause the drive to run in the opposite direction.

■ PID Feedback Loss Detection

The PID feedback loss detection function detects broken sensors or broken sensor wiring. It should be used when PID control is enabled to prevent critical machine conditions (e.g., acceleration to max. frequency) caused by a feedback loss.

Feedback loss can be detected in two ways:

· Feedback Low Detection

Detected when the feedback falls below a certain level for longer than the specified time. This function is set up using parameters b5-12 to b5-14.

Feedback High Detection

Detected when the feedback rises above a certain level for longer than the specified time. This function is set up using parameters b5-12, b5-36, and b5-37.

The following figure illustrates the working principle of feedback loss detection when the feedback signal is too low. Feedback high detection works in the same way.

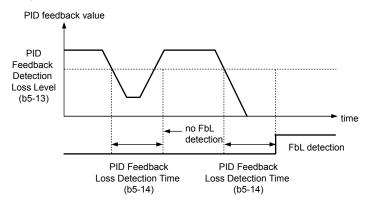


Figure 5.26 PID Feedback Loss Detection

■ b5-12: PID Feedback Loss Detection Selection

Enables or disables the feedback loss detection and sets the operation when a feedback loss is detected.

No.	Parameter Name	Setting Range	Default
b5-12	PID Feedback Loss Detection Selection	0 to 5	0

Setting 0: Digital Output Only

A digital output set for "PID feedback low" (H2- $\square\square$ = 3E) will be triggered if the PID feedback value is below the detection level set to b5-13 for the time set to b5-14 or longer. A digital output set for "PID feedback high" (H2- $\square\square$ = 3F) will be triggered if the PID feedback value is beyond the detection level set to b5-36 for longer than the time set to b5-37. Neither a fault nor an alarm is displayed on the digital operator and the drive will continue operation. The output resets when the feedback value leaves the loss detection range.

Setting 1: Feedback Loss Alarm

If the PID feedback value falls below the level set to b5-13 for longer than the time set to b5-14, a "FBL - Feedback Low" alarm will be displayed and a digital output set for "PID feedback low" (H2- $\Box\Box$ = 3E) will be triggered. If the PID feedback value exceeds the level set to b5-36 for longer than the time set to b5-37, a "FBH - Feedback High" alarm will be displayed and a digital output set for "PID feedback high" (H2- $\Box\Box$ = 3F) will be triggered. Both events trigger an alarm output (H1- $\Box\Box$ = 10). The drive will continue operation. The alarm and outputs reset when the feedback value leaves the loss detection range.

Setting 2: Feedback Loss Fault

If the PID feedback value falls below the level set to b5-13 for longer than the time set to b5-14, a "FbL - Feedback Low" fault will be displayed. If the PID feedback value exceeds the level set to b5-36 for longer than the time set to b5-37, a "FbH - Feedback High" fault will be displayed. Both events trigger a fault output (H1- $\square\square$ = E) and cause the drive to stop the motor

Setting 3: Digital Output Only, even if PID Is Disabled by Digital Input

Same as b5-12 = 0. Detection remains active when PID is disabled by a digital input (H1- $\Box\Box$ = 19).

Setting 4: Feedback Loss Alarm, even if PID Is Disabled by Digital Input

Same as b5-12 = 1. Detection remains active when PID is disabled by a digital input (H1- $\Box\Box$ = 19).

Setting 5: Feedback Loss fault, even if PID Is Disabled by Digital Input

Same as b5-12 = 2. Detection remains active when PID is disabled by a digital input (H1- $\Box\Box$ = 19).

■ b5-13: PID Feedback Low Detection Level

Sets the feedback level used for PID feedback low detection. The PID feedback must fall below this level for longer than the time set to b5-14 before feedback loss is detected.

No.	Name	Setting Range	Default
b5-13	PID Feedback Low Detection Level	0 to 100%	0%

■ b5-14: PID Feedback Low Detection Time

Sets the time that the PID feedback has to fall below b5-13 before feedback loss is detected.

No.	Name	Setting Range	Default
b5-14	PID Feedback Low Detection Time	0.0 to 25.5 s	1.0 s

■ b5-36: PID Feedback High Detection Level

Sets the feedback level used for PID feedback high detection. The PID feedback must exceed this level for longer than the time set to b5-37 before feedback loss is detected.

No.	Name	Setting Range	Default
b5-36	PID Feedback High Detection Level	0 to 100%	100%

■ b5-37: PID Feedback High Detection Time

Sets the time that the PID feedback must exceed the value set to b5-36 before feedback loss is detected.

No.	Name	Setting Range	Default
b5-37	PID Feedback High Detection Time	0.0 to 25.5 s	1.0 s

PID Sleep

The PID Sleep function stops the drive when the PID output or the frequency reference falls below the PID Sleep operation level for a certain time. The drive will resume operating when the PID output or frequency reference rise above the PID Sleep operation level for the specified time. An example of PID Sleep operation appears in the figure below.

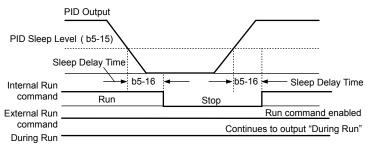


Figure 5.27 PID Sleep Operation

Notes on using the PID Sleep function

- The PID Sleep function is active even when PID control is disabled.
- The PID Sleep function stops the motor according to the stopping method set to b1-03.

The parameters necessary to control the PID Sleep function are explained below.

■ b5-15: PID Sleep Function Start Level

Sets the level that triggers PID Sleep.

The drive goes into Sleep mode if the PID output or frequency reference is smaller than b5-15 for longer than the time set to b5-16. The drive resumes operation when the PID output or frequency reference is above b5-15 for longer than the time set to b5-16.

No.	Name	Setting Range	Default
b5-15	PID Sleep Function Start Level	0.0 to 400.0 Hz <1>	0.0 Hz

<1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%).

■ b5-16: PID Sleep Delay Time

Sets the delay time to activate or deactivate the PID Sleep function.

No.	Name	Setting Range	Default
b5-16	PID Sleep Delay Time	0.0 to 25.5 s	0.0 s

■ b5-17: PID Accel/Decel Time

The PID acceleration/deceleration time is applied on the PID setpoint value.

When the setpoint changes quickly, the normal C1- $\square\square$ acceleration times reduce the responsiveness of the system as they are applied after the PID output. The PID accel/decel time helps avoid the hunting and overshoot and undershoot that can result from the reduced responsiveness.

The PID acceleration/deceleration time can be canceled using a digital input programmed for "PID SFS cancel" (H1- $\Box\Box$ = 34).

No.	Name	Setting Range	Default
b5-17	PID Accel/Decel Time	0.0 to 6000.0 s	0.0 s

■ b5-18: PID Setpoint Selection

Enables or disables parameter b5-19 for PID setpoint.

No.	Parameter Name	Setting Range	Default
b5-18	PID Setpoint Selection	0, 1	0

Setting 0: Disabled

Parameter b5-19 is not used as the PID setpoint.

Setting 1: Enabled

Parameter b5-19 is used as PID setpoint.

■ b5-19: PID Setpoint Value

Used as the PID setpoint if parameter b5-18 = 1.

No.	Name	Setting Range	Default
b5-19	PID Setpoint Value	0.00 to 100.00%	0.00%

■ b5-20: PID Setpoint Scaling

Determines the units for the PID Setpoint Value (b5-19) and monitors U5-01 and U5-04. The units for setting and display can be changed with b5-20.

No.	Parameter Name	Setting Range	Default
b5-20	PID Setpoint Scaling	0 to 3	1

Setting 0: 0.01 Hz

The setpoint and PID monitors are displayed in Hz with a resolution of 0.01 Hz.

Setting 1: 0.01% (100.00%: Maximum Frequency)

The setpoint and PID monitors are displayed as a percentage with a resolution of 0.01%.

Setting 2: r/min (Set the Motor Poles)

The setpoint and PID monitors are displayed in r/min with a resolution of 1 r/min.

Setting 3: User Defined (Determined by b5-38 and b5-39)

Parameters b5-38 and b5-39 determine the units and resolution used to display the values the setpoint in b5-19, and PID monitors U1-01 and U1-04.

■ b5-34: PID Output Lower Limit

Sets the minimum possible PID controller output as a percentage of the maximum output frequency (E1-04). The lower limit is disabled when set to 0.00%

No.	Name	Setting Range	Default
b5-34	PID Output Lower Limit	-100.0 to 100.0%	0.00%

■ b5-35: PID Input Limit

Sets the maximum allowed PID input as a percentage of the maximum output frequency (E1-04). Parameter b5-35 acts as a bipolar limit.

No.	Name	Setting Range	Default
b5-35	PID Input Limit	0.0 to 1000.0%	1000.0%

■ b5-38, b5-39: PID Setpoint User Display, PID Setpoint Display Digits

When parameter b5-20 is set to 3, parameters b5-38 and b5-39 set a user-defined display for the PID setpoint (b5-19) and PID feedback monitors (U5-01, U5-04).

Parameter b5-38 determines the display value when the maximum frequency is output and parameter b5-39 determines the number of digits. The setting value is equal to the number of decimal places.

No.	Name	Setting Range	Default
b5-38	PID Setpoint User Display	1 to 60000	Determined by b5-20
b5-39	PID Setpoint Display Digits	0 to 3	Determined by b5-20

Setting 0: No Decimal Places

Setting 1: One Decimal Place

Setting 2: Two Decimal Places

Setting 3: Three Decimal Places

■ b5-40: Frequency Reference Monitor Content During PID

Sets the content of the frequency reference monitor display (U1-01) when PID control is active.

No.	Name	Setting Range	Default
b5-40	Frequency Reference Monitor Content During PID	0, 1	0

Setting 0: Frequency Reference after PID

Monitor U1-01 displays the frequency reference increased or reduced for the PID output.

Setting 1: Frequency Reference

Monitor U1-01 displays the frequency reference value.

■ b5-47: PID Output Reverse Selection 2

Determines whether a negative PID output reverses the direction of drive operation. When the PID function is used to trim the frequency reference (b5-01 = 3 or 4), this parameter has no effect and the PID output will not be limited (same as b5-11 = 1).

No.	Name	Setting Range	Default
b5-47	PID Output Reverse Selection 2	0, 1	1

Setting 0: Reverse Disabled

Negative PID output will be limited to 0 and the drive output will be stopped.

Setting 1: Reverse Enabled

Negative PID output will cause the drive to run in the opposite direction.

■ Fine-Tuning PID

Follow the directions below to fine tune PID control parameters:

Table 5.12 PID Fine Tuning

Goal	Goal Tuning Procedure Result				
Suppress overshoot	 Reduce the derivative time (b5-05) Increase the integral time (b5-03) 	Response Before adjustment After adjustment Time			
Achieve stability quickly while allowing some overshoot	 Decrease the integral time (b5-03) Increase the derivative time (b5-05) 	Response After adjustment Before adjustment Time			
Suppress long cycle oscillations (longer than the integral time setting)	Increase the integral time (b5-03)	Response After adjustment Time			
Suppress short cycle oscillations	 If oscillation cycle time is close to the derivative time, reduce the derivative time (b5-05). If the derivative time is set to 0.00 s and oscillations are still a problem, reduce the proportional gain (b5-02) or increase the PID primary delay time (b5-08) 	Response Before adjustment After adjustment Time			

♦ b6: Dwell Function

The Dwell function temporarily holds the frequency reference at a predefined value for a set time then continues accelerating or decelerating.

The Dwell function helps prevent speed loss when starting and stopping a heavy load with induction motors. When running a PM motor in V/f control, the pause in acceleration allows the PM motor rotor to align with the stator field of the motor and reduce the starting current.

Figure 5.28 illustrates how the Dwell function works.

Note: Set the stopping method to "Ramp to Stop" (b1-03 = 0) to use the Dwell function.

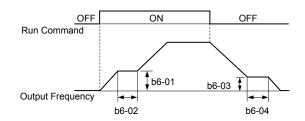


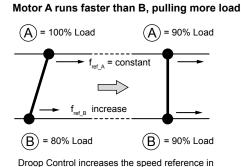
Figure 5.28 Dwell Function at Start and Stop

■ b6-01, b6-02: Dwell Reference, Dwell Time at Start

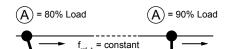
Parameter b6-01 determines the frequency that is held for the time set in b6-02 during acceleration.

No.	Name	Setting Range	Default
b6-01	Dwell Reference at Start	0.0 to 400.0 Hz	0.0 Hz
b6-02	Dwell Time at Start	0.0 to 10.0 s	0.0 s

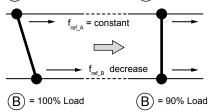
b6-03, b6-04: Dwell Reference, Dwell Time at Stop


Parameter b6-03 determines the frequency that is held for the time set in b6-04 during deceleration.

No.	Name	Setting Range	Default
b6-03	Dwell Reference at Stop	0.0 to 400.0 Hz	0.0 Hz
b6-04	Dwell Time at Stop	0.0 to 10.0 s	0.0 s


b7: Droop Control (CLV, CLV/PM)

Droop control automatically balances the load level between two motors driving the same load. Droop control must be activated in one of the drives controlling these motors. The drive in which Droop control is activated shifts the load from one motor to another by automatically reducing the speed when the torque reference rises, and automatically increasing the speed when the torque reference falls.


Note: Disable Feed Forward (n5-01 = 0) whenever using Droop control.

drive B accomplishing load balance

Motor B runs faster than A, pulling more load

Droop Control decreases the speed reference in drive B accomplishing load balance

Figure 5.29 Droop Control Application

b7-01: Droop Control Gain

Sets the amount of speed reduction when the torque reference is 100%. The gain is set as a percentage of the maximum output frequency. A setting of 0.0% disables the Droop control function.

No.	Parameter Name	Setting Range	Default
b7-01	Droop Control Gain	0.0 to 100.0%	0.0%



Figure 5.30 Droop Control Gain

■ b7-02: Droop Control Delay Time

Adjusts the responsiveness of Droop control. Reduce the setting if the reaction time is too long, and increase the setting if hunting occurs.

No.	Parameter Name	Setting Range	Default
b7-02	Droop Control Delay Time	0.03 to 2.00 s	0.05 s

■ b7-03: Droop Control Limit Selection

Enables or disables the droop control limit.

No.	Parameter Name	Setting Range	Default
b7-03	Droop Control Limit Selection	0, 1	1

Setting 0: Disabled

Setting 1: Enabled

b8: Energy Saving

The Energy Saving feature improves overall system operating efficiency by operating the motor at its most efficient level.

Note:

- 1. Energy Saving is not designed for applications that experience instantaneous heavy loads or applications that rarely operate with light load conditions.
- 2. Energy Saving is designed for applications with variable torque (Normal Duty) and is not appropriate for applications where the load may suddenly increase.
- 3. The performance of the Energy Saving function depends on the accuracy of the motor data. Always perform Auto-Tuning and correctly enter the motor data before using this function.

■ b8-01: Energy Saving Control Selection

Enables or disables the Energy Saving function.

No.	Parameter Name	Setting Range	Default
b8-01	Energy Saving Control Selection	0, 1	Determined by A1-02

Setting 0: Disabled

Setting 1: Enabled

■ b8-02: Energy Saving Gain (OLV, CLV)

Sets the gain level for Energy Saving. A higher value results in lower magnetization of the motor and less energy consumption. If the value is set too high the motor may stall.

No.	Name	Setting Range	Default
b8-02	Energy Saving Gain	0.0 to 10.0	Determined by A1-02

■ b8-03: Energy Saving Control Filter Time Constant (OLV, CLV)

Sets the response time for Energy Saving. A lower value allows for a quicker response; however a value that is too low may cause instability.

No.	Name	Setting Range	Default
b8-03	Energy Saving Control Filter Time Constant	0.00 to 10.00 s	Determined by A1-02 and o2-04

■ b8-04: Energy Saving Coefficient Value (V/f, V/f w/PG)

Fine tunes Energy Saving control.

The default setting is for a standard Yaskawa motor. When using a different motor, adjust this parameter in 5% increments until output power monitor U1-08 is at the minimum value, while running the drive with a light load.

A low setting results in less output voltage and less energy consumption. If the value is set too low the motor may stall. The default setting depends on the capacity of the drive.

No.	Name	Setting Range	Default
b8-04	Energy Saving Coefficient Value	0.00 to 655.00	Determined by C6-01, E2-11, and o2-04

Note:

The default value changes if the motor rated capacity set to E2-11 is changed. The Energy Saving coefficient is set automatically when Auto-Tuning for Energy Saving is performed (*Refer to Auto-Tuning on page 201*).

■ b8-05: Power Detection Filter Time (V/f, V/f w/PG)

Determines how often in milliseconds the output power is measured. The Energy Saving function continuously searches out the lowest output voltage to achieve minimum output power.

Reducing this setting increases the response time. If the filter time is too short, the motor may become unstable with a lighter load.

No.	Name	Setting Range	Default
b8-05	Power Detection Filter Time	0 to 2000 ms	20 ms

■ b8-06: Search Operation Voltage Limit (V/f, V/f w/PG)

Sets the voltage limit for the Speed Search optimal output voltage detection as a percentage of the maximum output voltage. The drive will keep the output voltage above this level during the search operation to prevent motor stalling.

Note: If set too low, the motor may stall when the load is suddenly increased. Disabled when set to 0. Setting this value to 0 does not disable Energy Saving.

No.	Name	Setting Range	Default
b8-06	Search Operation Voltage Limit	0 to 100%	0%

■ b8-16: Energy Saving Parameter (Ki) for PM Motors

Coefficient to adjust torque linearity.

Set to the Ki value specified on the motor nameplate.

Setting E5-01, Motor Code Selection (for PM Motors), to $1 \square \square \square$ or $2 \square \square \square$ automatically sets the calculated value. This set value cannot be changed. If oscillation occurs when Energy Saving is enabled (b8-01 = 1), check the value displayed in monitor U5-21. If the value displayed differs from the Ki value written on the motor nameplate, set b8-16 accordingly.

No.	Name	Setting Range	Default
b8-16	Energy Saving Parameter (Ki) for PM Motors	0.00 to 3.00 <1>	1.00

<1> Setting range is 0.00 to 2.00 in models 4A0930 and 4A1200, and in drive software versions PRG: 1018 and earlier.

■ b8-17: Energy Saving Parameter (Kt) for PM Motors

Coefficient to adjust torque linearity.

Set to the Kt value specified on the motor nameplate.

Setting E5-01, Motor Code Selection (for PM Motors), to $1 \square \square \square \square$ or $2 \square \square \square$ automatically sets the calculated value. This set value cannot be changed. If oscillation occurs when Energy Saving is enabled (b8-01 = 1), check the value displayed in monitor U5-22. If the value displayed differs from the Kt value written on the motor nameplate, set b8-17 accordingly.

No.	Name	Setting Range	Default
b8-17	Energy Saving Parameter (Kt) for PM Motors	0.00 to 3.00 <1>	1.00

<1> Setting range is 0.00 to 2.00 in models 4A0930 and 4A1200, and in drive software versions PRG: 1018 and earlier.

b9: Zero Servo

The Zero Servo function is a position loop that can be used in CLV and CLV/PM control modes to lock the motor at a certain position.

To activate Zero Servo mode, use a digital input set for H1- $\square\square = 72$ and the drive will decelerate when this input is closed. The drive goes into Zero Servo mode and holds the current position when the motor speed falls below the level set to parameter b2-01. The drive accelerates when the input assigned to trigger the Zero Servo function is released and the Run command is still present.

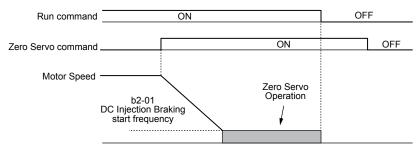


Figure 5.31 Zero Servo Operation

When Zero Servo mode is active, the deviation between the rotor position and the zero position is displayed in monitor U6-22 (monitor value must be divided by 4 to get the deviation in actual encoder pulses).

A digital output programmed for "Zero Servo complete" ($H2-\Box\Box=33$) is turned on when the rotor position is within the zero position, plus or minus the Zero Servo completion width set to parameter b9-02.

Note:

- 1. The Run command must remain on when using the Zero Servo function. Zero Servo will not hold the load in place if the Run command is switched off.
- 2. When the Zero Servo command has shut off, the Zero Servo Completion digital output width also shuts off.
- 3. Avoid using Zero Servo to lock 100% load for long periods, as this can trigger a fault. If such loads need to be held in place for long periods, either make sure the current is less than 50% of the drive rated current during Zero Servo, or use a larger capacity drive.
- **4.** If the load rotates the motor when using CLV/PM, a dv4 fault may occur. To prevent this, either increase the Zero Servo gain (b9-01) or increase the number of pulses set to F1-19 that are required to trigger dv4.

■ b9-01: Zero Servo Gain

Adjusts the responsiveness of the Zero Servo position loop. Increase the value if the response is too slow and the deviation from the zero position rises too high when load is applied. Decrease the value if vibrations occur during Zero Servo operation.

Note: Before adjusting the Zero Servo gain, make sure the ASR parameters (C5-□□) are set up properly and vibration or hunting does not occur when running with a zero speed reference.

No.	Name	Setting Range	Default
b9-01	Zero Servo Gain	0 to 100	5

■ b9-02: Zero Servo Completion Width

Sets the output range of the Zero Servo completion signal. Enter the amount of deviation allowable from the desired position to trigger Zero Servo. An output terminal set for Zero Servo (H2- $\Box\Box$ = 33) will be triggered when the motor reaches the position Zero Servo plus or minus b9-02.

No.	Name	Setting Range	Default
b9-02	Zero Servo Completion Width	0 to 16383	10

5.3 C: Tuning

C parameters set the characteristics for acceleration, deceleration, and S-curves. Other parameters in the C group cover settings for slip compensation, torque compensation, and carrier frequency.

C1: Acceleration and Deceleration Times

■ C1-01 to C1-08: Accel. Decel Times 1 to 4

Four different sets of acceleration and deceleration times can be set in the drive by digital inputs, motor selection, or switched automatically.

Acceleration time parameters always set the time to accelerate from 0 Hz to the maximum output frequency (E1-04). Deceleration time parameters always set the time to decelerate from maximum output frequency to 0 Hz. C1-01 and C1-02 are the default active accel/decel settings.

No.	Parameter Name	Setting Range	Default
C1-01	Acceleration Time 1		
C1-02	Deceleration Time 1		
C1-03	Acceleration Time 2		
C1-04	Deceleration Time 2	0.04= (000.0 = <1>	10.0 s
C1-05	Acceleration Time 3 (Motor 2 Accel Time 1)	0.0 to 6000.0 s <1>	10.0 \$
C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)		
C1-07	Acceleration Time 4 (Motor 2 Accel Time 2)		
C1-08	Deceleration Time 4 (Motor 2 Decel Time 2)		

<1> The setting range for the acceleration and deceleration times is determined by the accel/decel time setting units in C1-10. For example, if the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s.

Switching Acceleration Times by Digital Input

Accel/decel times 1 are active by default if no input is set. Activate accel/decel times 2, 3, and 4 by digital inputs $(H1-\Box\Box=7 \text{ and } 1A)$ as explained in *Table 5.13*.

Table 5.13 Accel/Decel Time Selection by Digital Input

Accel/Decel Time Sel. 1	Accel/Decel Time Sel. 2 Active Times	Active Times	
H1-□□ = 7	H1-□□ = 1A	Acceleration	Deceleration
0	0	C1-01	C1-02
1	0	C1-03	C1-04
0	1	C1-05	C1-06
1	1	C1-07	C1-08

Figure 5.32 shows an operation example for changing accel/decel. times. The example below requires that the stopping method be set for "Ramp to stop" (b1-03=0).

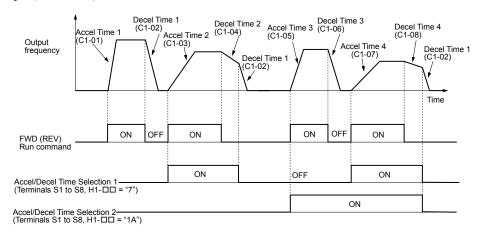


Figure 5.32 Timing Diagram of Accel/Decel Time Change

Switching Acceleration and Deceleration Times by Motor Selection

When switching between motor 1 and 2 using a digital input (H1- $\square\square$ = 16), parameters C1-01 to C1-04 become accel/decel times 1 and 2 for motor 1, while C1-05 to C1-08 become accel/decel times 1 and 2 for motor 2. Accel/decel times 1 and 2 can be switched for each motor using a digital inputs set to H1- $\square\square$ = 7 like shown in *Table 5.14*.

Note:

- 1. The motor 2 selection function cannot be used with PM motors.
- 2. Attempting to use the digital input setting "Accel/Decel time 2 selection" (H1-□□ = 1A) together with motor 1/2 switching triggers an oPE03 error, indicating contradictory multifunction input settings.

Table 5.14 Motor Switching and Accel/Decel Time Combinations

Accel/Decel Time 1 (H1-□□ = 7)	Motor 1 Selected (Terminal set to H1-□□ = 16 OFF) (Te			
,	Accel	Decel	Accel	Decel
Open	C1-01	C1-02	C1-05	C1-06
Closed	C1-03	C1-04	C1-07	C1-08

Switching Accel/Decel Times by a Frequency Level

The drive can switch between different acceleration and deceleration times automatically. The drive will switch from accel/decel time 4 in C1-07 and C1-08 to the default accel/decel time in C1-01 and C1-02 (C1-05 and C1-06 for motor 2) when the output frequency exceeds the frequency level set to parameter C1-11. When the frequency falls below this level, the accel/decel times are switched back. *Figure 5.33* shows an operation example.

Note:

Acceleration and deceleration times selected by digital inputs have priority over the automatic switching by the frequency level set to C1-11. For example, if accel/decel time 2 is selected, the drive will use only accel/decel time 2; it will not switch from accel/decel time 4 to the selected one.

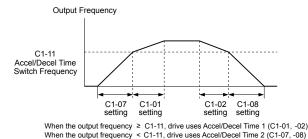


Figure 5.33 Accel/Decel Time Switching Frequency

■ C1-11: Accel/Decel Time Switching Frequency

Sets the frequency at which the drive switches between accel/decel time settings. See *Refer to Switching Accel/Decel Times* by a Frequency Level on page 264.

No.	Parameter Name	Setting Range	Default
C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0 Hz	Determined by A1-02 <1>

<1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%) instead of in Hz.

Note: Setting C1-11 to 0.0 disables this function.

■ C1-09: Fast Stop Time

Sets a special deceleration used when a select group of faults occur (e.g., L8-03 Overheat Pre-Alarm Operation Selection) or when closing a digital input configured as H1- $\square\square$ = 15 (N.O. input) or 17 (N.C. input). A momentary closure of the digital input will trigger the Fast Stop operation; it does not have to be closed continuously.

The drive cannot be restarted after initiating a Fast Stop operation until after completing deceleration, clearing the Fast Stop input, and cycling the Run command.

A digital output programmed for "During Fast Stop" (H2- $\Box\Box$ = 4C) will be closed as long as Fast Stop is active.

No.	Parameter Name	Setting Range	Default
C1-09	Fast Stop Time	0.0 to 6000.0 s <1>	10.0 s

<1> The setting range for the acceleration and deceleration times is determined by the accel/decel time setting units in C1-10. For example, if the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s

NOTICE: Rapid deceleration can trigger an overvoltage fault. The drive output shuts off when faulted and the motor coasts. Set an appropriate Fast Stop time to C1-09 to avoid this uncontrolled motor state and to ensure that the motor stops quickly and safely.

■ C1-10: Accel/Decel Time Setting Units

Determines the units for the acceleration and deceleration times set to C1-01 through C1-09 using parameter C1-10.

No.	Parameter Name	Setting Range	Default
C1-10	Accel/Decel Time Setting Units	0, 1	1

Setting 0: 0.01 s units

The accel/decel times are set in 0.01 s units. The setting range will be 0.00 to 600.00 s. C1-10 cannot be set to 0 if any of the parameters C1-01 to C1-09 are set to 600.1 seconds or more.

Setting 1: 0.1 s units

The accel/decel times are set in 0.1 s units. The setting range will be 0.0 to 6000.0 s.

C2: S-Curve Characteristics

Use S-curve characteristics to smooth acceleration and deceleration and minimize abrupt shock to the load. Set S-curve characteristic time during acceleration/deceleration at start and acceleration/deceleration at stop. Increase the value set to C2-01 if the STo fault (Step Out Detection) occurs when starting a PM motor.

■ C2-01 to C2-04: S-Curve Characteristics

C2-01 through C2-04 set separate S-curves for each section of the acceleration or deceleration.

No.	Parameter Name	Setting Range	Default
C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00 s	Determined by A1-02
C2-02	S-Curve Characteristic at Accel End		0.20 s
C2-03	S-Curve Characteristic at Decel Start		0.20 s
C2-04	S-Curve Characteristic at Decel End		0.00 s

Figure 5.34 illustrates S-curve application.

Figure 5.34 S-Curve Timing Diagram - FWD/REV Operation

Setting the S-curve will increase the acceleration and deceleration times.

- Actual accel time = accel time setting + (C2-01 + C2-02) / 2
- Actual decel time = decel time setting + (C2-03 + C2-04) / 2

◆ C3: Slip Compensation

The Slip Compensation function improves the speed accuracy of an induction motor. By adjusting the output frequency in accordance with the motor load, it compensates the slip and makes the motor speed equal to the frequency reference.

Note: Perform Auto-Tuning and make sure that the motor rated current (E2-01), the motor rated slip (E2-02), and the no-load current (E2-03) have all been set properly before making any adjustments to slip compensation parameters.

■ C3-01: Slip Compensation Gain

Sets the gain for the motor slip compensation function. Although this parameter rarely needs to be changed, adjustments may be necessary under the following circumstances:

Increase the setting if the motor at constant speed is slower than the frequency reference.

• Decrease the setting if the motor at constant speed is faster than the frequency reference.

No.	Parameter Name	Setting Range	Default
C3-01	Slip Compensation Gain	0.0 to 2.5	Determined by A1-02

Note:

Default setting is 0.0 in V/f Control (A1-02 = 0), and 1.0 in Open Loop Vector Control (A1-02 = 2). In Closed Loop Vector Control, slip compensation corrects inaccuracies that can result from temperature fluctuation in the rotor.

■ C3-02: Slip Compensation Primary Delay Time

Adjusts the filter on the output side of the slip compensation function. Although this parameter rarely needs to be changed, adjustments may be necessary in the following situations:

- Decrease the setting when the slip compensation response is too slow.
- Increase this setting when speed is unstable.

No.	Parameter Name	Setting Range	Default
C3-02	Slip Compensation Primary Delay Time	0 to 10000 ms	Determined by A1-02

Note:

Default for V/f Control (A1-02 = 0) is 2000 ms. Default for Open Loop Vector Control (A1-02 = 2) is 200 ms.

■ C3-03: Slip Compensation Limit

Sets the upper limit for the slip compensation function as a percentage of the motor rated slip (E2-02).

No.	Parameter Name	Setting Range	Default
C3-03	Slip Compensation Limit	0 to 250%	200%

The slip compensation limit is constant throughout the constant torque range (frequency reference \leq E1-06). In the constant power range (frequency reference \geq E1-06), it is increased based on C3-03 and the output frequency as shown in the following diagram.

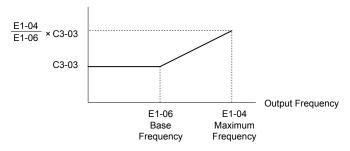


Figure 5.35 Slip Compensation Limit

■ C3-04: Slip Compensation Selection during Regeneration

Enables or disables slip compensation during regenerative operation. When slip compensation during regeneration has been activated and a regenerative load is applied, it might be necessary to use a dynamic braking option (braking resistor, braking resistor unit, or braking unit).

This function does not operate when the output frequency is too low, regardless of whether it has been enabled.

No.	Parameter Name	Setting Range	Default
C3-04	Slip Compensation Selection during Regeneration	0 to 2	0

Setting 0: Disabled

Slip compensation is not provided. Depending on the load and mode of operation, the actual motor speed will be lower or higher than the frequency reference.

Setting 1: Enabled (6 Hz and above)

Slip compensation is enabled during regenerative operation. It will not be active at output frequencies below 6 Hz.

Setting 2: Enabled (compensation provided wherever possible)

Slip compensation is enabled during regenerative operation and at frequencies as low as 2 Hz. The drive uses the motor rated slip set to E2-02 to automatically calculate the frequency range where compensation will be disabled.

■ C3-05: Output Voltage Limit Operation Selection

Determines if the motor flux reference is automatically reduced when output voltage reaches the saturation range.

If the input power supply voltage is low or the motor has a high voltage rating, this function improves the speed precision when moving heavy loads at high speeds. When selecting the drive, remember that the reduction in flux causes a slightly higher current at high speed when this function is enabled.

No.	Parameter Name	Setting Range	Default
C3-05	Output Voltage Limit Operation Selection	0, 1	0

Note: Available control modes for parameter C3-05 vary by drive model:

Models 2A0004 to 2A0415, 4A0002 to 4A0675, and 5A0003 to 5A0242: Available when A1-02 = 2, 3

Models 4A0930 and 4A1200: Available when A1-02 = 2, 3, 6, 7

Setting 0: Disabled

Setting 1: Enabled

■ C3-16: Output Voltage Limit Operation Start Level (Percentage Modulation)

Sets the output voltage limit operation start level (percentage modulation) when C3-05 is enabled.

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
C3-16	Output Voltage Limit Operation Start Level	70.0 to 90.0%	85.0%

■ C3-17: Maximum Output Voltage Limit Level (Percentage Modulation)

Sets the output voltage limit operation determined by C3-18 (percentage modulation) when C3-05 is enabled.

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
C3-17	Maximum Output Voltage Limit Level	85.0 to 100.0%	90.0%

■ C3-18: Output Voltage Limit Level

Sets the maximum percentage of output voltage reduction when C3-05 is enabled.

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
C3-18	Output Voltage Limit Level	30.0 to 100.0%	90.0%

■ C3-21: Motor 2 Slip Compensation Gain

Improves the speed accuracy for motor 2 and functions in the same way that C3-01 functions for motor 1. Adjust this parameter only after setting the motor rated current (E4-01), motor rated slip (E4-02), and the motor no-load current (E4-03).

Refer to C3-01: Slip Compensation Gain on page 265 for details on adjusting this parameter.

No.	Parameter Name	Setting Range	Default
C3-21	Motor 2 Slip Compensation Gain	0.0 to 2.5	Determined by E3-01

Note: Default setting is 0.0 in V/f Control (E3-01 = 0). Default setting is 1.0 in Open Loop Vector Control (E3-01 = 2) and Closed Loop Vector Control (E3-01 = 3). In Closed Loop Vector Control, slip compensation gain acts as an adaptable gain.

■ C3-22: Motor 2 Slip Compensation Primary Delay Time

Functions for motor 2 the same way that C3-02 functions for motor 1.

Refer to C3-02: Slip Compensation Primary Delay Time on page 266 for details on adjusting this parameter.

No.	Parameter Name	Setting Range	Default
C3-22	Motor 2 Slip Compensation Primary Delay Time	0 to 10000 ms	Determined by A1-02

Note: The default for V/f Control (E3-01 = 0) is 2000 ms. The default for Open Loop Vector Control (E3-01 = 2) is 2000 ms.

■ C3-23: Motor 2 Slip Compensation Limit

Sets the upper limit for the slip compensation function as a percentage of the motor rated slip (E4-02).

No.	Parameter Name	Setting Range	Default
C3-23	Motor 2 Slip Compensation Limit	0 to 250%	200%

The slip compensation limit is constant throughout the constant torque range (frequency reference \leq E3-06). In the constant power range (frequency reference \geq E3-06), it is increased based on C3-23 and the output frequency as illustrated in *Figure* 5.36.

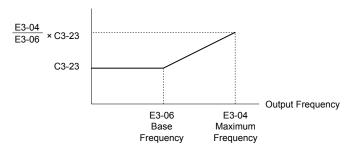


Figure 5.36 Slip Compensation Limit

■ C3-24: Motor 2 Slip Compensation Selection during Regeneration

Functions for motor 2 the same way that C3-04 functions for motor 1.

Refer to C3-04: Slip Compensation Selection during Regeneration on page 266 for details on adjusting this parameter.

No.	Parameter Name	Setting Range	Default
C3-24	Motor 2 Slip Compensation Selection during Regeneration	0 to 2	0

Setting 0: Disabled

Setting 1: Enabled (6 Hz and above)

Setting 2: Enabled (compensation provided wherever possible)

◆ C4: Torque Compensation

The torque compensation function compensates for insufficient torque production at start-up or when a load is applied.

Note: Set the motor parameters and V/f pattern properly before setting torque compensation parameters.

■ C4-01: Torque Compensation Gain

Sets the gain for the torque compensation function.

No.	Parameter Name	Setting Range	Default
C4-01	Torque Compensation Gain	0.00 to 2.50	Determined by A1-02

Torque Compensation in V/f, V/f w/PG, and OLV/PM:

The drive calculates the motor primary voltage loss using the output current and the termination resistor value (E2-05 for IM motors, E5-05 for PM motors) and adjusts the output voltage to compensate insufficient torque at start or when load is applied. The effects of this voltage compensation can be increased or decreased using parameter C4-01.

Torque Compensation in OLV:

The drive controls the motor excitation current (d-Axis current) and torque producing current (q-Axis current) separately. Torque compensation affects the torque producing current only. C4-01 works as a factor of the torque reference value that builds the torque producing current reference.

Adjustment

Although this parameter rarely needs to be changed, it may be necessary to adjust the torque compensation gain in small steps of 0.05 in the following situations:

• Increase this setting when using a long motor cable.

• Decrease this setting when motor oscillation occurs.

Adjust C4-01 so the output current does not exceed the drive rated current.

Note:

- 1. Refrain from adjusting torque compensation in Open Loop Vector Control, as it can have a negative effect on torque accuracy.
- 2. Refrain from adjusting this parameter in OLV/PM. Setting this value too high can cause overcompensation and motor oscillation.

■ C4-02: Torque Compensation Primary Delay Time

Sets the delay time used for applying torque compensation.

No.	Parameter Name	Setting Range	Default
C4-02	Torque Compensation Primary Delay Time	0 to 60000 ms	Determined by A1-02

Adjustment

Although C4-02 rarely needs to be changed, adjustments may be necessary in the following situations:

- Increase this setting if the motor vibrates.
- Decrease this setting if the motor responds too slowly to changes in the load.

■ C4-03: Torque Compensation at Forward Start (OLV)

Sets the amount of torque at start in the forward direction to improve motor performance during start with a heavy load. Compensation is applied using the time constant set in parameter C4-05. Enable this function when the load pulls the motor in reverse when starting with a Forward run command. Setting 0.0% disables this feature.

No.	Parameter Name	Setting Range	Default
C4-03	Torque Compensation at Forward Start	0.0 to 200.0%	0.0%

■ C4-04: Torque Compensation at Reverse Start (OLV)

Sets the amount of torque reference at start in the reverse direction to improve motor performance during start with heavy load. Compensation is applied using the Torque Compensation Time set in parameter C4-05. Enable this function if the load pulls the motor in the forward direction when starting with a Reverse run command. Setting 0.0% disables this feature.

No.	Parameter Name	Setting Range	Default
C4-04	Torque Compensation at Reverse Start	-200.0 to 0.0%	0.0%

■ C4-05: Torque Compensation Time Constant (OLV)

Sets the time constant for applying the torque compensation at start that is set to C4-03 and C4-04.

No.	Parameter Name	Setting Range	Default
C4-05	Torque Compensation Time Constant	0 to 200 ms	10 ms

■ C4-06: Torque Compensation Primary Delay Time 2 (OLV)

Sets the time constant used during Speed Search or during regenerative operation. Adjust the value if an overvoltage fault occurs with sudden changes in the load or at the end of acceleration with high inertia load.

No.	Parameter Name	Setting Range	Default
C4-06	Torque Compensation Primary Delay Time 2	0 to 10000 ms	150 ms

Note: If C4-06 is set to a relatively large value, increase the setting in n2-03 (AFR Time Constant 2) proportionally.

■ C4-07: Motor 2 Torque Compensation Gain

Functions for motor 2 the same way that C4-01 functions for motor 1.

Refer to C3-01: Slip Compensation Gain on page 265 for details on adjusting this parameter.

No.	Parameter Name	Setting Range	Default
C4-07	Motor 2 Torque Compensation Gain	0.00 to 2.50	1.00

◆ C5: Automatic Speed Regulator (ASR)

The ASR controls the motor speed in V/f w/PG, CLV, AOLV/PM, and CLV/PM control modes and adjusts the output frequency (V/f w/PG) or torque reference (CLV, AOLV/PM, CLV/PM) to minimize the difference between frequency reference and actual motor speed.

Figure 5.37 and Figure 5.38 illustrate ASR functionality:

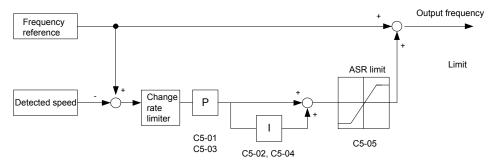


Figure 5.37 Speed Control Block Diagram for V/f Control with PG

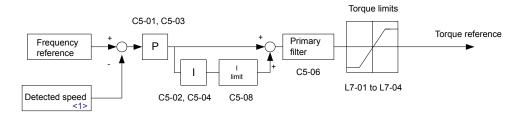


Figure 5.38 Speed Control Block Diagram for CLV, AOLV/PM and CLV/PM

<1> AOLV/PM estimates the speed using the motor model and does not require an encoder feedback signal.

Adjusting the ASR Parameters

Perform Auto-Tuning and set up all motor data correctly prior to adjusting ASR parameters.

Use analog output signals to monitor the frequency reference after softstarter (U1-16) and the motor speed (U1-05) when adjusting the ASR. *Refer to H4: Multi-Function Analog Outputs on page 347* for details on setting up analog output functions.

Generally when tuning the ASR, optimize the ASR gain before adjusting the integral time settings. Always make adjustments with the load connected to the motor.

Adjusting the ASR Parameters in V/f Control with PG

In V/f Control with PG, the ASR settings change between two sets of parameters depending on the motor speed as described in *C5-01*, *C5-03/C5-02*, *C5-04*: *ASR Proportional Gain 1*, *2/ASR Integral Time 1*, 2 on page 272.

Perform the following steps for adjusting ASR parameters:

- 1. Run the motor at minimum speed and increase ASR gain 2 (C5-03) as much as possible without oscillation.
- 2. Run the motor at minimum speed and decrease ASR integral time 2 (C5-04) as much as possible without oscillation.
- **3.** Check the output current monitor to make sure that the output current is less than 50% of the drive rated current. If the value is higher than 50%, decrease C5-03 and increase C5-04.
- **4.** Run the motor at maximum speed and increase ASR gain 1 (C5-01) as much as possible without oscillations.
- 5. Run the motor at maximum speed and decrease ASR integral time 1 (C5-02) as much as possible without oscillations.
- **6.** If higher speed precision and faster response during acceleration or deceleration are required, enable integral control during accel/decel by setting parameter C5-12 to 1. Change the speed and make sure no over/undershoot occurs.

Adjusting the ASR Parameters in CLV, AOLV/PM, and CLV/PM

The drive is preset to use ASR settings C5-01/02 over the entire speed range in CLV, AOLV/PM, and CLV/PM. If required by the application, a second set of ASR parameters (C5-03/04) can be automatically activated depending on the motor speed or by using a digital input. *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 272*.

Perform the following steps for adjusting ASR parameters:

- 1. Run the motor at zero speed and increase the ASR gain (C5-01) as much as possible without oscillation.
- 2. Run the motor at zero speed and decrease the ASR integral time (C5-02) as much as possible without oscillation.
- 3. Run at the normal operating speed. Check for over/undershoot when changing speed and for any oscillation.
- **4.** If problems occur in step 3, increase the integral time and reduce the gain. Alternatively, use different ASR settings for high and low speed. Set the values from step 1 and 2 to parameters C5-03 and C5-04, then set an ASR switching frequency in parameter C5-07. Run the motor at a speed higher than C5-07 and repeat step 3 while adjusting C5-01 and C5-02.

Solving Problems During ASR Setup

Use *Table 5.15* when making adjustments to ASR. Though the parameters listed below are for motor 1, the same changes can be made to the corresponding motor 2 parameters when running a second motor.

Table 5.15 ASR Setup Problems and Corrective Actions

Prob	olem .	Possible Solutions
Slow response to speed changes or speed deviation lasts for too long	Speed reference Motor Speed Time	 Increase the ASR gain. Decrease the integral time.
Overshoot or undershoot at the end of acceleration or deceleration	Motor Speed Speed reference	 Decrease the ASR gain. Increase the integral time.
Vibration and oscillation occur at constant speed	Speed reference Motor Speed Time	 Decrease the ASR gain. Increase the integral time. Increase the ASR delay time (C5-06).
The motor slip is not fully compensated when running in V/f Control with PG	Speed reference Motor Speed Time	 Check the pulse number set to F1-01 and the gear ratio in F1-12 and F1-13. Make sure the pulse signal from the encoder is set up properly. Check monitor U6-04 and determine if the ASR is working at its output limit (setting of C5-05). If the ASR is at the output limit, increase C5-05.
Integral operation is enabled in V/f Control with PG (C5-12 = 1) and over/undershoot occurs when changing speed.	-	 Decrease the ASR gain. Increase the integral time. Reduce the ASR output limit set in C5-05.
Oscillation at low speed and response is too slow at high speed (or vice versa)	-	 V/f control: Use C5-01/02 and C5-03/04 to set up different ASR settings at minimum and maximum speed. CLV, AOLV/PM, CLV/PM: Use C5-01, C5-02 and C5-03, C5-04 to define optimal ASR settings for high and low speed. Use C5-07 to define a switching frequency.

■ C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2

These parameters adjust the responsiveness of the ASR.

Note: C5-01 is automatically set when ASR Tuning is performed (T1-01 = 9 or T2-01 = 9).

No.	Parameter Name	Setting Range	Default
C5-01	ASR Proportional Gain 1	0.00 to 300.00	Determined by A1-02
C5-02	ASR Integral Time 1	0.000 to 10.000 s	Determined by A1-02
C5-03	ASR Proportional Gain 2	0.00 to 300.00	Determined by A1-02
C5-04	ASR Integral Time 2	0.000 to 10.000 s	Determined by A1-02

These parameter settings will function differently depending on the control mode.

V/f Control with PG

Parameters C5-01 and C5-02 determine the ASR characteristics at maximum speed. Parameters C5-03 and C5-04 determine the characteristics at minimum speed.

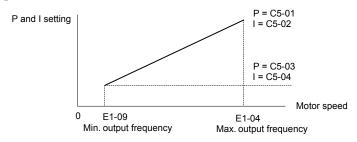


Figure 5.39 ASR Gain and Integral Time in V/f w/PG

CLV, AOLV/PM, and CLV/PM

In these control modes, parameters C5-03 and C5-04 define the ASR gain an integral time at zero speed. The settings in C5-01 and C5-02 are used at speeds above the setting in C5-07. C5-07 is set to 0 as the default so that C5-01 and C5-02 are used over the entire speed range. *Refer to C5-07: ASR Gain Switching Frequency on page 273*.

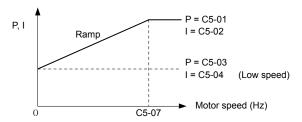


Figure 5.40 Low-speed and High-speed Gain Settings

The gain set in C5-03 can also be activated with a digital input programmed to "ASR gain switch" (H1- $\square\square$ = 77). When the terminal is open, the drive uses the ASR gain level set by the pattern in the figure above. When the terminal closes, C5-03 is used. The integral time set to C5-02 is used to change linearly between these settings. The ASR gain switch command from a multi-function input terminal overrides the switching frequency set to C5-07.

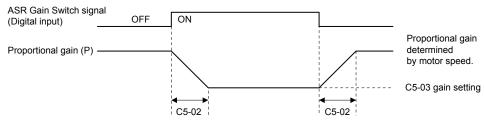


Figure 5.41 ASR Proportional Gain Switch

ASR Gain Tuning (C5-01, C5-03)

The higher this setting, the faster the speed response, although a setting that is too high can lead to oscillation. Increase this setting with larger loads to minimize the speed deviation.

ASR Integral Time Tuning (C5-02, C5-04)

Determines how fast a continuous speed deviation problem is eliminated. A setting that is too long reduces the responsiveness of the speed control. A setting that is too short can cause oscillation.

■ C5-05: ASR Limit

Sets the ASR output limit as a percentage of the maximum output frequency (E1-04). If the motor rated slip is high, the setting might need to be increased to provide proper motor speed control. Use the ASR output monitor U6-04 to determine if ASR is working at the limit set in C5-05. If ASR is working at the limit, make sure the PG pulses (F1-01), PG gear teeth (F1-12, F1-13), and the PG signal are set correctly before making further changes to C5-05.

No.	Parameter Name	Setting Range	Default
C5-05	ASR Limit	0.0 to 20.0%	5.0%

■ C5-06: ASR Primary Delay Time Constant

Sets the filter time constant for the time from the speed loop to the torque command output. Increase this setting gradually in increments of 0.01 for loads with low rigidity or when oscillation is a problem. This parameter rarely needs to be changed.

No.	Parameter Name	Setting Range	Default
C5-06	ASR Primary Delay Time Constant	0.000 to 0.500 s	Determined by A1-02

■ C5-07: ASR Gain Switching Frequency

Sets the frequency where the drive should switch between ASR proportional gain 1 and 2 (C5-01, C5-03) as well as between integral time 1 and 2 (C5-02, C5-04).

No.	Parameter Name	Setting Range	Default
C5-07	ASR Gain Switching Frequency	0.0 to 400.0 Hz <1>	Determined by A1-02 <1>

<1> In AOLV/PM and CLV/PM control modes the setting units and range are expressed as a percent (0.0 to 100.0%) instead of in Hz.

Note: A multi-function input set for the ASR gain switch (H1- $\square\square$ = 77) takes priority over the ASR gain switching frequency.

Switching the proportional gain and integral time in the low or high speed range can help stabilize operation and avoid resonance problems. A good switching point is 80% of the frequency where oscillation occurs or at 80% of the target speed. *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 272.*

■ C5-08: ASR Integral Limit

Sets the upper limit for ASR as a percentage of the rated load.

No.	Parameter Name	Setting Range	Default
C5-08	ASR Integral Limit	0 to 400%	400%

■ C5-12: Integral Operation during Accel/Decel (V/f w/PG)

Enables integral operation during acceleration and deceleration. Use integral operation when driving a heavy load or a high inertia load (default). Set C5-12 to 1 to use integral operation for low inertia/high performance loads. Enabling integral operation may cause problems with overshoot at the end of acceleration and deceleration. *Refer to ASR Setup Problems and Corrective Actions on page 271* to solve such problems.

No.	Parameter Name	Setting Range	Default
C5-12	Integral Operation during Accel/Decel	0, 1	0

Setting 0: Disabled

Integral operation occurs only during constant speed and not during acceleration or deceleration.

Setting 1: Enabled

Integral operation is always enabled.

■ C5-17, C5-18: Motor Inertia, Load Inertia Ratio

C5-17 and C5-18 determine the ratio of the machine inertia to the inertia of the motor being used.

Example: Setting C5-18 to 2.0 reflects a load inertia that is twice the motor inertia.

These parameters are set automatically when Inertia Tuning and ASR Tuning are performed in CLV and CLV/PM control modes. *Refer to Auto-Tuning on page 201* for details on Auto-Tuning or enter the data manually.

No.	Parameter Name	Setting Range	Default
C5-17	Motor Inertia	0.0001 to 600.00 kgm ²	Determined by C6-01, E5-01 and o2-04
C5-18	Load Inertia Ratio	0.0 to 6000.0	1.0

■ C5-21, C5-23 / C5-22, C5-24: Motor 2 ASR Proportional Gain 1, 2 / Integral Time 1, 2

These parameters function for motor 2 the same way that C5-01 through C5-04 function for motor 1. **Refer to C5-01, C5-03/C5-02, C5-04:** ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 272 for details.

No.	Parameter Name	Setting Range	Default
C5-21	Motor 2 ASR Proportional Gain 1	0.00 to 300.00	Determined by E3-01
C5-22	Motor 2 ASR Integral Time 1	0.000 to 10.000 s	Determined by E3-01
C5-23	Motor 2 ASR Proportional Gain 2	0.00 to 300.00	Determined by E3-01
C5-24	Motor 2 ASR Integral Time 2	0.000 to 10.000 s	Determined by E3-01

■ C5-25: Motor 2 ASR Limit

Functions for motor 2 the same way that C5-05 functions for motor 1. Sets the ASR output limit for motor 2 as a percentage of the maximum output frequency (E4-04). *Refer to C5-05: ASR Limit on page 273* for details.

No.	Parameter Name	Setting Range	Default
C5-25	Motor 2 ASR Limit	0.0 to 20.0%	5.0%

■ C5-26: Motor 2 ASR Primary Delay Time Constant

Functions for motor 2 the same way that C5-06 functions for motor 1.Sets the filter time constant for the time from the speed loop to the torque command output. *Refer to C5-06: ASR Primary Delay Time Constant on page 273* for details. This parameter rarely needs to be changed.

No.	Parameter Name	Setting Range	Default
C5-26	Motor 2 ASR Primary Delay Time Constant	0.000 to 0.500 s	0.004 s

■ C5-27: Motor 2 ASR Gain Switching Frequency

Functions for motor 2 the same way that C5-07 functions for motor 1. Sets the frequency for motor 2 to change ASR proportional gain 1 and 2 (C5-21, C5-23) as well as the integral time 1 and 2 (C5-22, C5-24). *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 272* for details.

No.	Parameter Name	Setting Range	Default
C5-27	Motor 2 ASR Gain Switching Frequency	0.0 to 400.0 Hz	0.0 Hz

Note: A multi-function input set for the ASR gain switch (H1- $\square\square$ = 77) takes priority over the ASR gain switching frequency.

■ C5-28: Motor 2 ASR Integral Limit

Functions for motor 2 the same way that C5-08 functions for motor 1. Sets the upper limit for ASR as a percentage of the rated load. *Refer to C5-08: ASR Integral Limit on page 273* for details.

No. Parameter Name		Setting Range	Default
C5-28	Motor 2 ASR Integral Limit	0 to 400%	400%

■ C5-32: Integral Operation during Accel/Decel for Motor 2

Functions for motor 2 the same way that C5-12 functions for motor 1. Enables integral operation during acceleration and deceleration. *Refer to C5-12: Integral Operation during Accel/Decel (V/f w/PG) on page 273* for details.

No.	Parameter Name	Setting Range	Default
C5-32	Integral Operation during Accel/Decel for Motor 2	0, 1	0

Setting 0: Disabled

Integral operation occurs only during constant speed and not during acceleration or deceleration.

Setting 1: Enabled

Integral operation is always enabled.

■ C5-37, C5-38: Motor 2 Inertia, Motor 2 Load Inertia Ratio

These parameters function for motor 2 the same way that C5-17 and C5-18 function for motor 1. These parameters are set automatically when Inertia Tuning and ASR Tuning are performed for motor 2 in CLV and CLV/PM control modes. *Refer to Auto-Tuning on page 201* for details on Auto-Tuning or enter the data manually.

No.	No. Parameter Name		Default
C5-37	C5-37 Motor 2 Inertia		Determined by C6-01 and o2-04
C5-38	Motor 2 Load Inertia Ratio	0.0 to 6000.0	1.0

■ C5-39: ASR Primary Delay Time Constant 2

Sets the filter time constant in seconds for the time from the speed loop to the torque reference output when Single Drive KEB Ride-Thru 2 is enabled (L2-29 = 1). Gradually increase this setting in increments of 0.01 s if oscillation occurs during Single Drive KEB Ride-Thru 2.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
C5-39	ASR Primary Delay Time Constant 2	0.000 to 0.500 s	0.000 s

◆ C6: Carrier Frequency

■ C6-01: Drive Duty Mode Selection

The drive has two different duty modes from which to select based on the load characteristics. The drive rated current, overload capacity, and maximum output frequency will change depending upon the duty mode selection. Use parameter C6-01 to select Heavy Duty (HD) or Normal Duty (ND) for the application. *Refer to Heavy Duty and Normal Duty Ratings on page 546* for details about the rated current.

No.	Parameter Name	Setting Range	Default
C6-01	Duty Mode Selection	0, 1	1 (ND)

Table 5.16 Differences between Heavy Duty and Normal Duty

Characteristics	Heavy Duty Rating (HD)	Normal Duty Rating (ND)	
C6-01	0	1	
Performance	Overload 150 % Rated Load 0 Motor Speed 100 %	Overload Rated Load O Motor Speed 100 %	
Application	Use Heavy Duty Rating for applications requiring a high overload tolerance with constant load torque, such as extruders and conveyors.	Use Normal Duty Rating for applications in which the torque requirements drop along with the speed, such as fans and pumps where a high overload tolerance is not required.	
Overload capability (oL2)	150% of drive rated Heavy Duty current for 60 s	120% of drive rated Normal Duty current for 60 s	
Stall Prevention during Acceleration (L3-02)			
Stall Prevention during Run (L3-06)	150%	120%	
Default Carrier Frequency	2 kHz	2 kHz Swing PWM	

Note: Changing the Duty Mode selection automatically changes the maximum size motor that the drive can run, sets the E2-\pi parameters to appropriate values (E4-\pi for motor 2), and recalculates parameter settings determined by motor capacity (e.g., b8-04, L2-03, n5-02, L3-24, C5-17, and C5-37).

■ C6-02: Carrier Frequency Selection

Sets the switching frequency of the drive output transistors. Changes to the switching frequency lower audible noise and reduce leakage current.

Note:

- 1. Increasing the carrier frequency above the default value automatically lowers the drive current rating. Refer to Rated Current Depending on Carrier Frequency on page 563.
- 2. When using a PM motor, the default carrier frequency is 5.0 kHz. The default is 2 kHz when the drive is set for Heavy Duty performance, and "Swing PWM1" when set for Normal Duty performance.

No.	Parameter Name	Setting Range	Default
C6-02	Carrier Frequency Selection	1 to F < <i>I</i> >	Determined by A1-02, o2-04. Reset when C6-01 is changed.

<1> The setting range is 1, 2, and F for models 4A0930 and 4A1200

Settings:

C6-02	Carrier Frequency	C6-02	Carrier Frequency	C6-02	Carrier Frequency
1	2.0 kHz	5	12.5 kHz (10.0 kHz)	9	Swing PWM 3
2	5.0 kHz (4.0 kHz)	6	15.0 kHz (12.0 kHz)	A	Swing PWM 4
3	8.0 kHz (6.0 kHz)	7	Swing PWM 1	Е	Ugar defined (C6 02 to C6 05)
4	10.0 kHz (8.0 kHz)	8	Swing PWM 2	Г	User defined (C6-03 to C6-05)

Note:

- 1. Swing PWM uses a carrier frequency of 2.0 kHz as a base, then applies a special PWM pattern to reduce the audible noise.
- 2. The value in parenthesis indicates the carrier frequency for AOLV/PM.

Guidelines for Carrier Frequency Parameter Setup

Symptom	Remedy	
Speed and torque are unstable at low speeds		
Noise from the drive affects peripheral devices	Lower the carrier frequency.	
Excessive leakage current from the drive		
Wiring between the drive and motor is too long		
Audible motor noise is too loud	Increase the carrier frequency or use Swing PWM. <2>	

<1> The carrier frequency may need to be lowered if the motor cable is too long. Refer to *Table 5.17*.

Table 5.17 Wiring Distance and Carrier Frequency

	<u>. </u>	· · · · · · · · · · · · · · · · · · ·	
Wiring Distance	Up to 50 m	Up to 100 m	Greater than 100 m
Recommended setting value for C6-02	1 to F (up to 15 kHz)	1 to 2 (up to 5 kHz), 7 (Swing PWM)	1 (up to 2 kHz), 7 (Swing PWM)

Note: The maximum cable length is 100 m when using OLV/PM (A1-02 = 5) or AOLV/PM (A1-02 = 6).

■ C6-03, C6-04, C6-05: Carrier Frequency Upper Limit, Lower Limit, Proportional Gain

These parameters set a user-defined or a variable carrier frequency. Set C6-02 to F to set the upper and lower limits and the carrier frequency proportional gain.

No.	Parameter Name	Setting Range	Default
C6-03	Carrier Frequency Upper Limit	1.0 to 15.0 kHz <1> <2>	
C6-04	Carrier Frequency Lower Limit (V/f Control only)	1.0 to 15.0 kHz <1> <2>	Determined by C6-02
C6-05	Carrier Frequency Proportional Gain (V/f Control only)	0 to 99 <1>	20 02

<1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%).

Setting a Fixed User Defined Carrier Frequency

A carrier frequency between the fixed selectable values can be entered in parameter C6-03 when C6-02 is set to F. In V/f Control, adjust parameter C6-04 to the same value as C6-03.

Setting a Variable Carrier Frequency (V/f Control)

In V/f Control, the carrier frequency can be set up to change linearly with the output frequency by setting the upper and lower limits for the carrier frequency and the carrier frequency proportional gain (C6-03, C6-04, C6-05) as shown in *Figure 5.42*.

<2> The default carrier frequency in ND is Swing PWM (C6-02 = 7), using a 2 kHz base. Increasing the carrier frequency is permissible when the drive is set for Normal Duty, however the drive rated current is reduced when the carrier frequency is increased.

<2> The setting range is 1.0 to 5.0 for models 4A0515 to 4A1200.

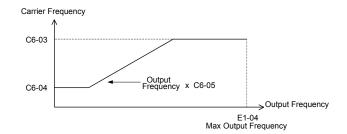


Figure 5.42 Carrier Frequency Changes Relative to Output Frequency

When C6-05 is set lower than 7, C6-04 is disabled and the carrier frequency will be fixed to the value set in C6-03. Note:

C6-09: Carrier Frequency during Rotational Auto-Tuning

Determines the carrier frequency while performing Rotational Auto-Tuning. Although this parameter rarely needs to be changed, when overcurrent problems occur when Auto-Tuning a high frequency motor or low impedance motor, it may be helpful to set C6-03 to a high value before setting C6-09 to 1.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
C6-09	Carrier Frequency during Rotational Auto-Tuning	0, 1	0

Setting 0: Carrier frequency = 5 kHz

In PM control modes, this value is 2 kHz. Note:

Setting 1: Same value set to C6-03

Note: In PM control modes, this value is the carrier frequency set in C6-02.

5.4 d: Reference Settings

The figure below gives an overview of the reference input, selections, and priorities.

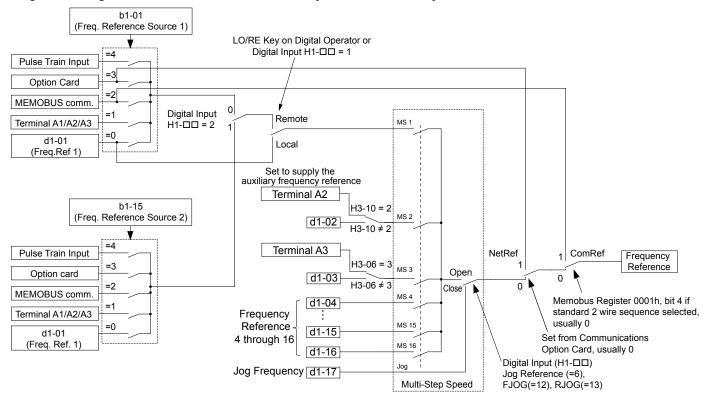


Figure 5.43 Frequency Reference Setting Hierarchy

d1: Frequency Reference

■ d1-01 to d1-17: Frequency Reference 1 to 16 and Jog Frequency Reference

The drive lets the user switch between up to 17 preset frequency references during run (including the Jog reference) through the digital input terminals. The drive uses the acceleration and deceleration times that have been selected when switching between each frequency reference.

The Jog frequency overrides all other frequency references and must be selected by a separate digital input.

The multi-speed references 1, 2, and 3 can be provided by analog inputs.

No.	Parameter Name	Setting Range	Default
d1-01 to d1-16	Frequency Reference 1 to 16	0.00 to 400.00 Hz	0.00 Hz <2>
d1-17	Jog Frequency Reference	0.00 to 400.00 Hz <1> <2>	6.00 Hz <2>

<1> The upper limit is determined by the maximum output frequency (E1-04) and upper limit for the frequency reference (d2-01).

Multi-Step Speed Selection

To use several speed references for a multi-step speed sequence, set the H1- $\Box\Box$ parameters to 3, 4, 5, and 32. To assign the Jog reference to a digital input, set H1- $\Box\Box$ to 6.

Notes on using analog inputs as Multi-Speed 1, 2, and 3:

• Multi-Step Speed 1

Set b1-01 to 1 to set terminal A1 analog input to Multi-Step Speed 1.

Set b1-01 to 0 when setting d1-01, Frequency Reference 1, to Multi-Step Speed 1.

Multi-Step Speed 2

<2> Setting units are determined by parameter o1-03. The default is "Hz" (o1-03 = 0) in V/f, V/f w/PG, OLV, CLV, and OLV/PM control modes. The default for AOLV/PM and CLV/PM control modes expresses the frequency reference as a percentage (o1-03 = 1).

Set H3-06, Terminal A3 Function Selection, to 2 (Auxiliary Frequency Reference 1) when setting terminal A3 analog input to Multi-Step Speed 2.

Set H3-06 to F (Through mode) when setting d1-02, Frequency Reference 2, to Multi-Step Speed 2.

Multi-Step Speed 3

Set H3-10, Terminal A2 Function Selection, to 3 (Auxiliary Frequency Reference 2) when setting terminal A2 analog input to Multi-Step Speed 3.

Set H3-10 to F (Through mode) when setting d1-03, Frequency Reference 3, to Multi-Step Speed 3.

Set H3-09 to 0 and set DIP switch S1 on the control circuit terminal board to V (voltage) when inputting 0 to 10 V to terminal A2 analog input.

Select the different speed references as shown in *Table 5.18*. *Figure 5.44* illustrates the multi-step speed selection.

Table 5.18 Multi-Step Speed Reference and Terminal Switch Combinations

Reference	Multi-Step Speed H1-□□ = 3	Multi-Step Speed 2 H1-□□ = 4	Multi-Step Speed 3 H1-□□ = 5	Multi-Step Speed 4 H1-□□ = 32	Jog Reference H1-□□ = 6
Frequency Reference 1 (set in b1-01)	OFF	OFF	OFF	OFF	OFF
Frequency Reference 2 (d1-02 or input terminal A1, A2, A3)	ON	OFF	OFF	OFF	OFF
Frequency Reference 3 (d1-03 or input terminal A1, A2, A3)	OFF	ON	OFF	OFF	OFF
Frequency Reference 4 (d1-04)	ON	ON	OFF	OFF	OFF
Frequency Reference 5 (d1-05)	OFF	OFF	ON	OFF	OFF
Frequency Reference 6 (d1-06)	ON	OFF	ON	OFF	OFF
Frequency Reference 7 (d1-07)	OFF	ON	ON	OFF	OFF
Frequency Reference 8 (d1-08)	ON	ON	ON	OFF	OFF
Frequency Reference 9 (d1-09)	OFF	OFF	OFF	ON	OFF
Frequency Reference 10 (d1-10)	ON	OFF	OFF	ON	OFF
Frequency Reference 11 (d1-11)	OFF	ON	OFF	ON	OFF
Frequency Reference 12 (d1-12)	ON	ON	OFF	ON	OFF
Frequency Reference 13 (d1-13)	OFF	OFF	ON	ON	OFF
Frequency Reference 14 (d1-14)	ON	OFF	ON	ON	OFF
Frequency Reference 15 (d1-15)	OFF	ON	ON	ON	OFF
Frequency Reference 16 (d1-16)	ON	ON	ON	ON	OFF
Jog Frequency Reference (d1-17) <1>	_	_	_	_	ON

<1> The Jog frequency overrides all other frequency references.

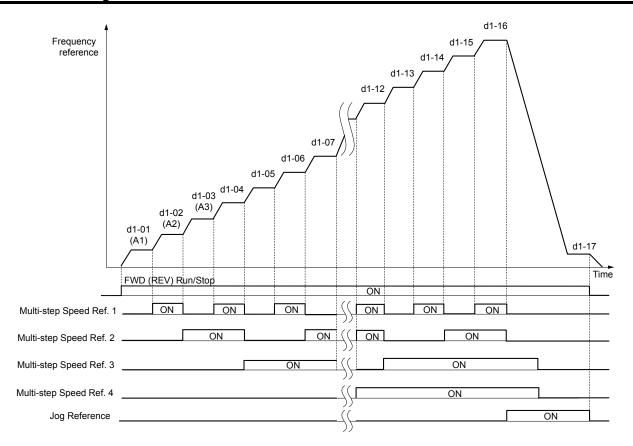


Figure 5.44 Preset Reference Timing Diagram

◆ d2: Frequency Upper/Lower Limits

Upper and lower frequency limits prevent motor speed from going above or below levels that may cause resonance or equipment damage.

■ d2-01: Frequency Reference Upper Limit

Sets the maximum frequency reference as a percentage of the maximum output frequency. This limit applies to all frequency references.

Even if the frequency reference is set to a higher value, the drive internal frequency reference will not exceed this value.

No.	Parameter Name	Setting Range	Default
d2-01	Frequency Reference Upper Limit	0.0 to 110.0%	100.0%

■ d2-02: Frequency Reference Lower Limit

Sets the minimum frequency reference as a percentage of the maximum output frequency. This limit applies to all frequency references.

If a lower reference than this value is entered, the drive will run at the limit set to d2-02. If the drive is started with a lower reference than d2-02, it will accelerate up to d2-02.

No.	Parameter Name	Setting Range	Default
d2-02	Frequency Reference Lower Limit	0.0 to 110.0%	0.0%

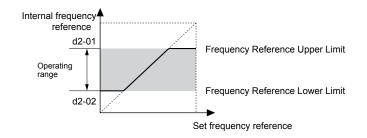


Figure 5.45 Frequency Reference: Upper and Lower Limits

■ d2-03: Master Speed Reference Lower Limit

Sets a lower limit as a percentage of the maximum output frequency that will only affect a frequency reference entered from the analog input terminals (A1, A2, or A3). This is unlike parameter d2-02, which affects all frequency references regardless of their source.

Note: When lower limits are set to both parameters d2-02 and d2-03, the drive uses the greater of those two values as the lower limit.

No.	Parameter Name	Setting Range	Default
d2-03	Master Speed Reference Lower Limit	0.0 to 110.0%	0.0%

♦ d3: Jump Frequency

■ d3-01 to d3-04: Jump Frequencies 1, 2, 3 and Jump Frequency Width

The Jump frequencies are frequency ranges at which the drive will not operate. The drive can be programmed with three separate Jump frequencies to avoid operating at speeds that cause resonance in driven machinery. If the speed reference falls within a Jump frequency dead band, the drive will clamp the frequency reference just below the dead band and only accelerate past it when the frequency reference rises above the upper end of the dead band.

Setting parameters d3-01 through d3-03 to 0.0 Hz disables the Jump frequency function.

No.	Parameter Name	Setting Range	Default
d3-01	Jump Frequency 1	0.0 to 400.0 Hz <1>	0.0 Hz
d3-02	Jump Frequency 2	0.0 to 400.0 Hz <1>	0.0 Hz
d3-03	Jump Frequency 3	0.0 to 400.0 HC <1>	0.0 Hz
d3-04	Jump Frequency Width	0.0 to 20.0 Hz <2>	1.0 Hz <2>

<1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage instead of in Hz.

Figure 5.46 shows the relationship between the Jump frequency and the output frequency.

<2> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percent instead of in Hz. The setting range is 0.0 to 40.0% and the default is 1.0%.

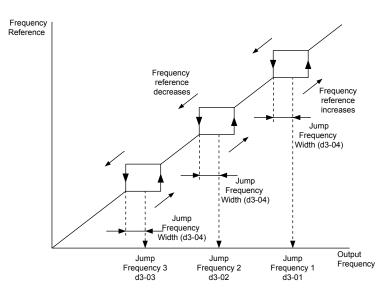


Figure 5.46 Jump Frequency Operation

Note:

- 1. The drive will use the active accel/decel time to pass through the specified dead band range, but will not allow continuous operation in that range.
- 2. When setting more than one Jump frequency, make sure that the parameters do not overlap.

d4: Frequency Reference Hold and Up/Down 2 Function

■ d4-01: Frequency Reference Hold Function Selection

Determines whether the frequency reference or the frequency bias (Up/Down 2) value is saved when the Stop command is entered or the power supply is shut down. This parameter is effective when either of the digital input functions listed below are used:

- Accel/decel ramp hold function (H1- $\square\square$ = A)
- Up/Down function (H1- $\square\square$ = 10 and 11)
- Up/Down 2 function (H1- $\square\square$ = 75 and 76)

No.	Parameter Name	Setting Range	Default
d4-01	Frequency Reference Hold Function Selection	0, 1	0

The operation depends on the function used with parameter d4-01.

Setting 0: Disabled

· Acceleration hold

The hold value will be reset to 0 Hz when the Stop command is entered or the drive power is switched off. The active frequency reference will be the value the drive uses when it restarts.

• Up/Down

The frequency reference value will be reset to 0 Hz when the Stop command is entered or the drive power is switched off. The drive will start from 0 Hz when it is restarted.

Up/Down 2

The frequency bias is not saved when the Stop command is entered, or 5 s after the Up/Down 2 command has been released. The Up/Down 2 function will start with a bias of 0% when the drive is restarted.

Setting 1: Enabled

· Acceleration hold

The last hold value will be saved when the Run command or the drive power is switched off and the drive will use the saved value as the frequency reference when it restarts. Make sure to continuously enable the multi-function input terminal set for "Accel/decel ramp hold" (H1- $\Box\Box$ = A) or the hold value will be cleared when the power is switched on.

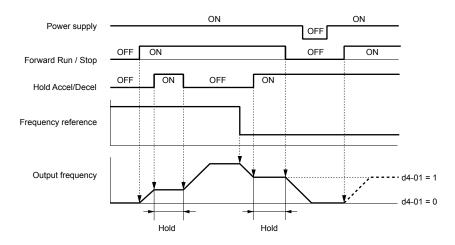


Figure 5.47 Frequency Reference Hold with Accel/Decel Hold Function

• Up/Down

The frequency reference value will be saved when the Run command or the drive power is switched off. The drive will use the frequency reference that was saved when it restarts.

• Up/Down 2 with frequency reference from digital operator

When a Run command is active and the Up/Down 2 command is released for longer than 5 s, the Up/Down 2 bias value is added to the frequency reference and then reset to 0. This new frequency reference is saved and will also be used to restart the drive after the power is cycled.

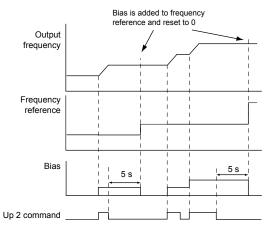


Figure 5.48 Up/Down 2 Example with Reference from Digital Operator and d4-01 = 1

• Up/Down 2 with frequency reference from input sources other than the digital operator

When a Run command is active and the Up/Down 2 command is released for longer than 5 s, the bias value will be saved in parameter d4-06. When restarting after the power is switched off, the drive will add the value saved in d4-06 as a bias to the frequency reference.

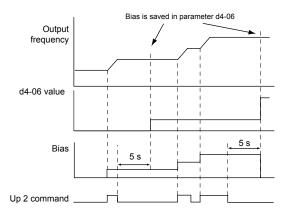


Figure 5.49 Up/Down 2 Example with Other Reference than Digital Operator and d4-01 = 1

Note: Set the limits for Up/Down 2 properly when using d4-01 = 1 in combination with the Up/Down 2 function. Refer to d4-08: Frequency Reference Bias Upper Limit (Up/Down 2) on page 286 and Refer to d4-09: Frequency Reference Bias Lower Limit (Up/Down 2) on page 286 for details on the limit settings.

Clearing the Saved Value

Depending on which function is used, it is possible to clear the saved frequency reference value by:

- Releasing the input programmed for Acceleration hold.
- Setting an Up or Down command while no Run command is active.
- Resetting parameter d4-06 to zero. *Refer to d4-06: Frequency Reference Bias (Up/Down 2) on page 285* for details.

■ d4-03: Frequency Reference Bias Step (Up/Down 2)

Sets the bias added to or subtracted from the frequency reference by the Up/Down 2 function.

No.	Parameter Name	Setting Range	Default
d4-03	Frequency Reference Bias Step (Up/Down 2)	0.00 to 99.99 Hz	0.00 Hz

The operation depends on the set value:

Setting d4-03 = 0.00 Hz

While the Up 2 or Down 2 command is enabled, the bias value is increased or decreased using the accel/decel times determined by parameter d4-04.

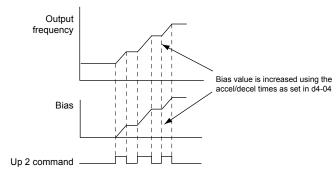


Figure 5.50 Up/Down 2 Bias when d4-03 = 0.00 Hz

Setting d4-03 ≠ 0.00 Hz

When an Up 2 or Down 2 command is enabled, the bias is increased or decreased in steps for the value set in d4-03. The frequency reference changes with the accel/decel times determined by parameter d4-04.

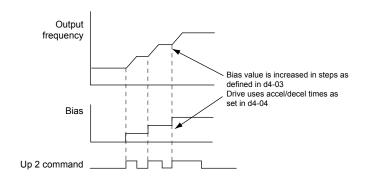


Figure 5.51 Up/Down 2 Bias when d4-03 > 0.00 Hz

■ d4-04: Frequency Reference Bias Accel/Decel (Up/Down 2)

Determines the accel/decel times used to increase or decrease the frequency reference or bias when using the Up/Down 2 function.

No.	Parameter Name	Setting Range	Default
d4-04	Frequency Reference Bias Accel/Decel (Up/Down 2)	0, 1	0

Setting 0: Current Accel/Decel Time

The drive uses the currently active accel/decel time.

Setting 1: Accel/Decel Time 4

The drive uses accel/decel time 4 set to parameters C1-07 and C1-08.

■ d4-05: Frequency Reference Bias Operation Mode Selection (Up/Down 2)

Determines if the bias value is held when the Up/Down 2 inputs are both released or both enabled. The parameter is effective only when parameter d4-03 is set to 0.00.

No.	Parameter Name	Setting Range	Default
d4-05	Frequency Reference Bias Operation Mode Selection (Up/Down 2)	0, 1	0

Setting 0: Hold Bias Value

The bias value will be held if no input Up 2 or Down 2 is active.

Setting 1: Reset Bias Value

The bias is reset to 0% when inputs Up 2 and Down 2 are both on or both off. The drive will use the accel/decel time as selected in d4-04 to accelerate or decelerate to the frequency reference value.

■ d4-06: Frequency Reference Bias (Up/Down 2)

Saves the frequency reference bias value set by the Up/Down 2 function as a percentage of the maximum output frequency. The function of this parameter depends on the Up/Down 2 function configuration. This parameter is not normally used when the digital operator sets the frequency reference.

- The value set to d4-06 will be applied during run, however the value is reset when the frequency reference changes (including multi-step references) and is disabled when d4-01 = 0 and the Run command is removed.
- When d4-01 = 0 and the frequency reference is set by a source other than the digital operator, the value set in d4-06 is added to or subtracted from the frequency reference.
- When d4-01 = 1 and the frequency reference is set by a source other than the digital operator, the bias value adjusted with the Up/Down 2 inputs is stored in d4-06 when 5 s have passed after releasing the Up 2 or Down 2 command. The frequency reference will return to the value without the Up/Down 2 command.

No.	Parameter Name	Setting Range	Default
d4-06	Frequency Reference Bias (Up/Down 2)	-99.9 to 100.0%	0.0%

Conditions that Reset or Disable d4-06

- The Up/Down 2 function has not been assigned to the multi-function terminals.
- The frequency reference source has been changed (including LOCAL/REMOTE or External reference 1/2 switch over by digital inputs).

- d4-03 = 0 Hz, d4-05 = 1, and the Up/Down 2 commands are both open or both closed.
- Any changes to the maximum frequency set to E1-04.

■ d4-07: Analog Frequency Reference Fluctuation Limit (Up/Down 2)

Handles frequency reference changes while the Up 2 or Down 2 terminal is enabled. If the frequency reference changes for more than the level set to d4-07, then the bias value will be held, and the drive will accelerate or decelerate following the frequency reference. When the frequency reference is reached, the bias hold is released and the bias follows the Up/Down 2 input commands.

This parameter is applicable only if the frequency reference is set by an analog or pulse input.

No.	Parameter Name	Setting Range	Default
d4-07	Analog Frequency Reference Fluctuation Limit (Up/Down 2)	0.1 to 100.0%	1.0%

■ d4-08: Frequency Reference Bias Upper Limit (Up/Down 2)

Sets the upper limit of the Up/Down 2 bias (monitor U6-20) and the value that can be saved in parameter d4-06. Set this parameter to an appropriate value before using the Up/Down 2 function.

Note:

When the frequency reference is set by the digital operator (b1-01=0) and d4-01=1, the bias value will be added to the frequency reference if no Up/Down 2 command is received for 5 s, and will be reset to 0 afterwards. From that point, the bias can be increased up to the limit set in d4-08 again.

No.	Parameter Name	Setting Range	Default
d4-08	Frequency Reference Bias Upper Limit (Up/Down 2)	0.0 to 100.0%	100.0%

■ d4-09: Frequency Reference Bias Lower Limit (Up/Down 2)

Sets the lower limit of the Up/Down 2 bias (monitor U6-20) and the value that can be saved in parameter d4-06. Set this parameter to an appropriate value before using the Up/Down 2 function.

Note:

When the frequency reference is set by the digital operator (b1-01 = 0) and d4-01 = 1, the bias value will be added to the frequency reference if no Up/Down 2 command is received for 5 s, and will be reset to 0 afterwards. If the bias is increased using the Up 2 command, it cannot be reduced with a Down 2 command when the limit set in d4-09 is 0. Set a negative lower limit in d4-09 to allow speed reduction in this situation.

No.	Parameter Name	Setting Range	Default
d4-09	Frequency Reference Bias Lower Limit (Up/Down 2)	-99.9 to 0.0%	0.0%

■ d4-10: Up/Down Frequency Reference Limit Selection

Selects how the lower frequency limit is set when using the Up/Down function. *Refer to Setting 10, 11: Up/Down Function on page 323* for details on the Up/Down function in combination with frequency reference limits.

No.	Parameter Name	Setting Range	Default
d4-10	Up/Down Frequency Reference Limit Selection	0, 1	0

Setting 0: Lower Limit is Determined by d2-02 or Analog Input

The higher value between d2-02 and an analog input programmed for Frequency bias (A1, A2, A3) determines the lower frequency reference limit.

Note:

When using the External Reference 1/2 (H1- $\square\square$ = 2) to switch between the Up/Down function and an analog input as the reference source, the analog value becomes the lower reference limit when the Up/Down command is active. Set d4-10 to 1 to make the Up/Down function independent of the analog input value.

Setting 1: Lower Limit is Determined by d2-02

Only parameter d2-02 sets the lower frequency reference limit.

◆ d5: Torque Control

Torque Control defines a setpoint for the motor torque and is available for CLV and CLV/PM (A1-02 = 3, 7).

■ Torque Control Operation

Torque control can be enabled either by setting parameter d5-01 to 1 or by setting digital input (H1- $\square\square$ = 71). *Figure 5.52* illustrates the working principle.

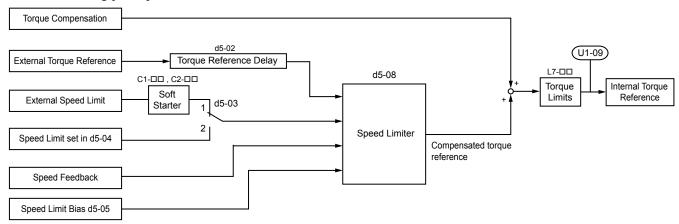


Figure 5.52 Torque Control Block Diagram

The externally input torque reference is the target value for the motor output torque. If the motor torque reference and the load torque are not in balance when in Torque Control, the motor accelerates or decelerates. To prevent operation beyond the speed limit, compensate the external torque reference value if the motor speed reaches the limit. The compensation value is calculated using the speed limit, speed feedback, and the speed limit bias.

If an external torque compensation value is input, it is added to the speed limit compensated torque reference value. The value calculated is limited by the L7- $\square\square$ settings, and is then used as the internal torque reference, which can be monitored in U1-09. The L7- $\square\square$ settings have highest priority. The motor cannot be operated with a higher torque than the L7- $\square\square$ settings even if the external torque reference value is increased.

■ Setting the Torque Reference, Speed Limit, and Torque Compensation Values

Torque Control Reference Sources

Set input values for Torque Control as explained in *Table 5.19*.

Table 5.19 Torque Control Input Value Selection

Input Value	Signal Source	Settings	Remarks
Torque Reference	Analog inputs A1/A2/ A3	H3-02, H3-10, or H3-06 = 13 < <i>I</i> >	Match the input terminal signal level settings to the signal being used. <i>Refer to H3: Multi-Function Analog Inputs on page 341</i> for details on adjusting analog input signals.
	Analog Option	• F2-01 = 0 • H3-02, H3-10, or H3-06 = 13	The F3-\(\subseteq\) settings become effective for the option board input terminals. Match the input terminal signal level settings to the signal being used. <i>Refer to H3: Multi-Function Analog Inputs on page 341</i> for details on adjusting analog input signals.
	MEMOBUS Register 0004H	• b1-01 = 2 • Set Register 000FH, Bit 2 = 1 to enable Torque reference from register 0004H	_
Torque Reference	Communications Option	 b1-01 = 3 F6-06 = 1 Refer to the option card manual for details about setting the torque compensation value. 	_

Input Value	Signal Source	Settings	Remarks
Speed Limit	Signal selected as frequency reference source	d5-03 = 1 The speed limit is taken from the input selected as frequency reference source in parameter b1-01 or b1-15. <1>	The settings in C1-□□ for accel/decel times and in C2-□□ for S-curves are applied to the speed limit value.
	Parameter d5-04	d5-03 = 2	-
	Analog inputs A1/A2/A3	H3-02, H3-10, or H3-06 = 14 < <i>I</i> >	Match the input terminal signal level settings to the signal being used. <i>Refer to H3: Multi-Function Analog Inputs on page 341</i> for details on adjusting analog input signals.
Torque	Analog Option	• F2-01 = 0 • H3-02, H3-10, or H3-06 = 14 <1>	The H3-□□ settings become effective for the option board input terminals. Match the input terminal signal level settings to the signal being used.
Compensation		• b1-01 = 2	
	MEMOBUS Register 0005H	• Set Register 000FH, bit 3 = 1 to enable the torque compensation setting by register 0005H	_
	Communications Option	b1-01 = 3 Refer to the option card manual for details about setting the torque compensation value.	_

<1> Sets analog input terminals A1, A2, and A3 to supply the speed limit, torque reference, or torque compensation. Setting two analog inputs for the same function will trigger an oPE07 error (Multi-Function Analog Input Selection Error).

Input Value Polarity

The direction of the input values described above depends on the polarity of the Run command and the input value.

Run Command Direction	Input Value Polarity	Input Value Direction
Forward	+ (positive)	Forward direction
roiward	- (negative)	Reverse direction
Daviarga	+ (positive)	Reverse direction
Reverse	- (negative)	Forward direction

Table 5.20 Torque Control Signal Polarity

Example:

- With a Forward run command and a positive torque reference signal the internal torque reference will be positive, i.e., in the forward direction.
- With a Forward run command and a negative torque reference signal the internal torque reference will be negative, i.e., in the reverse direction.

When using analog inputs, negative input values can be generated by:

- applying negative voltage input signals.
- using positive analog input signals while setting the analog input bias to negative values so the input value can be negative.
- applying positive voltage input signals and using a digital input that is programmed for H1- $\Box\Box$ = 78.

When using MEMOBUS/Modbus communication or a communication option card, only positive input values can be set.

Independent of its input source, the polarity of the torque reference signal can be inverted using a digital input that is programmed for H1- $\square\square$ = 78. Use this function to input negative torque reference values when using MEMOBUS/Modbus or a communication option card.

Speed Limitation and Speed Limit Bias

The speed limit setting is read from the input selected in parameter d5-03. A bias can be added to this speed limit using parameter d5-05 while parameter d5-08 determines how the speed limit bias is applied. *Table 5.21* explains the relation between these settings.

Operating Conditions Run Forward Reverse Forward Reverse Reverse Forward Reverse Forward Command **Torque** Reverse Positive Negative Negative Negative Negative Positive Positive Reference Positive (Reverse) (Reverse) (Forward) (Reverse) (Reverse) (Forward) (Forward) Direction (Forward) Speed Limit Positive Negative Negative Positive Positive Negative Negative Positive **Direction** (Forward) (Reverse) (Reverse) (Forward) (Forward) (Reverse) (Reverse) (Forward) Normal Operation Forward Reverse Forward Reverse **Direction** Torque Torque Torque Torque Speed Limit Torque Torque Torque ∆n Torque Λn Limit Bias d5-05 Limit Limit Limit Speed Limit Speed Limit Internal Bias d5-05 Bias d5-05 Speed Torque Internal Reference Bidirectiona Limit Speed Torque Speed Limit Limit Bias Reference 1 Speed Speed Speed d5-05 Speed Speed **Limit Bias** (d5-08=0)Internal Speed Torque Internál Limit Bias Speed Limit/ Δn Speed Speed Reference Torque d5-05 Bias d5-05 Limit I imit Reference Speed Limit Torque Torque Torque Torque Δn d5-05 Bias d5-05 Limit Limit Limit Limit Torque Torque Torque Torque Torque Torque Torque Torque Δn Limit Limit Limit Limit Δn Speed Limit Bias d5-05 Speed Speed Limit Internal Internal Unidirection Limit Torque Bias d5-05 Speed Limit Torque Reference al Speed Reference Speed Speed Speed 0 Speed Limit Bias (d5-08=1)Internal Internal Speed Speed Torque Torque Spéed . Limit Bias Speed Reference Limit Bias Reference d5-05 Limit Limit d5-05 Żn Torque Torque Torque Torque Δ'n Δn Limit I imit Limit I imit Unwinder Winder **Application** Line Direction Line Direction Example Line Direction M Line Direction

Table 5.21 Speed Limit, Speed Bias and Speed Limit Priority Selection

> The value of delta n in the drawings depends on the ASR setting in parameters C5- $\Box\Box$.

Indicating Operation at the Speed Limit

Program a digital output to close when the drive operates at or beyond the speed limit (H2- $\Box\Box$ = 32). Use this output to notify a control device such as a PLC of abnormal operating conditions.

■ Switching Between Torque and Speed Control

Use a digital input to switch Torque Control and Speed Control (H1- $\Box\Box$ = 71). When switching from Speed Control to Torque Control, the torque limit becomes the torque reference and the speed reference becomes the speed limit. This change is reversed when switching back to Speed Control.

If required by the application, set up a delay time using parameter d5-06. The reference values (torque reference/speed limit in Torque Control or speed reference/torque limit in Speed Control) are held during this switch delay time. Change the reference values from the controller within this delay time.

Note:

- 1. The switching delay time d5-06 is not applied when the Stop command is entered. Here the operation switches immediately to speed control and the drive decelerates to stop at the torque limit.
- 2. Set d5-01 to 0 when switching between Torque Control and Speed Control. An oPE15 alarm will be triggered if parameter d5-01 is set to 1 while H1-\(\sigma\) is set to 71 at the same time.

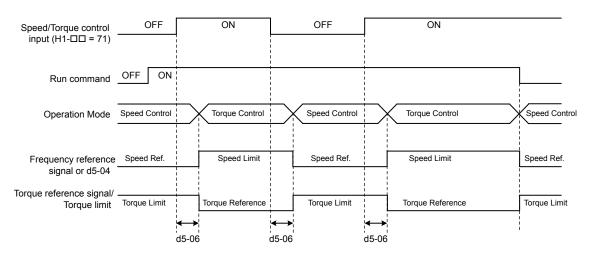


Figure 5.53 Speed/Torque Control Switching Time

■ d5-01: Torque Control Selection

No.	Parameter Name	Setting Range	Default
d5-01	Torque Control Selection	0, 1	0

Setting 0: Disabled

Speed Control will be active. Also use this setting when H1- $\Box\Box$ = 71 (Speed/Torque Control Switch).

Setting 1: Enabled

Torque Control is always enabled.

■ d5-02: Torque Reference Delay Time

Apply a filter with the time constant set to parameter d5-02 to the torque reference signal to eliminate oscillation resulting from an unstable torque reference signal. A higher filter time stabilizes control while reducing the responsiveness.

No.	Parameter Name	Setting Range	Default
d5-02	Torque Reference Delay Time	0 to 1000 ms	0 ms

■ d5-03: Speed Limit Selection

Determines how the speed limit is set.

No.	Parameter Name	Setting Range	Default
d5-03	Speed Limit Selection	1 or 2	1

Setting 1: Frequency Reference Input

The frequency reference value at the active reference source (digital operator, External reference 1 or External reference 2) will be used as speed limit. Note that in this case all settings for accel/decel times (C1-01 to C1-08) and S-curves (C2-01 to C2-04) will apply for the speed limit.

Setting 2: d5-04

The speed limit is set by parameter d5-04.

■ d5-04: Speed Limit

Sets the speed limit during torque control if parameter d5-03 is set to 2. *Refer to Speed Limitation and Speed Limit Bias on page 288*.

No.	Parameter Name	Setting Range	Default
d5-04	Speed Limit	-120 to 120%	0%

■ d5-05: Speed Limit Bias

Applies a bias set as a percentage of the maximum output frequency to the speed limit value. *Refer to Speed Limitation and Speed Limit Bias on page 288*.

No.	Parameter Name	Setting Range	Default
d5-05	Speed Limit Bias	0 to 120%	10%

■ d5-06: Speed/Torque Control Switchover Time

Sets the delay time for switching between Speed Control and Torque Control.

No.	Parameter Name	Setting Range	Default
d5-06	Speed/Torque Control Switchover Time	0 to 1000 ms	0 ms

■ d5-08: Unidirectional Speed Limit Bias

Selects how the speed limit bias is applied.

No.	Parameter Name	Setting Range	Default
d5-08	Unidirectional Speed Limit Bias	0, 1	1

Setting 0: Disabled

The speed limit bias is applied in the speed limit direction and the opposite direction.

Setting 1: Enabled

The speed limit bias is applied in the opposite direction of the speed limit only.

d6: Field Weakening and Field Forcing

Field Weakening

The Field Weakening function reduces the output voltage to a predefined level to reduce the energy consumption of the motor. To activate the Field Weakening function, use a digital input programmed for H1- $\square\square$ = 63. Only use Field Weakening with a known and unchanging light load condition. Use the Energy Saving function (b8- $\square\square$ parameters) when Energy Saving for various different load conditions is required.

Field Forcing

The Field Forcing function compensates the delaying influence of the motor time constant when changing the excitation current reference and improves motor responsiveness. Field Forcing is ineffective during DC Injection Braking.

■ d6-01: Field Weakening Level

Sets the level to which the output voltage is reduced when Field Weakening is activated. Set as percentage of the maximum output voltage.

No.	Parameter Name	Setting Range	Default
d6-01	Field Weakening Level	0 to 100%	80%

■ d6-02: Field Weakening Frequency Limit

Sets the minimum output frequency at which field weakening can be activated. Field Weakening cannot be activated for frequencies below d6-02.

No.	Parameter Name	Setting Range	Default
d6-02	Field Weakening Frequency Limit	0 to 400.0 Hz	0.0 Hz

■ d6-03: Field Forcing Selection

Enables or disables the Field Forcing function.

No.	Parameter Name	Setting Range	Default
d6-03	Field Forcing Selection	0, 1	0

Setting 0: Disabled

Setting 1: Enabled

■ d6-06: Field Forcing Limit

Sets the maximum level at which the Field Forcing function can boost the excitation current reference. The value is set as a percentage of the motor no load current. This parameter does not normally need to be changed.

No.	Parameter Name	Setting Range	Default
d6-06	Field Forcing Limit	100 to 400%	400%

◆ d7: Offset Frequency

■ d7-01 to d7-03: Offset Frequency 1 to 3

Three different offset values can be added to the frequency reference. They can be selected using digital inputs programmed for Offset frequency 1, 2, and 3 (H1- $\square\square$ = 44, 45, 46). The selected offset values are added together if multiple inputs are closed simultaneously. The value is set as a percentage of the Maximum Output Frequency.

Note: This function can replace the "Trim Control" function (H1- $\Box\Box$ = 1C, 1D) of older Yaskawa drives.

No.	Parameter Name	Setting Range	Default
d7-01	Offset Frequency 1	-100.0 to 100.0%	0%
d7-02	Offset Frequency 2	-100.0 to 100.0%	0%
d7-03	Offset Frequency 3	-100.0 to 100.0%	0%

Figure 5.54 illustrates the Offset frequency function.

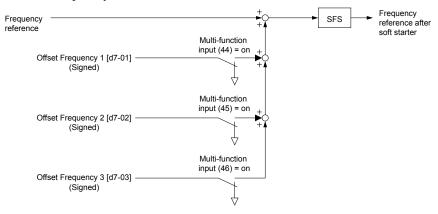


Figure 5.54 Offset Frequency Operation

E: Motor Parameters

E parameters cover V/f pattern and motor data settings.

E1: V/f Pattern for Motor 1

E1-01: Input Voltage Setting

Adjusts the levels of some protective features of the drive (overvoltage, Stall Prevention, etc.). Set this parameter to the nominal voltage of the AC power supply.

NOTICE: Set parameter E1-01 to match the input voltage of the drive. Drive input voltage (not motor voltage) must be set in E1-01 for the protective features to function properly. Failure to set the correct drive input voltage will result in improper drive operation.

No.	Parameter Name	Setting Range	Default
E1-01	Input Voltage Setting	155 to 255 V <1>	230 V <1>

<1> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

E1-01 Related Values

The input voltage setting determines the overvoltage and undervoltage detection levels, the operation levels of the braking transistor, the KEB function, and the overvoltage suppression function.

	ov Detection Level/Dynamic	(Approximate Values)			
Voltage	Setting Value of E1-01	ov Detection Level/Dynamic Braking Transistor Detection Level <1> (rr Detection Level)	Uv Detection Level (L2-05)	Desired DC Bus Voltage during KEB (L2-11)	ov Suppression / Stall Prevention Level (L3-17)
200 V Class	All settings	410 V / 394 V	190 V	260 V	375 V
400 V	setting ≥ 400 V	820 V / 788 V	380 V	500 V	750 V
Class	setting < 400 V	820 V / 788 V	350 V	460 V	750 V
600 V Class	All settings	1178 V / 1132 V	475 V	635 V	930 V

The braking transistor operation levels are valid for the drive internal braking transistor. When using a CDBR braking unit, refer to instruction manual TOBPC72060000 or TOBPC72060001.

■ V/f Pattern Settings (E1-03)

The drive uses a V/f pattern to adjust the output voltage relative to the frequency reference. There are 15 different predefined V/f patterns (setting 0 to E) from which to select, each with varying voltage profiles, saturation levels (frequency at which maximum voltage is reached), and maximum frequencies. Additionally, one custom V/f pattern is available (setting F) that requires the user to create the pattern using parameters E1-04 through E1-10.

■ E1-03: V/f Pattern Selection

Selects the V/f pattern for the drive and motor from 15 predefined patterns or creates a custom V/f pattern.

No.	Parameter Name	Setting Range	Default
E1-03	V/f Pattern Selection	0 to F <2>	F <1>

Parameter is not reset to the default value when the drive is initialized using A1-03.

Setting a Predefined V/f Pattern (Setting 0 to E)

Choose the V/f pattern that best meets the application demands from *Table 5.22*. These settings are available only in V/f Control modes. Set the correct value to E1-03. Parameters E1-04 to E1-13 can only be monitored, not changed.

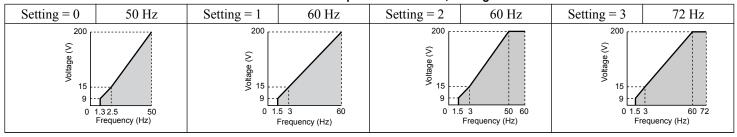
Note:

- 1. Setting an improper V/f pattern may result in low motor torque or increased current due to overexcitation.
- 2. Drive initialization does not reset parameter E1-03.

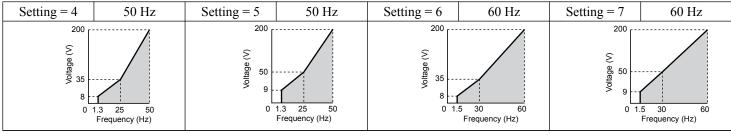
Settings 0 through E are not available when A1-02 = 2, 3, 5, 6, or 7.

Table 5.22 Predefined V/f Patterns

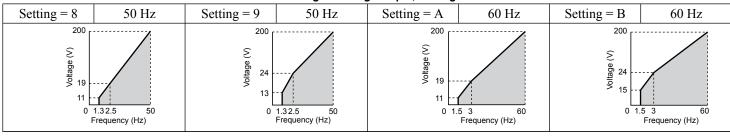
Setting	Specification	Characteristic	Application
0	50 Hz		
1	60 Hz	Constant torque	For general purpose applications. Torque remains constant
2	60 Hz (with 50 Hz base)	Constant torque	regardless of changes to speed.
3	72 Hz (with 60 Hz base)		
4	50 Hz, Variable torque 1		
5	50 Hz, Variable torque 2	Variable torque	For fans, pumps, and other applications where the required
6	60 Hz, Variable torque 1	Variable torque	torque changes as a function of the speed.
7	60 Hz, Variable torque 2		
8	50 Hz, mid starting torque		Select high starting torque when:
9	50 Hz, high starting torque	High starting torque	• Wiring between the drive and motor exceeds 150 m.
A	60 Hz, mid starting torque	riigh starting torque	A large amount of starting torque is required.
В	60 Hz, high starting torque		An AC reactor is installed.
С	90 Hz (with 60 Hz base)		
D	120 Hz (with 60 Hz base)	Constant output	Output voltage is constant when operating at greater than 60 Hz.
Е	180 Hz (with 60 Hz base)		
F <1>	60 Hz	Constant torque	For general purpose applications. Torque remains constant regardless of changes to speed.


<1> Setting F enables a custom V/f pattern by changing parameters E1-04 to E1-13. When the drive is shipped, the default values for parameters E1-04 to E1-13 are the same as those of setting 1.

The following tables show details on predefined V/f patterns.


Predefined V/f Patterns for Models 2A0004 to 2A0021, 4A0002 to 4A0011, and 5A0003 to 5A0009

The values in the following graphs are specific to 200 V class drives. Double the values for 400 V class drives. Multiply the values by 2.875 for 600 V drives.


Table 5.23 Constant Torque Characteristics, Settings 0 to 3

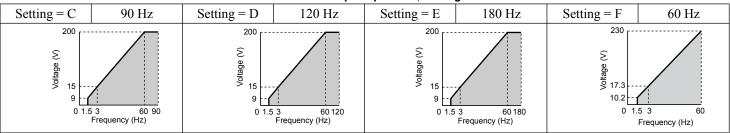
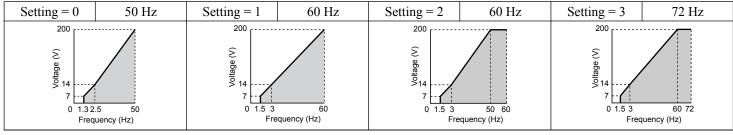
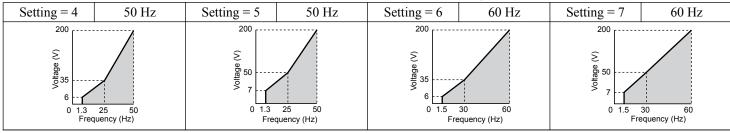
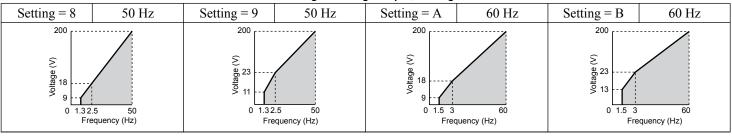

Table 5.24 Derated Torque Characteristics, Settings 4 to 7

Table 5.25 High Starting Torque, Settings 8 to B


Table 5.26 Rated Output Operation, Settings C to F


Predefined V/f Patterns for Models 2A0030 to 2A0211, 4A0018 to 4A0103, and 5A0011 to 5A0077

The values in the following graphs are specific to 200 V class drives. Double the values for 400 V class drives. Multiply the values by 2.875 for 600 V class drives.


Table 5.27 Rated Torque Characteristics, Settings 0 to 3

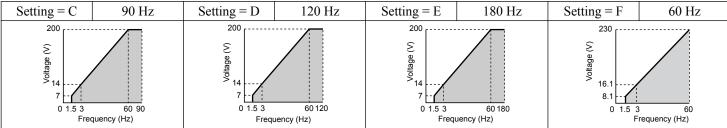

Table 5.28 Derated Torque Characteristics, Settings 4 to 7

Table 5.29 High Starting Torque, Settings 8 to B

Table 5.30 Constant Output, Settings C to F

Predefined V/f Patterns for Models 2A0250 to 2A0415, 4A0139 to 4A1200, and 5A0099 to 5A0242

The values in the following graphs are specific to 200 V class drives. Double the values for 400 V class drives. Multiply the values by 2.875 for 600 V class drives.

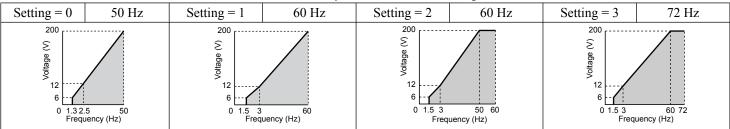


Table 5.32 Derated Torque Characteristics, Settings 4 to 7

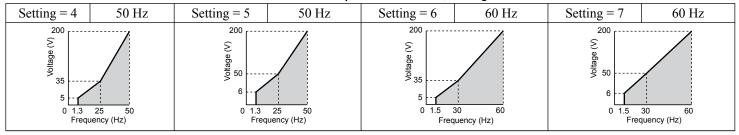


Table 5.33 High Starting Torque, Settings 8 to B

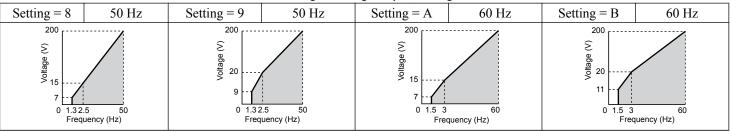
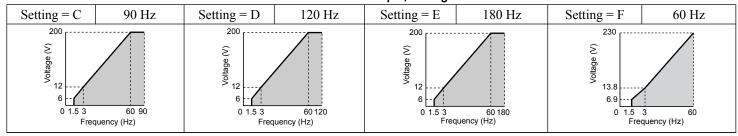



Table 5.34 Constant Output, Settings C to F

Setting a Custom V/f Pattern (Setting F: Default)

Setting parameter E1-03 to F allows the user to set up a custom V/f pattern by changing parameters E1-04 to E1-13. When initialized, the default values for parameters E1-04 to E1-13 will be equal to Predefined V/f pattern 1.

■ V/f Pattern Settings E1-04 to E1-13

If E1-03 is set to a preset V/f pattern (i.e., a value other than F), the user can monitor the V/f pattern in parameters E1-04 through E1-13. To create a new V/f pattern, set E1-03 to F. *Refer to V/f Pattern on page 297* for an example custom V/f pattern.

Note: Certain E1-□□ parameters might not be visible depending on the control mode. *Refer to Parameter List on page 573* for details.

No.	Parameter Name	Setting Range	Default
E1-04	Maximum Output Frequency	40.0 to 400.0 Hz	<2> <3>
E1-05	Maximum Voltage	0.0 to 255.0 V <4>	<2>
E1-06	Base Frequency	0.0 to [E1-04]	<2> <3>
E1-07	Middle Output Frequency	0.0 to [E1-04]	<2>
E1-08	Middle Output Frequency Voltage	0.0 to 255.0 V <4>	<2>
E1-09	Minimum Output Frequency	0.0 to [E1-04] <1>	<2> <3>

No.	Parameter Name	Setting Range	Default
E1-10	Minimum Output Frequency Voltage	0.0 to 255.0 V <4>	<2>
E1-11	Middle Output Frequency 2	0.0 to [E1-04]	0.0 Hz <6>
E1-12	Middle Output Frequency Voltage 2	0.0 to 255.0 V <4>	0.0 V <5> <6>
E1-13	Base Voltage	0.0 to 255.0 V <4>	0.0 V <5> <7>

- <1> Default setting is determined by E5-01 in OLV/PM. When E5-01 is set to FFFFH, the setting range for E1-04 and E1-06 is 10.0 to 40.0 Hz and the setting range for E1-09 is 0.0 to 400.0 Hz.
- <2> Default setting is determined by the control mode.
- <3> When using PM motors, the default setting is determined by the motor code set to E5-01.
- <4> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- <5> The drive changes these settings when Auto-Tuning is performed (Rotational Auto-Tuning, Stationary Auto-Tuning 1, 2).
- <6> Parameter ignored when E1-11 and E1-12 are set to 0.0.
- <7> E1-13 and E1-05 are set to the same value when Auto-Tuning is performed.

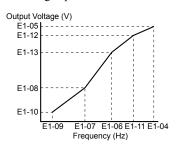


Figure 5.55 V/f Pattern

Note:

- 1. The following condition must be true when setting up the V/f pattern: $E1-09 \le E1-07 < E1-06 \le E1-11 \le E1-04$
- 2. To make the V/f pattern a straight line below E1-06, set E1-09 equal to E1-07. In this case the E1-08 setting is disregarded.
- 3. E1-03 is unaffected when the drive is initialized, but E1-04 through E1-13 return to their default values.
- 4. Only use E1-11, E1-12, and E1-13 to fine-tune the V/f pattern in the constant output range. These parameters rarely need to be changed.

E2: Motor 1 Parameters

These parameters contain the motor data needed for motor 1. Performing Auto-Tuning (including Rotational Auto-Tuning and Stationary Auto-Tuning 1 and 2) automatically sets these parameters. *Refer to Auto-Tuning Fault Detection on page* 457 for details if Auto-Tuning cannot be performed.

Note: The function for switching between two motors cannot be used with a PM motor. $E2-\Box\Box$ parameters are hidden when a PM motor control mode is selected (A1-02 = 5, 6, or 7).

■ E2-01: Motor Rated Current

Provides motor control, protects the motor, and calculates torque limits. Set E2-01 to the full load amps (FLA) stamped on the motor nameplate. If Auto-Tuning completes successfully, the value entered to T1-04 will automatically be saved to E2-01.

No.	Parameter Name	Setting Range	Default
E2-01	Motor Rated Current	10% to 200% of the drive rated current <1>	Determined by C6-01 and o2-04

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

Note: An oPE02 error will occur if the motor rated current in E2-01 is set lower than the motor no-load current in E2-03. Set E2-03 correctly to prevent this error.

■ E2-02: Motor Rated Slip

Sets the motor rated slip in Hz to provide motor control, protect the motor, and calculate torque limits. This value is automatically set during Auto-Tuning (Rotational Auto-Tuning, Stationary Auto-Tuning 1 and 2).

5.5 E: Motor Parameters

No.	Parameter Name	Setting Range	Default
E2-02	Motor Rated Slip	0.00 to 20.00 Hz	Determined by C6-01 and o2-04

If Auto-Tuning cannot be performed, calculate the motor rated slip using the information written on the motor nameplate and the formula below:

 $E2-02 = f - (n \times p)/120$

(f: rated frequency (Hz), n: rated motor speed (r/min), p: number of motor poles)

■ E2-03: Motor No-Load Current

Set the no-load current for the motor in amperes when operating at the rated frequency and the no-load voltage. The drive sets E2-03 during the Auto-Tuning process (Rotational Auto-Tuning and Stationary Auto-Tuning 1, 2). The motor no-load current listed in the motor test report can also be entered to E2-03 manually. Contact the motor manufacturer to receive a copy of the motor test report.

No.	Parameter Name	Setting Range	Default
E2-03	Motor No-Load Current	0 to [E2-01]	Determined by C6-01 and o2-04

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

■ E2-04: Number of Motor Poles

Set the number of motor poles to E2-04. If Auto-Tuning completes successfully, the value entered to T1-06 will automatically be saved to E2-04.

No.	Parameter Name	Setting Range	Default
E2-04	Number of Motor Poles	2 to 48	4

■ E2-05: Motor Line-to-Line Resistance

Sets the line-to-line resistance of the motor stator winding. If Auto-Tuning completes successfully, this value is automatically calculated. Enter this value as line-to-line and not for each motor phase.

If Auto-Tuning is not possible, contact the motor manufacturer to find out the line-to-line resistance or measure it manually. When using the manufacturer motor test report, calculate E2-05 by one of the formulas below:

- E-type insulation: Multiply 0.92 times the resistance value (Ω) listed on the test report at 75 °C.
- B-type insulation: Multiply 0.92 times the resistance value (Ω) listed on the test report at 75 °C.
- F-type insulation: Multiply 0.87 times the resistance value (Ω) listed on the test report at 115 °C.

No.	Parameter Name	Setting Range	Default
E2-05	Motor Line-to-Line Resistance	0.000 to 65000 mΩ	Determined by C6-01 and o2-04

<1> Units are expressed in m Ω for models 4A0930 and 4A1200.

■ E2-06: Motor Leakage Inductance

Sets the voltage drop due to motor leakage inductance as a percentage of motor rated voltage. This value is automatically set during Auto-Tuning (Rotational Auto-Tuning, Stationary Auto-Tuning 1, 2).

No.	Parameter Name	Setting Range	Default
E2-06	Motor Leakage Inductance	0.0 to 40.0%	Determined by C6-01 and o2-04

■ E2-07: Motor Iron-Core Saturation Coefficient 1

Sets the motor iron saturation coefficient at 50% of the magnetic flux. If Rotational Auto-Tuning completes successfully, then this value is automatically calculated and set to E2-07. This coefficient is used when operating with constant output.

No.	Parameter Name	Setting Range	Default
E2-07	Motor Iron-Core Saturation Coefficient 1	0.00 to 0.50	0.50

■ E2-08: Motor Iron-Core Saturation Coefficient 2

Sets the motor iron saturation coefficient at 75% of the magnetic flux. If Rotational Auto-Tuning completes successfully, then this value is automatically calculated and set to E2-08. This coefficient is used when operating with constant output.

No.	Parameter Name	Setting Range	Default
E2-08	Motor Iron-Core Saturation Coefficient 2	E2-07 to 0.75	0.75

■ E2-09: Motor Mechanical Loss

Sets the motor mechanical loss as a percentage of motor rated power (kW) capacity.

Adjust this setting in the following circumstances:

- When there is a large amount of torque loss due to motor bearing friction.
- When there is a large amount of torque loss in a fan or pump application.

The setting for the mechanical loss is added to the torque.

No.	Parameter Name	Setting Range	Default
E2-09	Motor Mechanical Loss	0.0 to 10.0%	0.0%

■ E2-10: Motor Iron Loss for Torque Compensation

Sets the motor iron loss in watts.

No.	Parameter Name	Setting Range	Default
E2-10	Motor Iron Loss for Torque Compensation	0 to 65535 W	Determined by C6-01 and o2-04

■ E2-11: Motor Rated Power

Sets the motor rated power in kW. If Auto-Tuning completes successfully, the value entered to T1-02 will automatically be saved to E2-11.

No.	Parameter Name	Setting Range	Default
E2-11	Motor Rated Power	0.00 to 650.00 kW	Determined by C6-01 and o2-04

Note:

The display resolution depends on the rated output power of the drive after setting the Drive Duty in parameter C6-01. Drive models 2A0004 to 4A0515 display this value in units of 0.01 kW (two decimal places). Drive models 4A0675 to 4A1200 display this value in units of 0.1 kW (one decimal place). *Refer to Nameplate on page 35* for details.

■ Setting Motor Parameters Manually

Follow the instructions below when setting motor-related parameters manually instead of Auto-Tuning. Refer to the motor test report included with the motor to ensure the correct data is entered into the drive.

Set the Motor Rated Current

Enter the motor rated current listed on the nameplate of the motor to E2-01.

Set the Motor Rated Slip

Calculate the motor rated slip using the base speed listed on the motor nameplate. Refer to the formula below, then enter that value to E2-02.

Motor rated slip = rated frequency [Hz] – base speed $[r/min] \times (no. of motor poles) / 120$

Set the No-Load Current

Enter the no-load current at rated frequency and rated voltage to E2-03. This information is not usually listed on the nameplate. Contact the motor manufacturer if the data cannot be found.

The default setting of the no-load current is for performance with a 4-pole Yaskawa motor.

Set the Number of Motor Poles

Only required in V/f Control with PG and Closed Loop Vector Control. Enter the number of motor poles as indicated on motor nameplate.

Set the Line-to-Line Resistance

E2-05 is normally set during Auto-Tuning. If Auto-Tuning cannot be performed, contact the motor manufacturer to determine the correct resistance between motor lines. The motor test report can also be used to calculate this value using the formulas below:

- E-type insulation: Multiply 0.92 times the resistance value (Ω) listed on the test report at 75 °C.
- B-type insulation: Multiply 0.92 times the resistance value (Ω) listed on the test report at 75 °C.
- F-type insulation: Multiply 0.87 times the resistance value (Ω) listed on the test report at 115 °C.

Set the Motor Leakage Inductance

The motor leakage inductance set to E2-06 determines the amount of voltage drop relative to the motor rated voltage. Enter this value for motors with a low degree of inductance, such as high-speed motors. This information is usually not listed on the motor nameplate. Contact the motor manufacturer if the data cannot be found.

Set the Motor Iron-Core Saturation Coefficient 1, 2

E2-07 and E2-08 are set when Auto-Tuning is performed.

Set the Motor Mechanical Loss

Only required in Closed Loop Vector Control. The drive compensates for the degree of mechanical loss with torque compensation. Although E2-09 rarely needs to be changed, adjustment may be necessary in the following circumstances:

- When there is a large amount of torque loss due to motor bearing friction.
- When there is a large amount of torque loss in a fan or pump application.

Set the Motor Iron Loss for Torque Compensation

Only required when using V/f Control. Enter this value in watts to E2-10. The drive uses this setting to improve the precision of torque compensation.

◆ E3: V/f Pattern for Motor 2

These parameters set the V/f pattern used for motor 2. *Refer to Setting 16: Motor 2 Selection on page 325* for details on switching motors.

Note: The function for switching between two motors cannot be used with a PM motor. E3- $\Box\Box$ parameters are hidden when a PM motor control mode is selected (A1-02 = 5, 6, or 7).

■ E3-01: Motor 2 Control Mode Selection

Selects the control mode for motor 2. A control mode for PM motors cannot be selected for motor 2.

No.	Parameter Name	Setting Range	Default
E3-01	Motor 2 Control Mode Selection	0 to 3	0

Note: L1-01 determines protection from motor overload (oL1) in motor 2 and motor 1.

Setting 0: V/f Control

Setting 1: V/f Control with PG

Setting 2: Open Loop Vector Control

Setting 3: Closed Loop Vector Control

■ E3-04 to E3-13

Parameters E3-04 through E3-13 set up the V/f pattern used for motor 2 as shown in *Figure 5.56*.

Note: Certain E3-□□ parameters might not be visible depending on the control mode. *Refer to Parameter List on page 573* for details.

No.	Parameter Name	Setting Range	Default
E3-04	Motor 2 Max Output Frequency	40.0 to 400.0 Hz	<2>
E3-05	Motor 2 Max Voltage	0.0 to 255.0 V <1>	<1> <2>
E3-06	Motor 2 Base Frequency	0.0 to [E3-04]	<2>
E3-07	Motor 2 Mid Output Frequency	0.0 to [E3-04]	<2>
E3-08	Motor 2 Mid Output Frequency Voltage	0.0 to 255.0 V <1>	<1> <2>

No.	Parameter Name	Setting Range	Default
E3-09	Motor 2 Minimum Output Frequency	0.0 to [E3-04]	<2>
E3-10	Motor 2 Minimum Output Frequency Voltage	0.0 to 255.0 V <1>	<1> <2>
E3-11	Motor 2 Mid Output Frequency 2	0.0 to [E3-04]	0.0 Hz <4>
E3-12	Motor 2 Mid Output Frequency Voltage 2	0.0 to 255.0 V <1>	0.0 V <3> <4>
E3-13	Motor 2 Base Voltage	0.0 to 255.0 V <1>	0.0 V <3>

- <1> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- <2> Default setting is determined by the control mode selected for motor 2 (E3-01).
- <3> The drive sets this value when Auto-Tuning is performed (Rotational Auto-Tuning and Stationary Auto-Tuning 1, 2).
- <4> Parameter ignored when E3-11 and E3-12 are set to 0.0.

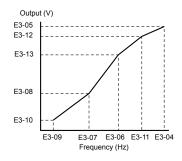


Figure 5.56 V/f Pattern for Motor 2

Note:

- 1. The following conditions must be true when setting up the V/f pattern: E3-09 \leq E3-07 \leq E3-06 \leq E3-11 \leq E3-04
- 2. To make the V/f pattern a straight line at a frequency lower than E3-06, set E3-09 equal to E3-07. In this case, E3-08 is disregarded.
- 3. Parameters E3-04 through E3-13 are reset to their default values when the drive is initialized.
- 4. Only use E3-11, E3-12, and E3-13 to fine-tune the V/f pattern in the constant output range. These parameters rarely need to be changed.

◆ E4: Motor 2 Parameters

E4 parameters contain the motor data for motor 2. These parameters are usually set automatically during the Auto-Tuning process for vector control modes (Rotational Auto-Tuning, Stationary Auto-Tuning 1 and 2). *Refer to Auto-Tuning Fault Detection on page 457* for details if Auto-Tuning cannot be performed.

Note:

The function for switching between two motors cannot be used with a PM motor. E4- $\Box\Box$ parameters are hidden when a PM motor control mode is selected (A1-02 = 5, 6, or 7).

■ E4-01: Motor 2 Rated Current

Protects the motor and calculates torque limits. Set E4-01 to the full load amps (FLA) stamped on the nameplate of motor 2. If Auto-Tuning completes successfully, the value entered to T1-04 will automatically be saved to E4-01.

No.	Parameter Name	Setting Range	Default
E4-01	Motor 2 Rated Current	10 to 200% of the drive rated current. <1>	Determined by C6-01 and o2-04

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

Note:

An oPE02 error will occur if the motor rated current in E4-01 is set lower than the motor no-load current in E4-03. Set E4-03 correctly to prevent this error.

■ E4-02: Motor 2 Rated Slip

Sets the motor 2 rated slip frequency and is the basis for slip compensation value. The drive calculates this value automatically during Auto-Tuning (Rotational Auto-Tuning and Stationary Auto-Tuning 1, 2).

Refer to E2-02: Motor Rated Slip on page 297 for information on calculating the motor rated slip.

No.	Parameter Name	Setting Range	Default
E4-02	Motor 2 Rated Slip	0.00 to 20.00 Hz	Determined by C6-01 and o2-04

■ E4-03: Motor 2 Rated No-Load Current

Sets the no-load current for motor 2 in amperes when operating at the rated frequency and the no-load voltage. The drive sets E2-03 during the Auto-Tuning process (Rotational Auto-Tuning and Stationary Auto-Tuning 1, 2). The motor no-load current listed in the motor test report can also be entered to E2-03 manually. Contact the motor manufacturer for a copy of the motor test report.

No.	Parameter Name	Setting Range	Default
E4-03	Motor 2 Rated No-Load Current	0 to [E4-01]	Determined by C6-01 and o2-04

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

■ E4-04: Motor 2 Motor Poles

Sets the number of poles for motor 2. If Auto-Tuning completes successfully, the value entered to T1-06 will be automatically saved to E4-04.

No.	Parameter Name	Setting Range	Default
E4-04	Motor 2 Motor Poles	2 to 48	4

■ E4-05: Motor 2 Line-to-Line Resistance

Sets the line-to-line resistance for the motor 2 stator winding. If Auto-Tuning completes successfully, this value is automatically calculated. Enter this value as line-to-line and not for each motor phase. *Refer to E2-05: Motor Line-to-Line Resistance on page 298* to manually enter this parameter setting.

No.	Parameter Name	Setting Range	Default
E4-05	Motor 2 Line-to-Line Resistance	0.000 to 65000 mΩ <i></i>	Determined by C6-01 and o2-04

<1> Units are expressed in m Ω for models 4A0930 and 4A1200.

■ E4-06: Motor 2 Leakage Inductance

Sets the voltage drop due to motor leakage inductance as a percentage of rated voltage of motor 2. This value is automatically set during Auto-Tuning (Rotational Auto-Tuning and Stationary Auto-Tuning 1, 2).

No.	Parameter Name	Setting Range	Default
E4-06	Motor 2 Leakage Inductance	0.0 to 40.0%	Determined by C6-01 and o2-04

■ E4-07: Motor 2 Motor Iron-Core Saturation Coefficient 1

Sets the motor 2 iron saturation coefficient at 50% of magnetic flux. This value is automatically set during Rotational Auto-Tuning. Adjust this parameter when operating in the constant output range.

No.	Parameter Name	Setting Range	Default
E4-07	Motor 2 Motor Iron-Core Saturation Coefficient 1	0.00 to 0.50	0.50

■ E4-08: Motor 2 Motor Iron-Core Saturation Coefficient 2

Sets the motor iron saturation coefficient at 75% of magnetic flux. This value is automatically set during Rotational Auto-Tuning. Adjust this parameter when operating in the constant output range.

No.	Parameter Name	Setting Range	Default
E4-08	Motor 2 Motor Iron-Core Saturation Coefficient 2	[E4-07] to 0.75	0.75

■ E4-09: Motor 2 Mechanical Loss

Sets the motor mechanical loss as a percentage of motor rated power (kW).

Although E4-09 rarely needs to be changed, adjustment may be necessary in the following circumstances:

- When there is a large amount of torque loss due to motor bearing friction.
- When there is a large amount of torque loss in a fan or pump application.

The setting for the mechanical loss is added to the torque.

No.	Parameter Name	Setting Range	Default
E4-09	Motor 2 Mechanical Loss	0.0 to 10.0%	0.0%

■ E4-10: Motor 2 Iron Loss

Sets the motor 2 iron loss in watts.

No.	Parameter Name	Setting Range	Default
E4-10	Motor 2 Iron Loss	0 to 65535 W	Determined by C6-01 and o2-04

■ E4-11: Motor 2 Rated Power

Sets the motor 2 rated power. If Auto-Tuning completes successfully, the value entered to T1-02 will automatically be saved to E4-11.

No.	Parameter Name	Setting Range	Default
E4-11	Motor 2 Rated Power	0.00 to 650.00 kW	Determined by o2-04

Note:

The display resolution depends on the rated output power of the drive after setting the Drive Duty in parameter C6-01. Drive models 2A0004 to 4A0515 display this value in units of 0.01 kW (two decimal places). Drive models 4A0675 to 4A1200 display this value in units of 0.1 kW (one decimal place). *Refer to Nameplate on page 35* for details.

E5: PM Motor Settings

These parameters set the motor data of a PM motor.

When using Yaskawa motors, set up the E5- $\Box\Box$ parameters by entering the motor code written on the motor nameplate.

Perform Auto-Tuning for all other PM motors. The motor data can also be entered manually, if known.

Note: 1. E5-□□ parameters are visible only when a PM motor control mode is selected (A1-02 = 5, 6, or 7).

2. E5- $\Box\Box$ parameters are not reset when the drive is initialized using parameter A1-03.

■ E5-01: Motor Code Selection (for PM Motors)

When using Yaskawa motors, set the motor code for the PM motor being used. The drive automatically sets several parameters to appropriate values depending on the motor code.

Setting parameter E5-01 to FFFF allows the motor data to be manually set using the E5-□□ parameters.

No.	Parameter Name	Setting Range	Default
E5-01	Motor Code Selection (for PM Motors)	0000 to FFFF	Determined by A1-02, C6-01 and o2-04

Note:

- 1. E5-□□ parameters are not reset when the drive is initialized using parameter A1-03.
- 2. When E5-01 is set to a value other than FFFF, the drive will not initialize using parameter A1-03
- 3. Changing E5-01 to FFFF from value other than FFFF will not change the values of parameters E5-02 through E5-24.
- 4. Set E5-01 to FFFF when using a motor other than a Yaskawa SMRA, SSR1, or SST4 series.
- Default settings are: OLV/PM, AOLV/PM: Yaskawa SSR1 Series (1750 r/min) CLV/PM: Yaskawa SST4 Series (1750 r/min)
- **6.** Selection may vary depending on the motor code entered to E5-01.
- If an alarm or hunting occurs despite using a motor code, enter the value indicated on the nameplate. Refer to Auto-Tuning for Permanent
 Magnet Motors on page 202 for details.

Figure 5.57 explains the motor code setting.

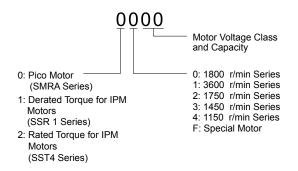


Figure 5.57 PM Motor Code

■ E5-02: Motor Rated Power (for PM Motors)

Sets the rated power of the motor. Determined by the value set to T2-04 during Stationary Auto-Tuning for PM motors or by entering the motor code to E5-01.

No.	Parameter Name	Setting Range	Default
E5-02	Motor Rated Power (for PM Motors)	0.10 to 650.00 kW	Determined by E5-01

■ E5-03: Motor Rated Current (for PM Motors)

Sets the motor rated current in amps. Automatically set when the value is entered to T2-06 during Auto-Tuning.

No.	Parameter Name	Setting Range	Default
E5-03	Motor Rated Current (for PM Motors)	10 to 200% of drive rated current <1>	Determined by E5-01

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units. 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units. 4A0930 and 4A1200: 1 A units.

■ E5-04: Number of Motor Poles (for PM Motors)

Sets the number of motor poles. Automatically set when the value is entered to T2-08 during Auto-Tuning.

No.	Parameter Name	Setting Range	Default
E5-04	Number of Motor Poles (for PM Motors)	2 to 48	Determined by E5-01

■ E5-05: Motor Stator Resistance (r1) (for PM Motors)

Set the resistance for one motor phase. Do not enter the line-to-line resistance into E5-05 when measuring the resistance manually.

No.	Parameter Name	Setting Range	Default
E5-05	Motor Stator Resistance (for PM Motors)	0.000 to 65.000 Ω	Determined by E5-01

■ E5-06: Motor d-Axis Inductance (Ld) (for PM Motors)

Sets the d-Axis inductance in 0.01 mH units. This parameter is set during the Auto-Tuning process.

No.	Parameter Name	Setting Range	Default
E5-06	Motor d-Axis Inductance (for PM Motors)	0.00 to 300.00 mH	Determined by E5-01

■ E5-07: Motor q-Axis Inductance (Lq) (for PM Motors)

Sets the q-Axis inductance in 0.01 mH units. This parameter is set during the Auto-Tuning process.

No.	Parameter Name	Setting Range	Default
E5-07	Motor q-Axis Inductance (for PM Motors)	0.00 to 600.00 mH	Determined by E5-01

■ E5-09: Motor Induction Voltage Constant 1 (Ke) (for PM Motors)

Sets the induced peak voltage per phase in units of 0.1 mV/(rad/s) [electrical angle]. Set this parameter when using an IPM motor with derated torque (SSR1 series or equivalent) or an IPM motor with constant torque (SST4 series or equivalent).

Set the voltage constant with E5-09 or E5-24 when E5-01 is set to FFFF. This parameter is set during Auto-Tuning for PM motors.

No.	Parameter Name	Setting Range	Default
E5-09	Motor Induction Voltage Constant 1 (for PM Motors)	0.0 to 2000.0 mV/(rad/s)	Determined by E5-01

Note:

Set E5-24 to 0 when setting E5-09. However, setting both E5-09 and E5-24 to 0 will trigger an alarm. An alarm will also be triggered if neither E5-09 nor E5-24 are set to 0. When E5-01 is set to FFFF, then E5-09 = 0.0.

■ E5-11: Encoder Z Pulse Offset (ΔΘ) (for PM Motors)

Sets the offset between the rotor magnetic axis and the Z Pulse of the connected encoder. This parameter is set during Auto-Tuning for PM motors and during Z Pulse Tuning.

No.	Parameter Name	Setting Range	Default
E5-11	Encoder Z Pulse Offset (for PM Motors)	-180.0 to 180.0 deg	0.0 deg

■ E5-24: Motor Induction Voltage Constant 2 (Ke) (for PM Motors)

Set the induced phase-to-phase rms voltage in units of 0.1 mV/(r/min) [mechanical angle]. Set this parameter when using an SPM Motor (SMRA Series or equivalent).

When E5-01 is set to FFFF, use either E5-09 or E5-24 for setting the voltage constant. This parameter is set during Parameter Auto-Tuning for PM motors.

No.	Parameter Name	Setting Range	Default
E5-24	Motor Induction Voltage Constant 2 (for PM Motors)	0.0 to 6500.0 mV/(r/min)	Determined by E5-01

Note:

Set E5-24 to 0.0 when setting E5-09. However, setting both E5-09 and E5-24 to 0.0 will trigger an alarm. An alarm will also be triggered if neither E5-09 nor E5-24 are set to 0.0. When E5-01 is set to FFFF, then E5-09 should be set to 0.0.

■ E5-25: Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors)

Switches polarity for initial polarity estimation. There is normally no need to change this parameter from the default value. If "Sd = 1" is listed on the nameplate or in a test report for a Yaskawa motor, this parameter should be set to 1.

Note:

Available control mode varies by drive model:

2A0004 to 2A0415 and 4A0002 to 4A0675: Available when A1-02 = 6, 7

4A0930 and 4A1200: Available when A1-02 = 5, 6, or 7.

No.	Parameter Name	Setting Range	Default
E5-25	Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors)	0, 1	0

Setting 0: "Sd = 1" is not listed Setting 1: "Sd = 1" is listed

5.6 F: Option Settings

◆ F1: PG Speed Control Card Settings

Yaskawa offers PG-X3, PG-B3, PG-RT3, and PG-F3 motor encoder PG option cards. Use the CN5-C port when using only one PG option card and use the CN5-C and CN5-B ports when using two PG option cards. When programming one of the multi-function input terminals to act as a switch between two motors (H1- $\Box\Box$ = 16), use the card connected to port CN5-C for motor 1 and use the card connected to CN5-B for motor 2.

Table 5.35 lists the parameters that must be set for each option card port.

Table 5.35 Option Card Ports and Corresponding Parameters

Port	Parameters
CN5-C and CN5-B (common)	F1-02 to F1-04, F1-08 to F1-11, F1-14
CN5-C only	F1-01, F1-05, F1-06, F1-12, F1-13, F1-18 to F1-21
CN5-B only	F1-31 to F1-37

■ F1-01, F1-31: PG 1 and PG 2 Pulses Per Revolution

Sets the number encoder number of pulses per revolution.

No.	Parameter Name	Option Port	Setting Range	Default
F1-01	PG 1 Pulses Per Revolution	CN5-C	1 to 60000 ppr <1>	1024 ppr
F1-31	PG 2 Pulses Per Revolution	CN5-B	1 to 60000 ppr	1024 ppr

<1> Setting range is 0 to 15000 in PM motor control modes

■ F1-02, F1-14: PG Open (PGo) Circuit Operation Selection, Detection Time

A PGo fault is triggered if the drive receives no pulse signal for longer than the time set in F1-14. Set the stopping method for a PGo fault in parameter F1-02.

Note: An ov or oC error may occur depending on motor speed and load conditions.

No.	Parameter Name	Option Port	Setting Range	Default
F1-02	Operation Selection at PG Open Circuit (PGo)	CN5-B, CN5-C	0 to 4	1
F1-14	PG Open-Circuit Detection Time	CN5-B, CN5-C	0.0 to 10.0 s	2.0 s

Parameter F1-02 Settings:

Setting 0: Ramp to stop (uses the deceleration time set to C1-02)

Setting 1: Coast to stop

Setting 2: Fast Stop (uses the Fast Stop time set to C1-09)

Setting 3: Alarm only

Note: Due to potential damage to motor and machinery, refrain from using the "Alarm only" or "No alarm display" settings except under special circumstances.

Setting 4: No alarm display

Note: Due to potential damage to motor and machinery, refrain from using the "Alarm only" or "No alarm display" settings except under special circumstances.

■ F1-03, F1-08, F1-09: Overspeed (oS) Operation Selection, Detection Level, Delay Time

An oS fault is triggered when the speed feedback exceeds the value set in F1-08 for longer than the time set in F1-09. Set the stopping method for an oS fault in parameter F1-03.

Note: In AOLV/PM, the motor will coast to a stop (F1-03 = 1). The setting for F1-03 cannot be changed to 0, 2, or 3.

No.	Parameter Name	Option Port	Setting Range	Default
F1-03	Operation Selection at Overspeed (oS)	CN5-B, CN5-C	0 to 3	1
F1-08	Overspeed Detection Level	CN5-B, CN5-C	0 to 120%	115%
F1-09	Overspeed Detection Delay Time	CN5-B, CN5-C	0.0 to 2.0 s	Determined by A1-02

Parameter F1-03 Settings:

Setting 0: Ramp to stop (uses the deceleration time set to C1-02)

Setting 1: Coast to stop

Setting 2: Fast Stop (uses the Fast Stop time set to C1-09)

Setting 3: Alarm only

Note: Due to potential damage to motor and machinery, refrain from using the "Alarm only" setting except under special circumstances.

■ F1-04, F1-10, F1-11: Operation at Speed Deviation (dEv), Detection Level, Delay Time

A speed deviation error (dEv) is triggered when the difference between the frequency reference and the speed feedback exceeds the value set in F1-10 for longer than the time set in F1-1. The stopping method when a speed deviation fault occurs can be selected in parameter F1-04.

No.	Parameter Name	Option Port	Setting Range	Default
F1-04	Operation Selection at Deviation (dEv)	CN5-B, CN5-C	0 to 3	3
F1-10	Excessive Speed Deviation Detection Level	CN5-B, CN5-C	0 to 50%	10%
F1-11	Excessive Speed Deviation Detection Delay Time	CN5-B, CN5-C	0.0 to 10.0 s	0.5 s

Settings for Parameter F1-04:

Setting 0: Ramp to stop (uses the deceleration time set to C1-02)

Setting 1: Coast to stop

Setting 2: Fast Stop (uses the Fast Stop time set to C1-09)

Setting 3: Alarm only (drive continues operating while "dEv" flashes on the screen)

■ F1-05, F1-32: PG 1, PG 2 Rotation Selection

Determines the direction indicated by the pulses from the PG feedback encoder for motor 1 and motor 2.

See PG option card instruction manual for details on setting the direction for the PG encoder and the motor.

No.	Parameter Name	Option Port	Setting Range	Default
F1-05	PG 1 Rotation Selection	CN5-C	0, 1	Determined by A1-02 <1>
F1-32	PG 2 Rotation Selection	CN5-B	0, 1	0

<1> Default is 0 when A1-02 = 1 or 3. Default is 1 when A1-02 = 7.

Setting 0: A pulse leads with Forward run command

Setting 1: B pulse leads with Forward run command

■ F1-06, F1-35: PG 1, PG 2 Division Rate for PG Pulse Monitor

Sets the ratio between the pulse input and the pulse output of a PG option card as a three-digit number, where the first digit (n) sets the numerator and the second and third digit (m) set the denominator as shown below:

$$f_{\text{Pulse Input}} = f_{\text{Pulse Output}} \cdot \frac{(1+n)}{m}$$

Example: Set F1-06 to 032 for a ratio of 1/32 between the PG card pulse input and output.

No.	Parameter Name	Option Port	Setting Range	Default
F1-06	PG 1 Division Rate for PG Pulse Monitor	CN5-C	001 to 032, 102 to 132 (1 to $\frac{1}{32}$)	1
F1-35	PG 2 Division Rate for PG Pulse Monitor	CN5-B	1 to 132 (1 to $\frac{1}{32}$)	1

■ F1-12, F1-13, F1-33, F1-34: PG 1, PG 2 Gear Teeth 1, 2 (V/f w/PG only)

Sets the gear ratio between the motor shaft and the PG encoder. F1-12 and F1-33 set the number of gear teeth on the motor side, while F1-13 and F-34 set the number of gear teeth on the load side. The drive uses the formula below to calculate the motor speed:

r/min = $\frac{\text{Input pulse frequency from PG} \times 60}{\text{Polymorphism}}$

Load-side PG gear teeth (F1-12/33)

Pulses per Rev (F1-01/31)

Motor-side PG gear teeth (F1-13/34)

No.	Parameter Name	Option Port	Setting Range	Default
F1-12	PG 1 Gear Teeth 1	CN5-C	0 to 1000	0
F1-13	PG 1 Gear Teeth 2	CN5-C	0 to 1000	0
F1-33	PG 2 Gear Teeth 1	CN5-B	0 to 1000	0
F1-34	PG 2 Gear Teeth 2	CN5-B	0 to 1000	0

Note:

A gear ratio of 1 will be used if any of these parameters are set to 0.

■ F1-18: dv3 Detection Selection (CLV/PM)

Sets the number of times the drive will detect a dv3 situation before triggering a dv3 fault. The drive detects a dv3 condition when the torque reference and speed reference are in opposite directions while the difference between the actual motor speed and the speed reference is greater than 30%. Setting F1-18 to 0 disables dv3 detection.

No.	Parameter Name	Option Port	Setting Range	Default
F1-18	dv3 Detection Selection	CN5-B, CN5-C	0 to 10	10

Note:

A common cause for a dv3 fault is the incorrect setting of E5-11. Make sure to enter the correct Z Pulse offset to E5-11.

■ F1-19: dv4 Detection Selection (CLV/PM)

Sets the number of pulses necessary to trigger a dv4 fault when there is a motor speed deviation opposite to the frequency reference. Setting F1-19 to 0 disables dv4 detection.

No.	Parameter Name	Option Port	Setting Range	Default
F1-19	dv4 Detection Selection	CN5-B, CN5-C	0 to 5000	128

Note:

- 1. A common cause for a dv4 fault is the incorrect setting of E5-11. Make sure to enter the correct Z-pulse offset to E5-11.
- 2. Set F1-19 to 0 for applications where the direction of the load is the opposite of the speed reference.

■ F1-20, F1-36: PG Option Card Disconnect Detection

Sets whether the drive detects a PG hardware fault (PGoH).

No.	Parameter Name	Option Port	Setting Range	Default
F1-20	PG Option Card Disconnection Detection 1	CN5-C	0, 1	1
F1-36	PG Option Card Disconnection Detection 2	CN5-B	0, 1	1

Setting 0: Disabled

Setting 1: Enabled

■ F1-21, F1-37: PG 1, PG 2 Signal Selection (V/f w/PG only)

Determines whether the signal to the PG option card is single-channel or two-channel.

No.	Parameter Name	Option Port	Setting Range	Default
F1-21	PG 1 Signal Selection	CN5-C	0, 1	0
F1-37	PG 2 Signal Selection	CN5-B	0, 1	0

Setting 0: Single-channel (A channel only)

Setting 1: Two-channel (channels A and B)

■ F1-30: PG Option Card Port for Motor 2 Selection

Specifies the drive port for the PG option card used for motor 2. Set this parameter when switching between motor 1 and motor 2, where both motors supply a speed feedback signal to the drive. Set F1-30 to 0 when using the same PG card for feedback signals from both motors. Set F1-30 to 1 when each motor has its own PG card connected to the drive.

Note:

The motor 2 selection function cannot be used with PM motors.

No.	Parameter Name	Setting Range	Default
F1-30	PG Option Card Port for Motor 2 Selection	0, 1	1

Setting 0: CN5-C

Setting 1: CN5-B

■ F1-50: Encoder Selection

Sets up the type of encoder connected to a PG-F3 option card.

Note

- 1. Available in drive software versions PRG: 1018 and later.
- 2. Refer to the PG-F3 labeling in the field designated "C/N" (S + four digit number)" to identify the PG-F3 software version.
- **3.** Parameter is not available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
F1-50	Encoder Selection	0 to 2	0

Setting 0: EnDat 2.1/01, 2.2/01 Serial Communications operation + Sin/Cos

Setting 1: EnDat 2.2/22 Serial Communications operation

The use of EnDat2.2/22 encoders requires a PG-F3 option with software version 0102 or later.

Setting 2: Hiperface

■ F1-51: PGoH Detection Level

Sets the level for detecting PG Hardware Fault (PGoH). Available when F1-20 = 1.

Usually the relation between the sin and cos track is .

A speed feedback hardware fault is triggered when the value of the square root falls below the level set in F1-51.

Note: Parameter is not available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
F1-51	PGoH Detection Level	1 to 100%	80%

■ F1-52: Communication Speed of Serial Encoder Selection

Selects the speed for serial communication between a PG-F3 option card and serial encoder.

Note:

- 1. Available in drive software versions PRG: 1018 and later.
- 2. Parameter is not available in models 4A0930 and 4A1200.

No.	Parameter Name	Setting Range	Default
F1-52	Communication Speed of Serial Encoder Selection	0 to 3	0

Setting 0: 1M bps / 9600 bps (EnDat 2.2/22 / Hiperface)

Setting 1: 500k bps / 19200 bps (EnDat 2.2/22 / Hiperface)

Setting 2: 1M bps / 38400 bps (EnDat 2.2/22 / Hiperface)

Setting 3: 1M bps / 38400 bps (EnDat 2.2/22 / Hiperface)

◆ F2: Analog Input Card Settings

These parameters set the drive for operation with the analog input option card AI-A3. If no AI-A3 card is connected, drive terminals A1 to A3 are enabled regardless of the F2-01 setting. This section describes parameters that govern operation with an input option card. Refer to the option card instruction manual for specific details on installation, wiring, input signal level selection, and parameter setup.

■ F2-01: Analog Input Option Card Operation Selection

Determines how the input terminals on the AI-A3 option card are used.

No.	Parameter Name	Setting Range	Default
F2-01	Analog Input Option Card Operation Selection	0, 1	0

Setting 0: Separate functions for each terminal (V1, V2, V3 replace terminals A1, A2, A3)

Use the H3- $\Box\Box$ parameters described in *H3-03*, *H3-04*: *Terminal A1 Gain and Bias Settings* on page *342* to set the functions and gain and bias levels for an analog reference supplied by AI-A3.

Note: Setting option card terminals for separate input functions (F2-01 = 0) while b1-01 = 3 will trigger an oPE05 error.

Setting 1: Combine input terminal values to create frequency reference (V1, V2, V3 are combined)

This setting adds all three input signals on the AI-A3 option card to create the frequency reference. Set b1-01 to 3 when the option card is the source of the frequency reference for the drive. Set the gain and bias settings for the frequency reference supplied from AI-A3 with F2-02 and F2-03.

■ F2-02, F2-03: Analog Input Option Card Gain, Bias

Parameter F2-02 sets the gain and parameter F2-03 sets the bias for the AI-A3 input signal when the card is used in the combined input signals mode (F2-01 = 1). Both gain and bias are set as a percentage of the maximum output frequency.

No.	Parameter Name	Setting Range	Default
F2-02	Analog Input Option Card Gain	-999.9 to 999.9%	100.0%
F2-03	Analog Input Option Card Bias	-999.9 to 999.9%	0.0%

Note: Enabled only when F2-01 = 1.

F3: Digital Input Card Settings

These parameters set the drive for operation with the option card DI-A3. Refer to the instruction manual packaged with the option card for specific details on installation, wiring, input signal level selection, and parameter setup.

■ F3-01: Digital Input Option Card Input Selection

Determines the type of input for digital option card DI-A3 when o1-03 is set to 0 or 1.

No.	Parameter Name	Setting Range	Default
F3-01	Digital Input Option Card Input Selection	0 to 7	0

Note: BCD input when o1-03 = 2 or 3. Units are determined by o1-03.

Setting 0: BCD, 1% units

Setting 1: BCD, 0.1% units

Setting 2: BCD, 0.01% units

Setting 3: BCD, 1 Hz units

Setting 4: BCD, 0.1 Hz units

Setting 5: BCD, 0.01 Hz units

Setting 6: BCD, special setting (5 digit input), 0.02 Hz units

Setting 7: Binary

The unit and the setting range are determined by F3-03.

F3-03 = 0: 255/100% (-255 to +255)

F3-03 = 1:4095/100% (-4095 to +4095)

F3-03 = 2: 30000/100% (-33000 to +33000)

Note: BCD input when o1-03 = 2 or 3. Units are determined by o1-03.

■ F3-03: Digital Input Option DI-A3 Data Length Selection

Determines the number of bits for the option card input that sets the frequency reference.

No.	Parameter Name	Setting Range	Default
F3-03	Digital Input Option DI-A3 Data Length Selection	0 to 2	2

Setting 0: 8 bit

Setting 1: 12 bit

Setting 2: 16 bit

F4: Analog Monitor Card Settings

These parameters set the drive for operation with the analog output option card AO-A3. Refer to the instruction manual packaged with the option card for specific details on installation, wiring, input signal level selection, and parameter setup.

■ F4-01, F4-03: Terminal V1, V2 Monitor Selection

Selects the data to output from analog terminal V1. Enter the final three digits of $U\Box$ - \Box to determine which monitor data is output from the option card. Some monitors are only available in certain control modes.

No.	Parameter Name	Setting Range	Default
F4-01	Terminal V1 Monitor Selection	000 to 999	102
F4-03	Terminal V2 Monitor Selection	000 to 999	103

■ F4-02, F4-04, F4-05, F4-06: Terminal V1, V2 Monitor Gain and Bias

Parameters F4-02 and F4-04 determine the gain, while parameters F4-05 and F4-06 set the bias. These parameters are set as a percentage of the output signal from V1 and V2 where 100% equals 10 V output. The terminal output voltage is limited to 10 V.

No.	Parameter Name	Setting Range	Default
F4-02	Terminal V1 Monitor Gain	-999.9 to 999.9%	100.0%
F4-04	Terminal V2 Monitor Gain	-999.9 to 999.9%	50.0%
F4-05	Terminal V1 Monitor Bias	-999.9 to 999.9%	0.0%
F4-06	Terminal V2 Monitor Bias	-999.9 to 999.9%	0.0%

Using Gain and Bias to Adjust Output Signal Level

The output signal is adjustable while the drive is stopped.

Terminal V1

- 1. View the value set to F4-02 (Terminal V1 Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being set in F4-01 will be output from terminal V1.
- 2. Adjust F4-02 viewing the monitor connected to the terminal V1.
- **3.** View the value set to F4-05 on the digital operator, terminal V1 will output a voltage equal to 0% of the parameter being set in F4-01.
- **4.** Adjust F4-05 viewing the output signal on the terminal V1.

Terminal V2

- 1. View the value set to F4-02 (Terminal V2 Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being viewed in F4-03 will be output from terminal V2.
- **2.** Adjust F4-04 viewing the monitor connected to the terminal V2.
- **3.** View the value set to F4-06 on the digital operator, terminal V2 will output a voltage equal to 0% of the parameter being set in F4-03.
- 4. Adjust F4-06 viewing the output signal on the terminal V2.

■ F4-07, F4-08: Terminal V1, V2 Signal Level

Sets the output signal level for terminals V1 and V2.

No.	Parameter Name	Setting Range	Default
F4-07	Terminal V1 Signal Level	0, 1	0
F4-08	Terminal V2 Signal Level	0, 1	0

Setting 0: 0 to 10 V

Setting 1: -10 to 10 V

◆ F5: Digital Output Card Settings

These parameters set the drive for operation with the digital output option card DO-A3. Refer to the instruction manual packaged with the option card for specific details on installation, wiring, input signal level selection, and parameter setup.

■ F5-01 through F5-08: Digital Output Option Card Terminal Function Selection

When F5-09 = 2, the parameters listed in the table below assign functions to the output terminals on the option card.

No.	Name	Setting Range	Default
F5-01	Terminal P1-PC Output Selection	0 to 192	0: During run
F5-02	Terminal P2-PC Output Selection	0 to 192	1: Zero speed
F5-03	Terminal P3-PC Output Selection	0 to 192	2: Speed agree
F5-04	Terminal P4-PC Output Selection	0 to 192	4: Frequency detection 1
F5-05	Terminal P5-PC Output Selection	0 to 192	6: Drive ready
F5-06	Terminal P6-PC Output Selection	0 to 192	37: During frequency output
F5-07	Terminal M1-M2 Output Selection	0 to 192	F: Not used
F5-08	Terminal M3-M4 Output Selection	0 to 192	F: Not used

■ F5-09: DO-A3 Output Mode Selection

Determines how the DO-A3 option card works with the drive.

No.	Parameter Name	Setting Range	Default
F5-09	DO-A3 Output Mode Selection	0 to 2	0

Note: Refer to TOBP C730600 41 Yaskawa AC Drive-Option DO-A3 Installation Manual for more details on F5-09 settings.

Setting 0: Separate Output Functions for Each of 8 Terminals

Setting 1: Binary Output

Setting 2: Output Functions Assigned by F5-01 through F5-08

◆ F6 and F7: Communication Option Card

These parameters configure communication option cards and communication fault detection methods.

Some parameters apply to all communication option cards and some parameters apply to certain network options only. The option cards are applicable to the parameter rows marked with an "O".

0		Parameter Range												
Comm. Protocol	F6-01 to F6-03	F6-04	F6-06 to F6-08	F6-10 to F6-14	F6-20, F6-21	F6-22	F6-23 to F6-26	F6-30 to F6-32	F6-35, F6-36	F6-45 to F6-49	F6-50 to F6-63	F7-01 to F7-15	F7-16	F7-17 to F7-42
CC-Link	О	O	О	О	-	-	_	1	_	_	-	-	_	-
MECHA- TROLINK-II	О	-	O	-	О	О	0	-	-	-	-	-	-	-
MECHA- TROLINK- III	О	-	О	-	О	_	О	-	_	_	-	-	-	-
PROFIBUS- DP	О	-	О	-	_	-	-	О	_	_	-	-	_	-
CANopen	О	-	О	-	-	-	-	-	О	-	-	-	-	-
EtherCAT	О	-	О	-	-	-	-	-	-	-	-	-	-	-
BACnet	О	-	-	-	-	-	-	-	-	0	-	-	-	-
DeviceNet	О	-	О	-	-	-	-	-	-	-	О	-	-	-
LonWorks	О	-	О	-	-	-	-	-	_	-	-	-	-	-
Modbus TCP/IP	О	-	O	-	_	-	-	-	-	-	-	О	O	-
PROFINET	0	-	О	-	-	-	-	-	_	_	-	О	_	О
EtherNet/IP	О	ı	О	-	-	-	-	ı	_	-	_	О	-	О

■ F6-01: Communications Error Operation Selection

Determines drive operation when a communication error occurs.

No.	Parameter Name	Setting Range	Default
F6-01	Communications Error Operation Selection	0 to 3	1

Setting 0: Ramp to Stop (Use the Deceleration Time Set to C1-02)

Setting 1: Coast to Stop

Setting 2: Fast Stop (Use the Fast Stop Time Set to C1-09)

Setting 3: Alarm Only (Continue Operation)

■ F6-02: External Fault from Comm. Option Detection Selection

Determines the detection method of an external fault initiated by a communication option (EF0).

No.	Parameter Name	Setting Range	Default
F6-02	External Fault from Comm. Option Detection Selection	0, 1	0

Setting 0: Always Detected

Setting 1: Detection during Run Only

■ F6-03: External Fault from Comm. Option Operation Selection

Determines drive operation when an external fault is initiated by a communication option (EF0).

No.	Parameter Name	Setting Range	Default
F6-03	External Fault from Comm. Option Operation Selection	0 to 3	1

Setting 0: Ramp to Stop

Setting 1: Coast to Stop

Setting 2: Fast Stop

Setting 3: Alarm Only (Continue Operation)

■ F6-06: Torque Reference/Torque Limit Selection from Comm. Option

Selects whether torque reference and torque limit values are assigned to the drive from the network.

No.	Parameter Name	Setting Range	Default
F6-06	Torque Reference/Torque Limit Selection from Comm. Option	0, 1	0

Setting 0: Disabled

Setting 1: Enabled

■ F6-07: NetRef/ComRef Function Selection

Selects the treatment of multi-step speed inputs when the NetRef command is set.

No.	Parameter Name	Setting Range	Default
F6-07	NetRef/ComRef Function Selection	0, 1	0

Setting 0: Multi-step Speed Operation Disabled

Multi-step speed input frequency references are disabled when the NetRef command is selected.

Setting 1: Multi-step Speed Operation Enabled

Multi-step speed inputs are still active and can override the frequency reference from the communications option even when the NetRef command is selected.

■ F6-08: Reset Communication Parameters

Determines whether F6- $\Box\Box$ /F7- $\Box\Box$ communication-related parameters are reset after initialization.

No.	Parameter Name	Setting Range	Default
F6-08	Reset Communication Parameters	0, 1	0

Setting 0: Do Not Reset F6-□□/F7-□□ Parameters after Initialization Using A1-03

Setting 1: Reset F6-□□/F7-□□ Parameters after Initialization Using A1-03

Note: F6-08 is not reset when the drive is initialized.

CC-Link Parameters

Parameters F6-04, F6-10, F6-11, and F6-14 set the drive to operate on a CC-Link network.

■ F6-04: bUS Error Detection Time

Sets the delay time for bUS error detection.

No.	Parameter Name	Setting Range	Default
F6-04	bUS Error Detection Time	0.0 to 5.0 s	2.0 s

■ F6-10: CC-Link Node Address

Sets the node address of a CC-Link option board.

No.	Parameter Name	Setting Range	Default
F6-10	CC-Link Node Address	0 to 64	0

■ F6-11: CC-Link Communication Speed

Sets the communication speed for a CC-Link option card.

No.	Parameter Name	Setting Range	Default
F6-11	CC-Link Communication Speed	0 to 4	0

Setting 0: 156 kbps Setting 1: 625 kbps Setting 2: 2.5 Mbps Setting 3: 5 Mbps Setting 4: 10 Mbps

■ F6-14: CC-Link bUS Error Auto Reset

Selects whether a bUS error can be automatically reset if automatic fault retry is enabled.

No.	Parameter Name	Setting Range	Default
F6-14	CC-Link bUS Error Auto Reset	0, 1	0

Setting 0: Disabled, Auto Reset Not Possible

Setting 1: Enabled, Auto Reset Possible

MECHATROLINK Parameters

■ F6-20: MECHATROLINK Station Address

Sets the station address when the MECHATROLINK option is installed.

Note: All station addresses must be unique. Setting this parameter to 20 or 3F will trigger a Station Address Error (AEr) and turn on the "ERR" light.

No.	Parameter Name	Setting Range	Default
F6-20	MECHATROLINK Station Address	20 to 3FH <1>	21H

<1> Range shown is for the MECHATROLINK-II option (SI-T3). Range for MECHATROLINK-III option (SI-ET3) is: 03 to EFH.

■ F6-21: MECHATROLINK Frame Size

Sets the frame size.

No.	Parameter Name	Setting Range	Default
F6-21	MECHATROLINK Frame Size	0, 1	0

Setting 0: 32-byte (MECHATROLINK-II option setting)

Value for MECHATROLINK-III option is: 64-byte

Setting 1: 17-byte (MECHATROLINK-II option setting) Value for MECHATROLINK-III option is: 32-byte

■ F6-22: MECHATROLINK Link Speed

Sets the communication speed for a MECHATROLINK-II option card.

Note: This parameter is only available with a MECHATROLINK-II option card.

No.	Parameter Name	Setting Range	Default
F6-22	MECHATROLINK Link Speed	0, 1	0

Setting 0: 10 Mbps

Setting 1: 4 Mbps

■ F6-23: MECHATROLINK Monitor Selection (Code 0EH)

Sets MEMOBUS/Modbus register to monitor SEL_MON of INV_CTL and INV_CTL.

Setting byte 10 of INV CTL to "0EH" enables the register set by F6-23.

Bytes 11 and 12 of the response data enable the register content set by F6-23.

No.	Parameter Name	Setting Range	Default
F6-23	MECHATROLINK Monitor Selection (Code 0EH)	0 to FFFFH	0H

■ F6-24: MECHATROLINK Monitor Selection (Code 0FH)

Sets MEMOBUS/Modbus register to monitor SEL MON of INV CTL and INV CTL.

Setting byte 10 of INV CTL to 0FH enables the register set by F6-24.

Bytes 11 and 12 of the response data enable the register content set by F6-24.

No.	Parameter Name	Setting Range	Default
F6-24	MECHATROLINK Monitor Selection (Code 0FH)	0 to FFFFH	ОН

■ F6-25: Operation Selection at Watchdog Error (E5)

No.	Parameter Name	Setting Range	Default
F6-25	Operation Selection at Watchdog Error (E5)	0 to 3	1

Setting 0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.

Setting 1: Coast to stop

Setting 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.

Setting 3: Alarm only

■ F6-26: MECHATROLINK bUS Errors Detected

No.	Parameter Name	Setting Range	Default
F6-26	MECHATROLINK bUS Errors Detected	2 to 10	2

◆ PROFIBUS-DP Parameters

Parameters F6-30 through F6-32 set the drive to run on a PROFIBUS-DP network.

■ F6-30: PROFIBUS-DP Node Address

Sets the node address of a PROFIBUS-DP option card.

No.	Parameter Name	Setting Range	Default
F6-30	PROFIBUS-DP Node Address	0 to 125	0

■ F6-31: PROFIBUS-DP Clear Mode Selection

Determines the operation when a Clear Mode command is received.

No.	Parameter Name	Setting Range	Default
F6-31	PROFIBUS-DP Clear Mode Selection	0, 1	0

Setting 0: Reset

Resets the drive operation (frequency reference, inputs, outputs etc.).

Setting 1: Maintain the Previous State

Returns the drive status to the state prior to receiving the command.

■ F6-32: PROFIBUS-DP Data Format Selection

Selects the data format used for PROFIBUS-DP communication.

No.	Parameter Name	Setting Range	Default
F6-32	PROFIBUS-DP Data Format Selection	0, 1	0

Setting 0: PPO-type Data Format

Setting 1: Conventional Data Format

◆ CANopen Parameters

Parameters F6-35 and F6-36 set the drive to operate on a CANopen network.

■ F6-35: CANopen Node ID Selection

Selects the node ID of a CANopen option board.

No.	Parameter Name	Setting Range	Default
F6-35	CANopen Node ID Selection	0 to 126	0

■ F6-36: CANopen Communication Speed

Sets the communication speed for a CANopen option card.

No.	Parameter Name	Setting Range	Default
F6-36	CANopen Communication Speed	0 to 8	6

Setting 0: Auto detection

Setting 1: 10 kbps Setting 2: 20 kbps

Setting 3: 50 kbps Setting 4: 125 kbps Setting 5: 250 kbps

Setting 6: 500 kbps Setting 7: 800 kbps

Setting 8: 1 Mbps

BACnet Parameters

Parameters F6-45 to F6-49 set the drive to operate on a BACnet network.

■ F6-45: BACnet Node Address

Sets the node address for a BACnet option card.

No.	Parameter Name	Setting Range	Default
F6-45	BACnet Node Address	0 to 127	1

■ F6-46: BACnet Baud Rate

Sets the node address for a BACnet option card.

No.	Parameter Name	Setting Range	Default
F6-46	BACnet Baud Rate	0 to 8	3

Setting 0: 1200
Setting 1: 2400
Setting 2: 4800
Setting 3: 9600
Setting 4: 19200
Setting 5: 38400
Setting 6: 57600
Setting 7: 76800

Setting 8: 115200

■ F6-47: Rx to Tx Wait Time

Sets the wait time between receiving and sending for BACnet.

No.	Parameter Name	Setting Range	Default
F6-47	Rx to Tx Wait Time	5 to 65 ms	5 ms

■ F6-48: BACnet Device Object Identifier 0

Sets the least significant word for BACnet.

No.	Parameter Name	Setting Range	Default
F6-48	BACnet Device Object Identifier 0	0 to FFFF	0

■ F6-49: BACnet Device Object Identifier 1

Sets the least significant word for BACnet.

No.	Parameter Name	Setting Range	Default
F6-49	BACnet Device Object Identifier 1	0 to 3F	0

DeviceNet Parameters

Parameters F6-50 through F6-63 set the drive to operate on a DeviceNet network.

■ F6-50: DeviceNet MAC Address

Sets the MAC address for a DeviceNet option card.

No.	Parameter Name	Setting Range	Default
F6-50	DeviceNet MAC Address	0 to 64	64

■ F6-51: DeviceNet Communication Speed

Sets the communication speed for a DeviceNet option card.

To assign the baud rate for the drive from the upper controller, set F6-51 = 3.

To make the drive detect the network speed, set F6-51 = 4. The drive will automatically adjust itself after detecting the network speed.

5.6 F: Option Settings

No.	Parameter Name	Setting Range	Default
F6-51	DeviceNet Communication Speed	0 to 4	4

Setting 0: 125 kbps Setting 1: 250 kbps Setting 2: 500 kbps

Setting 3: Adjustable from network

Setting 4: Auto detection

■ F6-52: DeviceNet PCA Setting

Defines the format for data the drive receives from the DeviceNet master.

No.	Parameter Name	Setting Range	Default
F6-52	DeviceNet PCA Setting	0 to 255	21

■ F6-53: DeviceNet PPA Setting

Defines the format for data sent from the drive to the DeviceNet master.

No.	Parameter Name	Setting Range	Default
F6-53	DeviceNet PPA Setting	0 to 255	71

■ F6-54: DeviceNet Idle Mode Fault Detection

Determines whether the drive triggers an EF0 fault when no data is received from the master (e.g., when the master is idling).

No.	Parameter Name	Setting Range	Default
F6-54	DeviceNet Idle Mode Fault Detection	0, 1	0

Setting 0: Enabled

Setting 1: Disabled, No Fault Detection

■ F6-55: DeviceNet Baud Rate Monitor

Displays the baud rate currently being used for network communications. F6-55 is used only as a monitor.

No.	Parameter Name	Setting Range	Default
F6-55	DeviceNet Baud Rate Monitor	0 to 2 (read only)	0

Settings:

F6-55	Communication Speed	F6-55	Communication Speed
0	125 kbps	2	500 kbps
1	250 kbps		

■ F6-56 to F6-61: DeviceNet Scaling Factors

These parameters define scaling factors for drive monitors in the DeviceNet Class ID 2AH - AC/DC Drive Object.

No.	Parameter Name	Setting Range	Default
F6-56	DeviceNet Speed Scaling	-15 to 15	0
F6-57	DeviceNet Current Scaling	-15 to 15	0
F6-58	DeviceNet Torque Scaling	-15 to 15	0
F6-59	DeviceNet Power Scaling	-15 to 15	0
F6-60	DeviceNet Voltage Scaling	-15 to 15	0
F6-61	DeviceNet Time Scaling	-15 to 15	0

Setting

The monitor value in the AC/DC Drive Object 2AH is calculated by:

AC/DC Drive Object 2AH Monitor = Drive Value \times 2^{Scaling}

Example:

If the drive output frequency monitor (U1-02) is 5.00 and the scaling is set to F6-56 = 6, then the value in the AC/DC Drive Object 2AH, Instance 1, Attribute 7 would be $500 \times 2^6 = 32000$.

■ F6-62: DeviceNet Heartbeat Interval

Sets the heartbeat interval for DeviceNet communications. A setting of 0 disables the heartbeat function.

No.	Parameter Name	Setting Range	Default
F6-62	DeviceNet Heartbeat Interval	0 to 10	0

■ F6-63: DeviceNet Network MAC ID

Displays the MAC ID assigned to the drive. F6-63 is used only as a monitor.

No.	Parameter Name	Setting Range	Default
F6-63	DeviceNet Network MAC ID	0 to 63 (read only)	0

■ F6-64 to F6-71: Dynamic Assembly Parameters (Reserved)

■ F7-01 to F7-04: IP Address 1 to 4

Sets the significant octet of network static IP address.

■ F7-05 to F7-08: Subnet Mask 1 to 4

Sets the significant octet of network static Subnet Mask.

■ F7-09 to F7-12: Gateway Address 1 to 4

Sets the significant octet of network Gateway address.

Modbus TCP/IP Parameters

Parameters F7-01 through F7-16, U6-80 through U6-93, U6-98, and U6-99 set up the drive to operate on a Modbus TCP/IP network.

For details on parameter settings, refer to the YASKAWA AC Drive 1000-Series Option Modbus TCP/IP Installation Manual and Technical Manual.

◆ PROFINET Parameters

Parameters F7-01 through F7-15, F7-17 through F7-42, U6-80 through U6-93, U6-98, and U6-99 set up the drive to operate on a PROFINET network.

For details on parameter settings, refer to the YASKAWA AC Drive 1000-Series Option PROFINET Installation Manual and Technical Manual.

EtherNet/IP Parameters

Parameters F7-01 through F7-15, F7-17 through F7-42, U6-80 through U6-93, U6-98, and U6-99 set up the drive to operate on an EtherNet/IP network.

For details on parameter settings, refer to the YASKAWA AC Drive 1000-Series Option EtherNet/IP Installation Manual and Technical Manual.

5.7 H: Terminal Functions

H parameters assign functions to the external terminals.

H1: Multi-Function Digital Inputs

■ H1-01 to H1-08: Functions for Terminals S1 to S8

These parameters assign functions to the multi-function digital inputs. The various functions and settings are listed in *Table* 5.36.

No.	Parameter Name	Setting Range	Default
H1-01	Multi-Function Digital Input Terminal S1 Function Selection	1 to 9F	40 (F) <1>: Forward Run Command (2-Wire sequence)
H1-02	Multi-Function Digital Input Terminal S2 Function Selection	1 to 9F	41 (F) <1>: Reverse Run Command (2-Wire sequence)
H1-03	Multi-Function Digital Input Terminal S3 Function Selection	0 to 9F	24: External Fault (N.O., always detected, coast to stop)
H1-04	Multi-Function Digital Input Terminal S4 Function Selection	0 to 9F	14: Fault Reset
H1-05	Multi-Function Digital Input Terminal S5 Function Selection	0 to 9F	3 (0) <1>: Multi-Step Speed Reference 1
H1-06	Multi-Function Digital Input Terminal S6 Function Selection	0 to 9F	4 (3) <1>: Multi-Step Speed Reference 2
H1-07	Multi-Function Digital Input Terminal S7 Function Selection	0 to 9F	6 (4) <1>: Jog Reference Selection
H1-08	Multi-Function Digital Input Terminal S8 Function Selection	0 to 9F	8: External Baseblock Command

<1> Number appearing in parenthesis is the default value after performing a 3-Wire initialization (A1-03 = 3330).

Table 5.36 Multi-Function Digital Input Terminal Settings

Setting	Function	Page	Setting	Function	Page
0	3-Wire Sequence	321	20 to 2F	External Fault	326
1	LOCAL/REMOTE Selection	321	30	PID Integral Reset	327
2	External Reference 1/2 Selection	322	31	PID Integral Hold	327
3	Multi-Step Speed Reference 1		32	Multi-Step Speed Reference 4	327
4	Multi-Step Speed Reference 2	322	34	PID Soft Starter Cancel	327
5	Multi-Step Speed Reference 3		35	PID Input Level Selection	327
6	Jog reference Selection	322	40	Forward Run Command (2-Wire sequence)	227
7	Accel/Decel Time Selection 1	322	41	Reverse Run Command (2-Wire sequence)	327
8	Baseblock Command (N.O.)	222	42	Run Command (2-Wire sequence 2)	220
9	Baseblock Command (N.C.)	322	43	FWD/REV Command (2-Wire sequence 2)	328
A	Accel/Decel Ramp Hold	322	44	Offset Frequency 1	
В	Drive Overheat Alarm (oH2)	323	45	Offset Frequency 2	328
С	Analog Terminal Input Selection	323	46	Offset Frequency 3	
D	PG Encoder Disable	323	47	Node Setup	328
Е	ASR integral reset	323	60	DC Injection Braking Command	328
F	Through Mode	323	61	External Speed Search Command 1	328
10	Up Command	222	62	External Speed Search Command 2	328
11	Down Command	323	63	Field Weakening	328
12	Forward Jog	324	65	KEB Ride-Thru 1 (N.C.)	220
13	Reverse Jog	324	66	KEB Ride-Thru 1 (N.O.)	328
14	Fault Reset	324	67	Communications Test Mode	329
15	Fast Stop (N.O.)	324	68	High Slip Braking (HSB)	329
16	Motor 2 Selection	325	6A	Drive Enabled	329
17	Fast Stop (N.C.)	324	71	Speed/Torque Control Switch	329
18	Timer Function Input	325	72	Zero Servo	329
19	PID Disable	326	75	Up 2 Command	220
1A	Accel/Decel Time Selection 2	326	76	Down 2 Command	329
1B	Program Lockout	326	77	ASR Gain Switch	330
1E	Reference Sample Hold	326	78	External Torque Reference Polarity Inversion	330

Setting	Function	Page
7A	KEB Ride-Thru 2 (N.C.)	330
7B	KEB Ride-Thru 2 (N.O.)	330
7C	Short Circuit Braking (N.O.)	330
7D	Short Circuit Braking (N.C.)	330
7E	Forward/Reverse Detection (V/f control with simple PG)	331

Setting	Function	Page
7F	PID Bi-directional Enable (Reserved)	331
90 to 97	DriveWorksEZ Digital Input 1 to 8	331
9F	DriveWorksEZ Disabled	331

Setting 0: 3-Wire Sequence

The digital input programmed for 3-Wire control becomes the forward/reverse directional input, S1 becomes the Run command input, and S2 becomes the Stop command input.

The drive starts the motor when the input S1 set for the Run command closes for longer than 2 ms. The drive stops the operation when the Stop input S2 is released. When the digital input programmed for a forward/reverse operation is open, the drive is set for forward operation. When the digital input is closed, the drive is set for reverse operation.

Note: Input the Run and Stop commands via S1 and S2 when selecting a 3-Wire sequence.

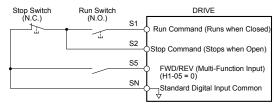


Figure 5.58 3-Wire Sequence Wiring Diagram

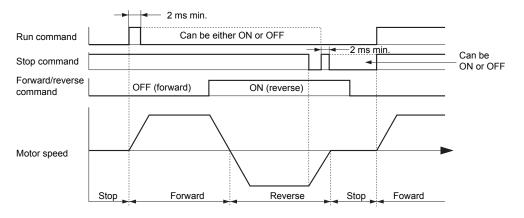


Figure 5.59 3-Wire Sequence

Note:

- 1. The Run command must be closed for more than 2 ms.
- 2. If the Run command is active at power up and b1-17 = 0 (Run command at power up not accepted), the Run LED will flash to indicate that protective functions are operating. If required by the application, set b1-17 to 1 to automatically issue the Run command upon drive power up.

WARNING! Sudden Movement Hazard. Ensure start/stop and safety circuits are wired properly and in the correct state before applying power to the drive. Failure to comply could result in death or serious injury from moving equipment.

WARNING! Sudden Movement Hazard. The drive may start unexpectedly in reverse direction after power up if it is wired for 3-Wire sequence but set up for 2-Wire sequence (default). Make sure b1-17 is set to "0" (drive does not accept a Run command active at power up). When initializing the drive use 3-Wire initialization. Failure to comply could result in death or serious injury from moving equipment.

Setting 1: LOCAL/REMOTE Selection

This setting allows the input terminal to determine if the drive will run in LOCAL mode or REMOTE mode.

Status	Description	
Closed	LOCAL: Frequency reference and Run command are input from the digital operator.	
	REMOTE: Frequency reference and Run command are input from an external reference that has been selected in accordance with settings b1-01 and b1-02 ro b1-15 and b1-16.	

Note:

- 1. The LO/RE key on the digital operator is disabled when one of the multi-function input terminals is set to for LOCAL/REMOTE.
- 2. When the drive is set to LOCAL, the LO/RE LED will light.

3. The default setting of the drive does not allow switching between LOCAL and REMOTE during run. To allow the drive to switch between LOCAL and REMOTE during run, *Refer to b1-07: LOCAL/REMOTE Run Selection on page 238*.

Setting 2: External Reference 1/2 Selection

This function switches the Run command and frequency reference source between External reference 1 and 2 if the drive is in the REMOTE mode.

Status	Description	
Open	External reference 1 is used (defined by parameters b1-01 and b1-02)	
Closed	External reference 2 is used (defined by parameters b1-15 and b1-16)	

Note:

Default drive settings do not allow switching between External reference 1 and 2 during run. *Refer to b1-07: LOCAL/REMOTE Run Selection on page 238* if this feature is required by the application.

Setting 3 to 5: Multi-Step Speed Reference 1 to 3

Switches multi-step speed frequency references d1-01 to d1-08 by digital inputs. *Refer to d1: Frequency Reference on page 278* for details.

Setting 6: Jog Reference Selection

The Jog frequency set in parameter d1-17 becomes the frequency reference when the input terminal closes. *Refer to d1: Frequency Reference on page 278* for details.

Setting 7: Accel/Decel Time Selection 1

Switches between accel/decel times 1 (C1-01 and C1-02) and 2 (C1-03 and C1-04). *Refer to C1-01 to C1-08: Accel, Decel Times 1 to 4 on page 263* for details.

Setting 8, 9: Baseblock Command (N.O., N.C.)

When the drive receives a baseblock command, the output transistors stop switching, the motor coasts to stop, and a bb alarm flashes on the digital operator to indicate baseblock. When baseblock ends while a Run command is active, the drive performs Speed Search to restart the motor.

Digital Input Eupstion	Drive Operation		
Digital Input Function	Input Open	Input Closed	
Setting 9 (N.C.)	Baseblock (Interrupt output)	Normal operation	
Setting 8 (N.O.)	Normal operation	Baseblock (Interrupt output)	

WARNING! Sudden Movement Hazard. When using a mechanical holding brake with the drive in a lifting application, close the brake when the drive output is cut off by a baseblock command triggered by one of the input terminals. Failure to comply will result in a slipping load from the motor suddenly coasting when the baseblock command is entered and may cause serious injury or death.

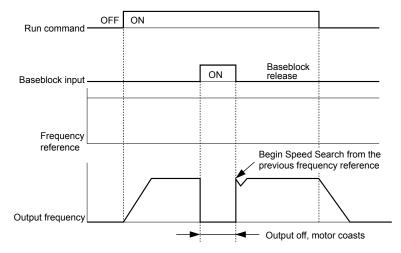


Figure 5.60 Baseblock Operation During Run

Setting A: Accel/Decel Ramp Hold

When the digital input programmed for the Accel/decel ramp hold function closes, the drive locks (holds) the output frequency. Acceleration or deceleration resumes when the input is reopened.

If the Accel/decel ramp hold function is enabled (d4-01 = 1), the drive saves the output frequency to memory when the Ramp Hold input is closed. When the drive is restarted after stop or after power supply interruption, the saved output frequency becomes the frequency reference (provided that the Accel/decel ramp hold input is still closed). **Refer to d4-01: Frequency Reference Hold Function Selection on page 282** for details.

Setting B: Drive Overheat Alarm (oH2)

Triggers an oH2 alarm when the contact closes. Drive operation is not affected because this is an alarm.

Setting C: Analog Terminal Input Selection (Terminal A1, A2, A3)

When closed, the terminals specified in H3-14 are enabled. When open, the drive disregards the input signal to the analog terminals.

Setting D: PG Encoder Disable

When closed, the drive disregards PG feedback from the motor when using V/f Control with PG. When the terminal is reopened, the drive resumes using PG feedback to control motor speed.

Setting E: ASR Integral Reset

Switches between PI control and P control by resetting the integral value. Integral operation is disabled when the terminal is closed and the drive uses P control. PI control resumes when the terminal opens.

Setting F: Through Mode

Select this setting when the terminal is not used or when using the terminal in pass-through mode.

When set to F, an input does not trigger any function in the drive. Setting F, however, still allows the input status to be read out by a PLC via a communication option or MEMOBUS/Modbus communications.

Setting 10, 11: Up/Down Function

The Up/Down function allows the frequency reference to be set by two push buttons when one digital input is programmed as the Up input (H1- $\square\square$ = 10) to increase the frequency reference and the other digital input is programmed as the Down input (H1- $\square\square$ = 11) to decrease the frequency reference.

The Up/Down function takes priority over the frequency references from the digital operator, the analog inputs, and the pulse input (b1-01 = 0, 1, 4). When using the Up/Down function, references provided by these sources will be disregarded.

The inputs operate as shown in *Table 5.37*:

Status Drive Operation Up (10) Down (11) Open Open Hold current frequency reference Closed Open Increase frequency reference Open Closed Decrease frequency reference Closed Closed Hold current frequency reference

Table 5.37 Up, Down Command

Note:

- 1. An oPE03 alarm occurs when only one of the Up/Down functions is programmed to a digital input.
- 2. An oPE03 alarm occurs when the Up/Down function is assigned to the terminals and a different digital input is programmed for the Accel/decel ramp hold function. For more information on alarms, *Refer to Drive Alarms, Faults, and Errors on page 418*.
- 3. The Up/Down function can only be used for External reference 1 for parameter b1-01. Consider this when using Up/Down and the external reference parameter b1-15 switching command (H1-□□ = 2).

Using the Up/Down Function with Frequency Reference Hold (d4-01)

- If the frequency reference hold function is disabled (d4-01 = 0), the Up/Down frequency reference will be reset to 0 when the Run command is cleared or the power is cycled.
- When d4-01 = 1, the drive will save the frequency reference set by the Up/Down function. When the Run command or the power is cycled, the drive will restart with the saved reference value. Close the Up or Down input without an active Run command to reset the saved value. *Refer to d4-01: Frequency Reference Hold Function Selection on page 282*.

Using the Up/Down Function with Frequency Reference Limits

Parameter d2-01 determines the upper frequency reference limit.

The value for the lower frequency reference limit depends on the parameter d4-10 setting. This value can be set by an analog input or parameter d2-02. *Refer to d4-10: Up/Down Frequency Reference Limit Selection on page 286* for details. When a Run command is applied, the lower limits function as follows:

- If the lower limit is set by d2-02 only, the drive accelerates to this limit as soon as a Run command is entered.
- If the lower limit is determined by an analog input only, the drive accelerates to the limit when both the Run command and an Up or Down command are active. The drive will not start running if only the Run command is active.

• If the lower limit is set by both an analog input and d2-02, and the analog limit is higher than the d2-02 value, the drive accelerates to the d2-02 value when a Run command is input. When the d2-02 value is reached, the drive accelerates to the analog limit only if an Up or Down command is set.

Figure 5.61 shows an Up/Down function example with a lower frequency reference limit set by d2-02, and the frequency reference hold function both enabled (d4-01 = 1) and disabled (d4-01 = 0).

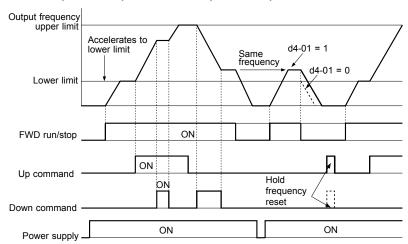


Figure 5.61 Up/Down Command Operation

Setting 12, 13: Forward Jog, Reverse Jog

Digital inputs programmed as Forward Jog (H1- $\square\square$ = 12) and Reverse Jog (H1- $\square\square$ = 13) will be Jog inputs that do not require a Run command. Closing the terminal set for Forward Jog input will cause the drive to ramp to the Jog frequency reference (d1-17) in the forward direction. The Reverse Jog will cause the same action in the reverse direction. The Forward Jog and Reverse Jog command can be set independently.

Note:

The Forward Jog and Reverse Jog commands override all other frequency references. However, if the drive is set to prohibit reverse rotation (b1-04 = 1), activating Reverse Jog will have no effect. Inputting both the Forward Jog and Reverse Jog are simultaneously for 500 ms or longer will trigger an alarm will and the drive will ramp to stop.

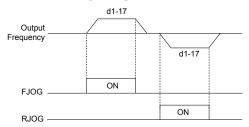


Figure 5.62 FJOG/RJOG Operation

Setting 14: Fault Reset

When the drive detects a fault condition, the fault output contact closes, the drive output shuts off, and the motor coasts to stop (specific stopping methods can be selected for some faults such as L1-04 for motor overheat). After removing the Run command, clear the fault either by pressing the RESET key on the digital operator or closing a digital input configured as a Fault Reset (H1- $\square\square$ = 14).

Note: Remove the Run command prior to resetting a fault. Fault Reset commands are ignored while the Run command is present.

Setting 15, 17: Fast Stop (N.O., N.C.)

The Fast Stop function operates similar to an emergency stop input to the drive. If a Fast Stop command is input while the drive is running, the drive decelerates to a stop in the deceleration time set to C1-09 (*Refer to C1-09: Fast Stop Time on page 264*). The drive can only be restarted after bringing the drive to a complete stop, turning off the Fast Stop input, and switching off the Run command.

- To trigger the Fast Stop function with an N.O. switch, set H1- \square = 15.
- To trigger the Fast Stop function with an N.C. switch, set $H1-\Box\Box=17$.

Figure 5.63 shows an operation example of Fast Stop.

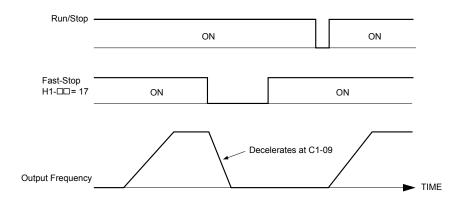


Figure 5.63 Fast Stop Sequence

NOTICE: Rapid deceleration can trigger an overvoltage fault. When faulted, the drive output shuts off, and the motor coasts. To avoid this uncontrolled motor state and to ensure that the motor stops quickly and safely, set an appropriate Fast Stop time to C1-09.

Setting 16: Motor 2 Selection

The drive has the capability to control two induction motors independently. A second motor may be selected using a multifunction digital input as shown in *Figure 5.64*.

Note: The motor 2 selection function cannot be used with PM motors.

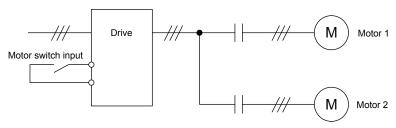


Figure 5.64 Motor Selection

When switching between motor 1 and motor 2, the parameters used to control those motors also change. Below, *Table 5.38* lists the parameters that correspond to each motor:

Table 5.38 Parameters for Switching Between Two Motors

No.	Setting 16 Open (Motor 1)	⇒	Setting 16 Closed (Motor 2)
C1-□□: Acceleration/Deceleration Time	C1-01 to C1-04	⇒	C1-05 to C1-08
C3-□□: Motor Slip Compensation	C3-01 to C3-04	⇒	C3-21 to C3-24
C4-□□: Motor Torque Compensation	C4-01	⇒	C4-07
C5-□□: Speed Control (ASR)	C5-01 to C5-08, C5-12, C5-17, C5-18	⇒	C5-21 to C5-28, C5-32, C5-37, C5-38
E1-□□, E3-□□: V/f Pattern E2-□□, E4-□□: Motor Parameters	E1-□□, E2-□□	⇒	E3-□□ to E4-□□
F1-□□ (PG Constant)	F1-01 to F1-21	⇒	F1-02 to F1-04, F1-08 to F1-11, F1-14, F1-31 to F1-37

Note:

- 1. When using 2 motors, the motor overload protection selection (oL1) set to L1-01 applies to both motor 1 and motor 2.
- 2. Attempting to switch between motor 1 and motor 2 during run will trigger the rUn alarm.
- 3. There is a 500 ms delay when switching between motors equipped with a PG encoder for feedback.
- **4.** The motor 2 selection function cannot be used with PM motors.

If a digital output is programmed for "Motor 2 selection" (H2-01, H2-02, or H2-03 = 1C), the output is closed when motor 2 is selected.

Setting 18: Timer Function Input

This setting configures a digital input terminal as the input for the timer function. Use this setting combination with the timer function output (H2- $\Box\Box$ = 12). *Refer to b4: Delay Timers on page 248* for details.

Setting 19: PID Disable

Close a digital input to indefinitely disable the PID function. When the input is released, the drive resumes PID operation. *Refer to PID Block Diagram on page 251*.

Setting 1A: Accel/Decel Time Selection 2

Selects accel/decel times 1 to 4 in combination with the Accel/decel time selection 1 command. *Refer to C1-01 to C1-08: Accel, Decel Times 1 to 4 on page 263* for details.

Setting 1B: Program Lockout

Parameter values cannot be changed when an input is programmed for Program Lockout and the input is open. It is still possible, however, to view and monitor parameter settings.

Setting 1E: Reference Sample Hold

This function allows the user to sample an analog frequency reference signal being input to terminal A1, A2, or A3 and hold the frequency reference at the sampled level. When the Analog Frequency Reference Sample/Hold function is held for at least 100 ms, the drive reads the analog input and changes the frequency reference to the newly sampled speed as illustrated in *Figure 5.65*.

When the power is shut off and the sampled analog frequency reference is cleared, the frequency reference is reset to 0.

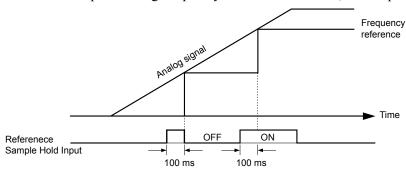


Figure 5.65 Analog Frequency Reference Sample/Hold

An oPE03 error will occur when one of the following functions is used simultaneously with the Analog frequency reference sample/hold command:

- Hold accel/decel stop (setting: A)
- Up command, Down command (setting: 10, 11)
- Offset frequency (setting: 44 to 46)
- Up or Down functions (setting: 75, 76)

Setting 20 to 2F: External Fault

The External fault command stops the drive when problems occur with external devices.

To use the External fault command, set one of the multi-function digital inputs to a value between 20 and 2F. The digital operator will display $EF\square$ where \square is the number of the terminal to which the external fault signal is assigned.

For example, if an external fault signal is input to terminal S3, "EF3" will be displayed.

Select the value to be set in H1- \square from a combination of any of the following three conditions:

- Signal input level from peripheral devices (N.O., N.C.)
- · External fault detection method
- Operation after external fault detection

Table 5.39 shows the relationship between the conditions and the value set to H1- $\square\square$:

Terminal statuses, detection conditions, and stopping methods marked with an "O" are applicable to the corresponding settings.

Table 5.39 Stopping Method for External Fault

	Terminal Status <1>		Detection (Conditions **	Stopping Method			
Setting	N.O.	N.C.	Always Detected	Detected during Run only	Ramp to Stop (fault)	Coast to Stop (fault)	Fast Stop (fault)	Alarm Only (continue running)
20	О		О		О			
21		О	О		О			
22	О			О	О			
23		О		О	О			
24	О		О			О		
25		О	О			О		
26	О			О		О		
27		О		О		О		
28	О		О				О	
29		О	О				О	
2A	О			О			О	
2B		О		О			О	
2C	О		О					О
2D		О	О					О
2E	О			О				О
2F		О		О				О

<1> Determine the terminal status for each fault, i.e., whether the terminal is normally open or normally closed.

Setting 30: PID Integral Reset

Configuring one of the digital inputs for PID integral reset (H1- $\Box\Box$ = 30) resets the value of the integral component in PID control to 0 when the terminal is closed. *Refer to PID Block Diagram on page 251* for more details.

Setting 31: PID Integral Hold

Configuring a digital input for Integral Hold (H1-0 \square = 31) locks the value of the integral component of the PID control as long as the input is active. The PID controller resumes integral operation from the hold value as soon as the integral hold input is released. *Refer to PID Block Diagram on page 251* for more information on this function.

Setting 32: Multi-Step Speed Reference 4

Selects the multi-step speeds d1-09 to d1-16 in combination with the input terminal set for Multi-Step Speed 1, 2 and 3. Refer to d1-01 to d1-17: Frequency Reference 1 to 16 and Jog Frequency Reference on page 278.

Setting 34: PID Soft Starter Cancel

A digital input configured as a PID soft starter cancel input (H1-0 \square = 34) enables or disables the PID soft starter and cancels the PID accel/decel time (b5-17). *Refer to PID Block Diagram on page 251*.

Setting 35: PID Input Level Selection

Allows an input terminal to switch the sign of the PID input. *Refer to PID Block Diagram on page 251* for details.

Setting 40, 41: Forward Run, Reverse Run Command for 2-Wire Sequence

Configures the drive for a 2-Wire sequence.

When an input terminal set to 40 closes, the drive operates in the forward direction. When an input set for 41 closes, the drive operates in reverse. Closing both inputs simultaneously will result in an external fault.

Note:

- 1. This function cannot be used simultaneously with settings 42 and 43.
- 2. The same functions are assigned to terminals S1 and S2 when the drive is initialized for 2-Wire sequence.

<2> Determine whether detection for each fault should be enabled only during run or always detected.

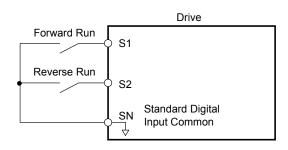


Figure 5.66 Example Wiring Diagram for 2-Wire Sequence

Setting 42, 43: Run and Direction Command for 2-Wire Sequence 2

Sets the drive for 2-Wire sequence 2.

When an input terminal programmed for 42 closes, the drive will operate in the selected direction. The drive will stop when the input opens.

The input programmed for 43 selects the direction. If the input is open, forward direction is selected. If the input is closed, reverse direction is selected.

Note: This function cannot be used simultaneously with settings 40 and 41.

Setting 44, 45, 46: Offset Frequency 1, 2, 3

These inputs add offset frequencies d7-01, d7-02, and d7-03 to the frequency reference. *Refer to d7-01 to d7-03: Offset Frequency 1 to 3 on page 292* for details.

Setting 47: Node Setup

If the SI-S3 option card is connected, closing this terminal sets a node address for operation on a CANopen network.

Setting 60: DC Injection Braking Command

DC Injection Braking is activated when a DC Injection Braking command is input while the drive is stopped. DC Injection Braking is released when a Run command or a Jog command is input. *Refer to b2: DC Injection Braking and Short Circuit Braking on page 239* for details on setting up the DC Injection Braking function.

The diagram below illustrates DC Injection Braking:

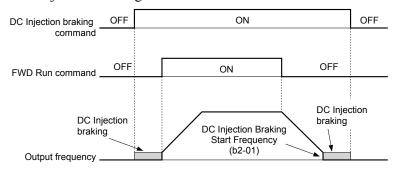


Figure 5.67 DC Injection Braking Input Timing Diagram

Setting 61, 62: External Speed Search Command 1, 2

These input functions enable Speed Search even if parameter b3-01 = 0 (no Speed Search at start). *Refer to Speed Search Activation on page 244* for details on how to use the input signals. *Refer to b3: Speed Search on page 242* for more about Speed Search.

Note: Simultaneously assigning Speed Search 1 and Speed Search 2 to the input terminals will trigger an oPE03 error.

Setting 63: Field Weakening

Enabled in V/f Control. When this input is closed, Field Weakening is performed. For details, see *d6: Field Weakening and Field Forcing*.

Setting 65, 66: KEB Ride-Thru 1 (N.C.), 2 (N.O.)

Enables the KEB Ride-Thru function selected in parameter L2-29. *Refer to KEB Ride-Thru Function on page 360* for more information on this function.

Digital Innut Function	Drive Operation			
Digital Input Function	Input Open	Input Closed		
Setting 65 (N.C.)	KEB Ride-Thru Deceleration	Normal operation		
Setting 66 (N.O.)	Normal operation	KEB Ride-Thru Deceleration		

Note: Simultaneously assigning KEB Ride-Thru 1 and KEB Ride-Thru 2 to the input terminals will trigger an oPE03 error.

Setting 67: Communication Test Mode

The drive has a built-in function to self-diagnose serial communications operation. The test involves wiring the send and receive terminals of the RS-485/422 port together. The drive transmits data and then confirms that the communications are received normally. *Refer to Self-Diagnostics on page 746* for details on how to use this function.

Setting 68: High Slip Braking (HSB)

Closing an input programmed for this function triggers High Slip Braking (available only in V/f and V/f w/PG control modes). After starting HSB, bring the drive to a complete stop and remove the HSB command before restarting. *Refer to n3: High Slip Braking (HSB) and Overexcitation Braking on page 389*.

Setting 6A: Drive Enable

A digital input configured as a "Drive enable" (H1- $\square\square$ = 6A) will prevent the drive from executing a Run command until the input is closed. When the input is open, the digital operator will display "dnE" to indicate that the drive is disabled.

If a Run command is enabled before the terminal set for "Drive enable" closes, then the drive will not run until the Run command is cycled (i.e., a new Run command is required). If the input is opened while the drive is running, the drive will stop according to the stop method set to b1-03 (*Refer to b1-03: Stopping Method Selection on page 233*).

Setting 71: Speed/Torque Control Switch

Switches the drive between Torque Control and Speed Control. Torque Control is enabled when the terminal is closed, and Speed Control is enabled when the terminal is open. Set parameter d5-01 to 0 when using this function. *Refer to d5: Torque Control on page 287* and *Switching Between Torque and Speed Control* on page 289.

Setting 72: Zero Servo

Activates the Zero Servo function to lock the rotor at a certain position. *Refer to b9: Zero Servo on page 262* for details.

Setting 75, 76: Up 2/Down 2 Function

The Up/Down 2 function adds a bias to the frequency reference. The input programmed for 75 will increase the bias and the input programmed for 76 will decrease the bias. *Table 5.40* explains how the Up/Down 2 function works depending on the frequency reference source and parameters d4-01, d4-03, and d4-05. *Refer to d4: Frequency Reference Hold and Up/Down 2 Function on page 282* for detailed explanations of these and other Up/Down 2 related parameters.

Note

- 1. The Up/Down 2 functions must be set as a pair.
- 2. When using the Up/Down 2 function, set appropriate bias limit values to parameters d4-08 and d4-09.

Table 5.40 Up/Down 2 Operations

Condition	Freq. Ref. Source	d4-03	d4-05	d4-01	Operation	Frequency Saved				
1				0	Accelerates (increases the bias) while the Up 2 terminal is closed.	Not saved				
					Decelerates (decreases the bias) while Down 2 is closed.	If the bias and frequency reference				
2			0	1	Holds output frequency (holds the bias) when no Up 2 or Down 2 input or both active.	are constant for 5 s, the bias is added to the active frequency				
	Multi-Step Speed	0							• Resets the bias when the reference changes.	reference and reset afterwards.
	Referêncê	U			• Operates with the frequency reference in all other situations.					
					• Accelerates (increases the bias) while the Up 2 terminal is closed.					
3			1		• Decelerates (decreases the bias) while Down 2 is closed.	Not saved				
					Otherwise operates at the frequency reference.					

Condition	Freq. Ref. Source	d4-03	d4-05	d4-01	Operation	Frequency Saved
4				0	• When the Up 2 is enabled, the drive accelerates to	Not saved
5	Multi-Step Speed Reference	Value other than 0		1	 the frequency reference plus d4-03 (bias is increased for d4-03). When Down 2 is enabled, the drive decelerates to the frequency reference minus d4-03 (bias is decreased for d4-03). Holds output frequency (holds the bias) when neither Up/Down 2 inputs are active or both inputs are active. Resets the bias when the reference changes. Operates with the frequency reference in all other situations. 	If the bias and frequency reference are constant for 5 s, the bias is added to the active frequency reference and reset afterwards.
6				0	Accelerates (increases the bias) while the Up 2 terminal is closed.	Not saved
7	Other (analog comm., etc.)	0	0	1	 Decelerates (decreases the bias) while Down 2 is closed. Holds output frequency (holds the bias) when neither Up/Down 2 inputs are active or both inputs are active. If the frequency reference changes for more than the time set to d4-07 during accel/decel, bias value is held until the output frequency meets the reference (speed agree). 	If the bias is constant for 5 s, it is saved to parameter d4-06. The frequency reference cannot be overwritten, so only the bias is saved.
8		0	1		 Accelerates (increases the bias) while the Up 2 terminal is closed. Decelerates (decreases the bias) while Down 2 is closed. Otherwise operates at the frequency reference 	Not saved
9	Other (analog			0	• When Up 2 is enabled, drive accelerates to the	Not saved
10	comm, etc.)	Value other than 0		1	 frequency reference plus d4-03 (increases the bias for d4-03). When Down 2 is enabled, drive decelerates to the frequency reference minus d4-03 (decreases the bias for d4-03). If the frequency reference changes for more than d4-07 during accel/decel, bias value is held until the output frequency meets the reference (speed agree). 	If the bias is constant for 5 s, it is saved to parameter d4-06. The frequency reference cannot be overwritten, so only the bias is saved.

Setting 77: ASR Gain Switch

Switches the ASR gain between the values set to C5-01 and C5-03. The gain set to C5-03 is enabled when the terminal is closed, and C5-01 is enabled when the terminal reopens. *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 272* for a more detailed description.

Setting 78: External Torque Reference Polarity Inversion

Reverses the direction of the torque reference when the terminal closes. *Refer to d5: Torque Control on page 287* and *Setting the Torque Reference, Speed Limit, and Torque Compensation Values* on page 287 for details.

Setting 7A, 7B: KEB Ride-Thru 2 (N.C., N.O.)

An input terminal set to 7A or 7B can trigger Single Drive KEB Ride-Thru during deceleration. L2-29 is disregarded if this is enabled. *Refer to KEB Ride-Thru Function on page 360* for details.

Digital Input Function	Drive Operation		
Digital Input Function	Input Open	Input Closed	
Setting 7A (N.C.)	Single Drive KEB Ride-Thru 2	Normal operation	
Setting 7B (N.O.)	Normal operation	Single Drive KEB Ride-Thru 2	

Note: Simultaneously assigning KEB Ride-Thru 1 and KEB Ride-Thru 2 to the input terminals will trigger an oPE03 error.

Setting 7C, 7D: Short Circuit Braking (N.O., N.C.) (OLV/PM, AOLV/PM)

Activates Short Circuit Braking in OLV control modes for PM motors. By linking all three phases of a PM motor, Short Circuit Braking creates a braking torque to stop a rotating motor or prevent a motor from coasting due to external forces (such as the windmill effect in fan applications). Parameter b2-18 limits the current during Short Circuit Braking.

Page

Digital Innut Function	Drive O	peration
Digital Input Function	Input Open	Input Closed
Setting 7C (N.O.)	Normal operation	Short Circuit Braking
Setting 7D (N.C.)	Short-Circuit Braking	Normal operation

Setting 7E: Forward/Reverse Detection (for V/f Control with Simple PG Feedback)

Determines the motor rotation direction for V/f Control with Simple PG feedback (A1-02 = 0 and H6-01 = 3). If the input is open, the speed feedback signal is considered to be forward. If the input is closed, it is considered to be reverse. **Refer to H6: Pulse Train Input/Output on page 349**.

Setting 7F: PID Bi-directional Enable

Setting 7F is reserved.

Setting 90 to 97: DriveWorksEZ Digital Input 1 to 8

These settings are for digital input functions used in DriveWorksEZ. Changing these settings is not typically required.

Setting 9F: DriveWorksEZ Disable

This function is used to enable or disable a DriveWorksEZ program in the drive. An input programmed for this function is effective only if A1-07 = 2.

Status	Description	
Open	DriveWorksEZ enabled	
Closed	DriveWorksEZ disabled	

◆ H2: Multi-Function Digital Outputs

■ H2-01 to H2-03: Terminal M1-M2, M3-M4, and M5-M6 Function Selection

The drive has three multi-function output terminals. *Table 5.41* lists the functions available for theses terminals using H2-01, H2-02, and H2-03.

No.	Parameter Name	Setting Range	Default
H2-01	Terminal M1-M2 Function Selection (relay)	0 to 192	0: During run
H2-02	Terminal M3-M4 Function Selection (relay)	0 to 192	1: Zero Speed
H2-03	Terminal M5-M6 Function Selection (relay)	0 to 192	2: Speed agree 1

Table 5.41 Multi-Function Digital Output Terminal Settings

Setting

Setting	Function	Page
0	During Run	332
1	Zero Speed	332
2	Speed Agree 1	332
3	User-Set Speed Agree 1	333
4	Frequency Detection 1	333
5	Frequency Detection 2	334
6	Drive Ready	334
7	DC Bus Undervoltage	334
8	During Baseblock (N.O.)	335
9	Frequency Reference Source	335
A	Run Command Source	335
В	Torque Detection 1 (N.O.)	335
С	Frequency Reference Loss	335
D <1>	Braking Resistor Fault	335
Е	Fault	335
F	Through Mode	335
10	Minor Fault	335
11	Fault Reset Command Active	336
12	Timer Output	336

13	Speed Agree 2	336
14	User-Set Speed Agree 2	336
15	Frequency Detection 3	337
16	Frequency Detection 4	337
17	Torque Detection 1 (N.C.)	225
18	Torque Detection 2 (N.O.)	335
19	Torque Detection 2 (N.C.)	335
1A	During Reverse	337
1B	During Baseblock (N.C.)	338
1C	Motor 2 Selection	338
1D	During regeneration	338
1E	Restart Enabled	338
1F	Motor Overload Alarm (oL1)	338
20	Drive Overheat Pre-Alarm (oH)	338
22	Mechanical Weakening Detection	338
2F	Maintenance Period	338
30	During Torque Limit	339
31	During Speed Limit	339
32	During Speed Limit in Torque Control	339

Function

Setting	Function	Page
33	Zero Servo Complete	339
37	During Frequency Output	339
38	Drive Enabled	339
39	Watt Hour Pulse Output	339
3C	LOCAL/REMOTE Status	339
3D	During Speed Search	340
3E	PID Feedback Low	340
3F	PID Feedback High	340
4A	During KEB Operation	340
4B	During Short Circuit Braking	340
4C	During Fast Stop	340
4D	oH Pre-Alarm Time Limit	340

Setting	Function	Page
4E <2>	Braking Transistor Fault (rr)	340
4F <2>	Braking Resistor Overheat (rH)	340
60	Internal Cooling Fan Alarm	340
61	Rotor Position Detection Completed	340
62 <1>	MEMOBUS Register 1 (Selected with H2-07 and H2-08)	340
63 <1>	MEMOBUS Register 2 (Selected with H2-09 and H2-10)	340
90	DriveWorksEZ Digital Output 1	
91	DriveWorksEZ Digital Output 2	340
92	DriveWorksEZ Digital Output 3	
100 to 192	Functions 0 to 92 with Inverse Output	340

Setting 0: During Run

Output closes when the drive is outputting a voltage.

Status	Description	
Open	Drive is stopped.	
Closed	A Run command is input or the drive is in deceleration or DC injection.	

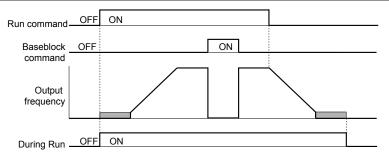


Figure 5.68 During Run Time Chart

Setting 1: Zero Speed

Terminal closes when the output frequency or motor speed (CLV, CLV/PM) becomes less than or equal to the minimum output frequency set to E1-09 or b2-01.

Status	Description	
Open	Output frequency is more than the minimum output frequency set to E1-09 or b2-01	
Closed	Output frequency becomes less than or equal to the minimum output frequency set to E1-09 or b2-01	

Note:

When using CLV or CLV/PM control modes, the output terminal closes when the motor speed becomes less than or equal to the zero speed level set for b2-01. In all other control modes, the output terminal closes when the output frequency becomes less than or equal to the minimum output frequency set for E1-09.

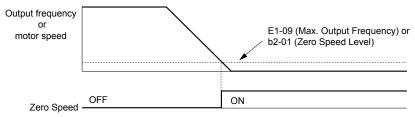


Figure 5.69 Zero-Speed Time Chart

Setting 2: Speed Agree 1 (f_{ref}/f_{out} Agree 1)

Closes when the actual output frequency or motor speed (CLV, CLV/PM) is within the Speed Agree Width (L4-02) of the current frequency reference regardless of the direction.

<1> Not available in models 4A0930 and 4A1200.

<2> Not available in models 2A0169 to 2A0415 and 4A0088 to 4A1200.

Status	Description	
Open	Output frequency or motor speed does not match the frequency reference while the drive is running.	
Closed	Closed Output frequency or motor speed is within the range of frequency reference ±L4-02.	

Note: Detection works in forward and reverse.

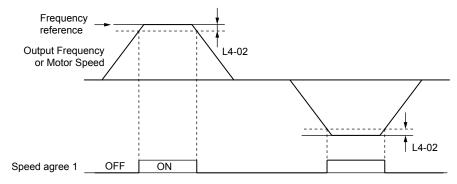


Figure 5.70 Speed Agree 1 Time Chart

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 373 for more details.

Setting 3: User-Set Speed Agree 1 (fref/fset Agree 1)

Closes when the actual output frequency or motor speed (CLV, CLV/PM) and the frequency reference are within the speed agree width (L4-02) of the programmed speed agree level (L4-01).

Status	Description	
Open	Output frequency or motor speed and frequency reference are not both within the range of L4-01 ±L4-02.	
Closed	Closed Output frequency or motor speed and the frequency reference are both within the range of L4-01 ±L4-02.	

Note: Frequency detection works in forward and reverse. The value of L4-01 is used as the detection level for both directions.

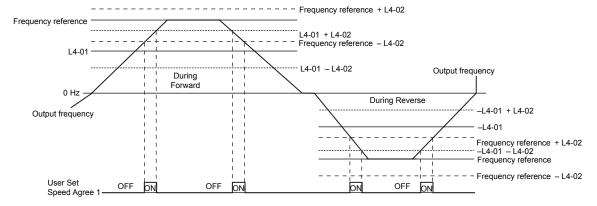


Figure 5.71 User Set Speed Agree 1 Time Chart

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 373 for more instructions.

Setting 4: Frequency Detection 1

The output opens when the output frequency or motor speed (CLV, CLV/PM) rises above the detection level set in L4-01 plus the detection width set in L4-02. The terminal remains open until the output frequency or motor speed fall below the level set in L4-01.

Status	Description	
Open	Output frequency or motor speed exceeded L4-01 + L4-02.	
Closed	Output frequency or motor speed is below L4-01 or has not exceeded L4-01 + L4-02.	

Note: Frequency detection works in forward and reverse. The value of L4-01 is used as the detection level for both directions.

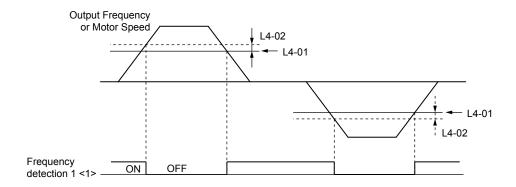


Figure 5.72 Frequency Detection 1 Time Chart

<1> This is the time chart when L4-07 (Speed Agree Detection Selection) is set to 1 (detection always enabled). The default setting for L4-07 is 0 (no detection during baseblock). When L4-07 is set to 0, the terminal opens during baseblock.

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 373 for more details.

Setting 5: Frequency Detection 2

The output closes when the output frequency or motor speed (CLV, CLV/PM) is above the detection level set in L4-01. The terminal remains closed until the output frequency or motor speed fall below L4-01 minus the setting of L4-02.

Status	Description	
Open	Output frequency or motor speed is below L4-01 minus L4-02 or has not exceeded L4-01.	
Closed	Output frequency or motor speed exceeded L4-01.	

Note: Frequency detection works in forward and reverse. The value of L4-01 is used as the detection level for both directions.

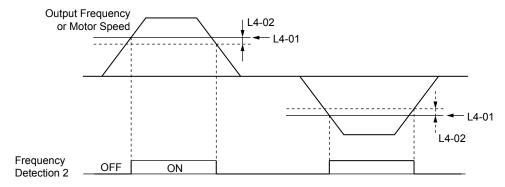


Figure 5.73 Frequency Detection 2 Time Chart

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 373 for more details.

Setting 6: Drive Ready

The output closes when the drive is ready to operate the motor. The terminal will not close under the conditions listed below, and any Run commands will be disregarded.

- When the power is shut off
- During a fault
- When the internal power supply of the drive has malfunctioned
- When a parameter setting error makes it impossible to run
- Although stopped, an overvoltage or undervoltage situation occurs
- While editing a parameter in the Programming Mode (when b1-08 = 0)

Setting 7: DC Bus Undervoltage

The output closes when the DC bus voltage or control circuit power supply drops below the trip level set in L2-05. A fault in the DC bus circuit will also cause the terminal set for "DC bus undervoltage" to close.

Status	Description	
Open	DC bus voltage is above the level set to L2-05.	
Closed	DC bus voltage has fallen below the trip level set to L2-05.	

Setting 8: During Baseblock (N.O.)

The output closes to indicate that the drive is in a baseblock state. While in baseblock, output transistors do not switch and no main circuit voltage is output.

Status	Description	
Open	Drive is not in a baseblock state.	
Closed	Baseblock is being executed.	

Setting 9: Frequency Reference Source

Displays the currently selected frequency reference source.

Status	Description	
Open	Frequency reference is provided from External reference 1 (b1-01) or External reference 2 (b1-15).	
Closed	Frequency reference is being sourced from the digital operator.	

Setting A: Run Command Source

Displays the currently selected Run command source.

Status	Description	
Open	Run command is provided from External reference 1 (b1-02) or 2 (b1-16).	
Closed	Closed Run command is being sourced from the digital operator.	

Setting B, 17, 18, 19: Torque Detection 1 (N.O., N.C.), Torque Detection 2 (N.O., N.C.)

These digital output functions signal an overtorque or undertorque situation to an external device.

Set up the torque detection levels and select the output function from the table below. *Refer to L6: Torque Detection on page 376* for details.

Setting	Status	Description
В	Closed	Torque detection 1 (N.O.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-02 for longer than the time specified in parameter L6-03.
17	Open	Torque detection 1 (N.C.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-02 for longer than the time specified in parameter L6-03.
18	Closed	Torque detection 2 (N.O.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-05 for longer than the time specified in parameter L6-06.
19	Open	Torque detection 2 (N.C.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-05 for longer than the time specified in parameter L6-06.

Setting C: Frequency Reference Loss

An output set for this function closes when frequency reference loss is detected. *Refer to L4-05: Frequency Reference Loss Detection Selection on page 374* for details.

Setting D: Braking Resistor Fault

An output programmed for this function closes when the dynamic braking resistor (DB) overheats or the braking transistor is in a fault condition.

Setting E: Fault

The output closes when the drive faults (excluding CPF00 and CPF01 faults).

Setting F: Through Mode

Select this setting when using the terminal in a pass-through mode. When set to F, an output does not trigger any function in the drive. Setting F, however, still allows the output status to be read by a PLC via a communication option or MEMOBUS/Modbus communications.

Setting 10: Minor Fault

The output closes when a minor fault condition is present.

Setting 11: Fault Reset Command Active

The output closes when there is an attempt to reset a fault situation from the control circuit terminals, via serial communications, or using a communications option card.

Setting 12: Timer Output

This setting configures a digital output terminal as the output for the timer function. *Refer to b4: Delay Timers on page 248* for details.

Setting 13: Speed Agree 2 (f_{ref} /f_{out} Agree 2)

The output closes when the actual output frequency or motor speed (CLV, CLV/PM) is within the speed agree width (L4-04) of the current frequency reference, regardless of the direction.

Status	Description	
Open	Output frequency or motor speed does not match the frequency reference while the drive is running.	
Closed	Output frequency or motor speed is within the range of frequency reference ±L4-04.	

Note: Detection works in forward and reverse.

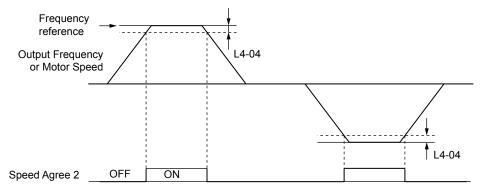


Figure 5.74 Speed Agree 2 Time Chart

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 374 for more details.

Setting 14: User-Set Speed Agree 2 (f_{ref} /f_{set} Agree 2)

The output closes when the actual output frequency or motor speed (CLV, CLV/PM) and the frequency reference are within the speed agree width (L4-04) of the programmed speed agree level (L4-03).

Status	Description	
Open	Output frequency or motor speed and frequency reference are both outside the range of L4-03 ±L4-04.	
Closed	Output frequency or motor speed and the frequency reference are both within the range of L4-03 ±L4-04.	

Note: The detection level L4-03 is a signed value; detection works in the specified direction only.

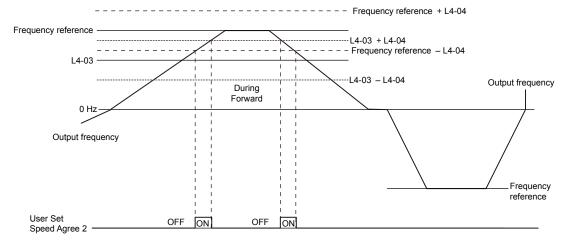


Figure 5.75 User-Set Speed Agree 2 Example with a Positive L3-04 Value

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 374 for more details.

Setting 15: Frequency Detection 3

The output opens when the output frequency or motor speed (CLV, CLV/PM) rises above the detection level set in L4-03 plus the detection with set in L4-04. The terminal remains open until the output frequency or motor speed falls below the level set in L4-03. The detection level L4-03 is a signed value; detection works in the specified direction only.

Status	Description	
Open	Output frequency or motor speed exceeded L4-03 plus L4-04.	
Closed	Output frequency or motor speed is below L4-03 or has not exceeded L4-03 plus L4-04.	

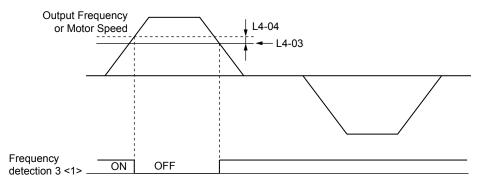


Figure 5.76 Frequency Detection 3 Example with a Positive L3-04 Value

<1> This is the time chart when L4-07 (Speed Agree Detection Selection) is set to 1 (detection always enabled). The default setting for L4-07 is 0 (no detection during baseblock). When L4-07 is set to 0, the terminal opens during baseblock.

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 374 for more details.

Setting 16: Frequency Detection 4

The output closes when the output frequency or motor speed (CLV, CLV/PM) is above the detection level set in L4-03. The terminal remains closed until the output frequency or motor speed falls below L4-03 minus the setting of L4-04.

Status	Description	
Open	Output frequency or motor speed is below L4-03 minus L4-04 or has not exceeded L4-03.	
Closed	Output frequency or motor speed exceeded L4-03.	

Note: The detection level L4-03 is a signed value; detection works in the specified direction only.

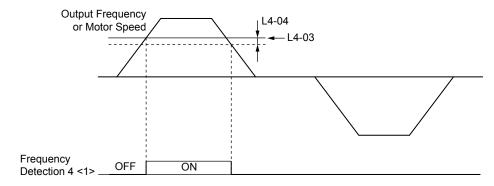


Figure 5.77 Frequency Detection 4 Example with Positive L3-04 Value

<1> This is the time chart when L4-07 (Speed Agree Detection Selection) is set to 1 (detection always enabled). The default setting for L4-07 is 0 (no detection during baseblock). When L4-07 is set to 0, the terminal opens during baseblock.

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 374 for more details.

Setting 1A: During Reverse

A digital output set for "During reverse" closes when the drive is running the motor in the reverse direction.

Status	Description
Open	Motor is being driven in the forward direction or stopped.
Closed	Motor is being driven in reverse.

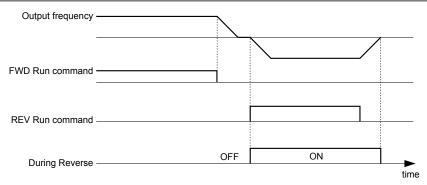


Figure 5.78 Reverse Direction Output Example Time Chart

Setting 1B: During Baseblock (N.C.)

The output opens to indicate that the drive is in a baseblock state. While Baseblock is executed, output transistors do not switch and no main circuit voltage is output.

Status	Description
Open	Baseblock is being executed.
Closed	Drive is not in a baseblock state.

Setting 1C: Motor 2 Selection

Indicates which motor is selected when another output terminal is set to switch drive operation between two motors (H1- $\Box\Box$ = 16). *Refer to Setting 16: Motor 2 Selection on page 325* for details on switching motors.

Status	Description
Open	Motor 1 is selected.
Closed	Motor 2 is selected.

Setting 1D: During Regeneration

Terminal closes when the motor is driven in the regenerative mode.

Setting 1E: Restart Enabled

An output set for "Restart enabled" closes when the drive attempts to restart after a fault has occurred.

The fault restart function allows the drive to automatically clear a fault. The terminal set to 1E will close after the fault is cleared and the drive has attempted to restart. If the drive cannot successfully restart within the number of attempts permitted by L5-01, a fault will be triggered and the terminal set to 1E will open. *Refer to L5: Fault Restart on page 375* for details on automatic restart.

Setting 1F: Motor Overload Alarm (oL1)

The output closes when the motor overload level estimated by the oL1 fault detection exceeds 90% of the oL1 detection level. *Refer to L1-01: Motor Overload Protection Selection on page 352*.

Setting 20: Drive Overheat Pre-Alarm (oH)

The output closes when the drive heatsink temperature reaches the level specified by parameter L8-02. *Refer to L8-02: Overheat Alarm Level on page 381* for details on drive overheat detection.

Setting 22: Mechanical Weakening Detection

The output closes when a mechanical weakening situation is detected. *Refer to Mechanical Weakening Detection on page* 378 for details.

Setting 2F: Maintenance Period

The output closes when the cooling fan, DC bus capacitors, or DC bus pre-charge relay may require maintenance as determined by the estimated performance life span of those components. *Refer to Periodic Maintenance on page 481* for details.

Setting 30: During Torque Limit

The output closes when the motor is operating at the torque limit specified by the L7-\(\sigma\) parameters or an analog input. This setting can only be used in OLV, CLV, AOLV/PM and CLV/PM control modes. **Refer to L7-01 to L7-04: Torque Limits on page 380** for details.

Setting 31: During Speed Limit

The output closes when the speed limit has been reached. This function can be used in CLV and CLV/PM control modes.

Status	Description		
Open	The conditions described below are not present.		
Closed	 The frequency reference has reached the upper limit set in d2-01. The frequency reference has fallen to the lower limit set in d2-02 or d2-03. Parameter b1-05 is set to 1, 2, or 3, and the frequency reference has fallen below the minimum output frequency (E1-09). 		

Setting 32: During Speed Limit in Torque Control

The motor torque and load torque are not in balance, causing the motor to accelerate. The output closes when the motor reaches the speed limit. *Refer to d5: Torque Control on page 287* and *Indicating Operation at the Speed Limit* on page 289 for details.

Setting 33: Zero Servo Complete

The output closes when Zero Servo is enabled and the load is locked into position within the allowable deviation (b9-02). *Refer to b9: Zero Servo on page 262* for information on Zero Servo operation.

Setting 37: During Frequency Output

The output closes when the drive is outputting a frequency.

Status	Description		
Open	The drive is not outputting a frequency (one of the following functions is being performed: stop, baseblock, DC Injection Braking (during initial excitation), or Short Circuit Braking).		
Closed	Drive is outputting frequency.		

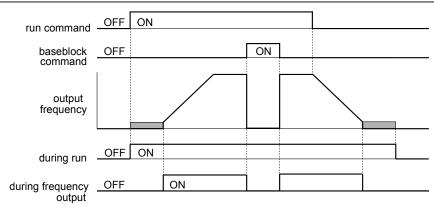


Figure 5.79 During Frequency Output Time Chart

Setting 38: Drive Enable

Reflects the status of a digital input configured as a "Drive enable" input (H1- $\Box\Box$ = 6A). If that digital input closes, then the digital output set for "Drive enable" will also close.

Setting 39: Watt Hour Pulse Output

Outputs a pulse to indicate the watt hours. Refer to H2-06: Watt Hour Output Unit Selection on page 341 for details.

Setting 3C: LOCAL/REMOTE Status

The output terminal closes while the drive is set for LOCAL and opens when in REMOTE.

Status	Description		
Unen	REMOTE: The external reference that has been selected (either b1-01 and b1-02 or b1-15 and b1-16) is used as frequency reference and Run command source.		
Closed	LOCAL: The digital operator is used as frequency reference and Run command source.		

Setting 3D: During Speed Search

The output terminal closes while Speed Search is being performed. **Refer to b3: Speed Search on page 242** for details.

Setting 3E: PID Feedback Low

Output terminal closes when a PID feedback loss (FbL) is detected. The feedback is considered to be lost if it falls below the level set to b5-13 for longer than the time set to b5-14. *Refer to PID Feedback Loss Detection on page 253* for details.

Setting 3F: PID Feedback High

Output terminal closes when a PID feedback loss (FbH) is detected. The feedback is considered to be lost if it rises beyond the level set to b5-36 for longer than the time set to b5-37. *Refer to PID Feedback Loss Detection on page 253* for details.

Setting 4A: During KEB Operation

The output terminal closes while KEB is being performed. *Refer to KEB Ride-Thru Function on page 360* for a KEB function description.

Setting 4B: During Short Circuit Braking

The output terminal closes while Short Circuit Braking is being executed.

Setting 4C: During Fast Stop

The output terminal closes when a Fast Stop is being executed. Refer to Setting 15, 17: Fast Stop (N.O., N.C.) on page 324.

Setting 4D: oH Pre-Alarm Time Limit

The output terminal closes when the drive is reducing the speed due to a drive overheat alarm (L8-03 = 4) and the overheat alarm has not disappeared after 10 frequency reduction operation cycles. *Refer to L8-03: Overheat Pre-Alarm Operation Selection on page 381* for a more detailed description.

Setting 4E: Braking Transistor Fault (rr)

The output closes if the internal braking transistor reaches the overheat level.

Setting 4F: Braking Resistor Overheat (rH)

The output closes when the braking resistor exceeds the overheat level. The braking resistor may overheat due to motor regeneration or short deceleration time setting.

Setting 60: Internal Cooling Fan Alarm

The output closes when the drive internal cooling fan has failed.

Setting 61: Rotor Position Detection Complete

After the Run command is given, the output terminal signals that the drive has detected the rotor position (PM motors).

Setting 62: MEMOBUS Register 1 (Selected with H2-07 and H2-08)

The contact output is closed when any of the bits specified by H2-08 for the MEMOBUS/Modbus register address set in H2-07 turn on.

Setting 63: MEMOBUS Register 2 (Selected with H2-09 and H2-10)

The contact output is closed when any of the bits specified by H2-10 for the MEMOBUS/Modbus register address set in H2-09 turn on.

Setting 90 to 92: DriveWorksEZ Digital Output 1 to 3

These settings are for output functions used in DriveWorksEZ. Normally there is no need to change these settings.

Setting 100 to 192: Functions 0 to 92 with Inverse Output

These settings have the same function as settings 0 to 92 but with inverse output. Set as $1\square\square$, where the "1" indicates inverse output and the last two digits specify the setting number of the function.

Examples:

- For inverse output of "8: During baseblock", set 108.
- For inverse output of "4A: During KEB" set 14A.

■ H2-06: Watt Hour Output Unit Selection

When one of the multi-function terminals is set to output the number of watt hours (H2-01, H2-02, or H2-03 = 39), parameter H2-06 determines the units for the output signal.

This output function provides a watt hour meter or a PLC input by a 200 ms pulse signal. H2-06 determines the frequency that pulses are issued to keep track of the kWh for the drive.

No.	Parameter Name	Setting Range	Default
H2-06	Watt Hour Output Unit Selection	0: 0.1 kWh units 1: 1 kWh units 2: 10 kWh units 3: 100 kWh units 4: 1000 kWh units	0

Note:

- 1. A negative power output (i.e., regeneration) does not subtract from the total watt hours.
- 2. The drive keeps track of the watt hours as long as the control circuit has power. The value is reset when the power supply is shut off.

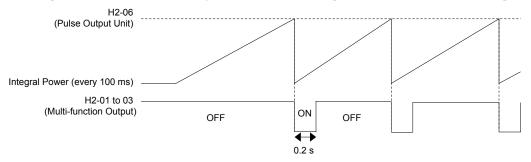


Figure 5.80 Watt Hour Output Example

■ H2-07 to H2-10: MEMOBUS Registers

These parameters specify the MEMOBUS/Modbus registers and bits from which data will be sent to the multi-function contact outputs.

Note: These parameters are not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
H2-07	MEMOBUS Register 1 Address Select	1 to 1FFF	1
H2-08	MEMOBUS Register 1 Bit Select	0 to FFFF	0
H2-09	MEMOBUS Register 2 Address Select	1 to 1FFF	1
H2-10	MEMOBUS Register 2 Bit Select	0 to FFFF	0

The MEMOBUS/Modbus register addresses for sending data to multi-function contact outputs 62 and 63 are specified in H2-07 and H2-09, and the bits for the MEMOBUS/Modbus registers are specified in H2-08 and H2-10.

H3: Multi-Function Analog Inputs

The drive is equipped with three multi-function analog input terminals: A1, A2, and A3. *Refer to Multi-Function Analog Input Terminal Settings on page 344* for a listing of the functions that can be set to these terminals.

■ H3-01: Terminal A1 Signal Level Selection

Selects the input signal level for analog input A1.

No.	Name	Setting Range	Default
H3-01	Terminal A1 Signal Level Selection	0 to 1	0

Setting 0: 0 to 10 Vdc

The input level is 0 to 10 Vdc. The minimum input level is limited to 0%, so that a negative input signal due to gain and bias settings will be read as 0%.

Setting 1: -10 to 10 Vdc

The input level is -10 to 10 Vdc. If the resulting voltage is negative after being adjusted by gain and bias settings, then the motor will rotate in reverse.

■ H3-02: Terminal A1 Function Selection

Selects the input signal level for analog input A1. *Refer to Multi-Function Analog Input Terminal Settings on page 344* for instructions on adjusting the signal level.

No.	Name	Setting Range	Default
H3-02	Terminal A1 Function Selection	0 to 32	0

■ H3-03, H3-04: Terminal A1 Gain and Bias Settings

Parameter H3-03 sets the level of the selected input value that is equal to 10 Vdc input at terminal A1 (gain).

Parameter H3-04 sets the level of the selected input value that is equal to 0 V input at terminal A1 (bias).

Use both parameters to adjust the characteristics of the analog input signal to terminal A1.

No.	Name	Setting Range	Default
Н3-03	Terminal A1 Gain Setting	-999.9 to 999.9%	100.0%
Н3-04	Terminal A1 Bias Setting	-999.9 to 999.9%	0.0%

Setting Examples

• Gain H3-03 = 200%, bias H3-04 = 0, terminal A1 as frequency reference input (H3-02 = 0):

A 10 Vdc input is equivalent to a 200% frequency reference and 5 Vdc is equivalent to a 100% frequency reference. Since the drive output is limited by the maximum frequency parameter (E1-04), the frequency reference will be equal to E1-04 above 5 Vdc.

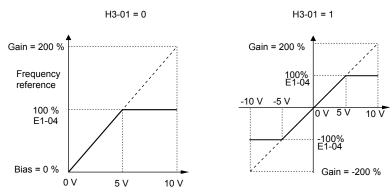


Figure 5.81 Frequency Reference Setting by Analog Input with Increased Gain

• Gain H3-03 = 100%, bias H3-04 = -25%, terminal A1 as frequency reference input:

An input of 0 Vdc will be equivalent to a -25% frequency reference.

When parameter H3-01 = 0, the frequency reference is 0% between 0 and 2 Vdc input.

When parameter H3-01 = 1, the motor will rotate in reverse between -10 and 2 Vdc input.

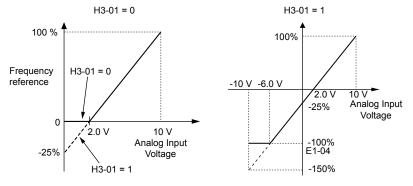


Figure 5.82 Frequency Reference Setting by Analog Input with Negative Bias

■ H3-05: Terminal A3 Signal Level Selection

Selects the input signal level for analog input A3. *Refer to Multi-Function Analog Input Terminal Settings on page 344* for a list of functions and descriptions.

No.	Name	Setting Range	Default
H3-05	Terminal A3 Signal Level Selection	0, 1	0

Setting 0: 0 to 10 Vdc

The input level is 0 to 10 Vdc. See the explanation provided for H3-01. Refer to Setting 0: 0 to 10 Vdc on page 341.

Setting 1: -10 to 10 Vdc

The input level is -10 to 10 Vdc. See the explanation provided for H3-01. Refer to Setting 1: -10 to 10 Vdc on page 341.

■ H3-06: Terminal A3 Function Selection

Determines the function assigned to analog input terminal A3. *Refer to Multi-Function Analog Input Terminal Settings on page 344* for a list of functions and descriptions.

No.	Name	Setting Range	Default
H3-06	Terminal A3 Function Selection	0 to 32	2

■ H3-07, H3-08: Terminal A3 Gain and Bias Setting

Parameter H3-07 sets the level of the selected input value that is equal to 10 Vdc input at terminal A3 (gain).

Parameter H3-08 sets the level of the selected input value that is equal to 0 V input at terminal A3 (bias).

No.	Name	Setting Range	Default
H3-07	Terminal A3 Gain Setting	-999.9 to 999.9%	100.0%
H3-08	Terminal A3 Bias Setting	-999.9 to 999.9%	0.0%

■ H3-09: Terminal A2 Signal Level Selection

Selects the input signal level for analog input A2. Set DIP switch S1 on the terminal board accordingly for a voltage input or current input.

No.	Name	Setting Range	Default
H3-09	Terminal A2 Signal Level Selection	0 to 3	2

Setting 0: 0 to 10 Vdc

The input level is 0 to 10 Vdc. *Refer to Setting 0: 0 to 10 Vdc on page 341*.

Setting 1: 0 to 10 Vdc Bipolar

The input level is -10 to 10 Vdc. Refer to Setting 1: -10 to 10 Vdc on page 341.

Setting 2: 4 to 20 mA

The input level is 4 to 20 mA. Negative input values by negative bias or gain settings will be limited to 0%.

Setting 3: 0 to 20 mA

The input level is 0 to 20 mA. Negative input values by negative bias or gain settings will be limited to 0%.

■ H3-10: Terminal A2 Function Selection

Determines the function assigned to analog input terminal A2. *Refer to Multi-Function Analog Input Terminal Settings on page 344* for a list of functions and descriptions.

No.	Name	Setting Range	Default
H3-10	Terminal A2 Function Selection	0 to 32	0

■ H3-11, H3-12: Terminal A2 Gain and Bias Setting

Parameter H3-11 sets the level of the input value selected that is equal to 10 Vdc input or 20 mA input to terminal A2.

Parameter H3-12 sets the level of the input value selected that is equal to 0 V, 4 mA or 0 mA input at terminal A2.

Use both parameters to adjust the characteristics of the analog input signal to terminal A2. The setting works in the same way as parameters H3-03 and H3-04 for analog input A1.

No.	Name	Setting Range	Default
Н3-11	Terminal A2 Gain Setting	-999.9 to 999.9%	100.0%
H3-12	Terminal A2 Bias Setting	-999.9 to 999.9%	0.0%

■ H3-13: Analog Input Filter Time Constant

Parameter H3-13 sets the time constant for a first order filter that will be applied to the analog inputs.

An analog input filter prevents erratic drive control when using a "noisy" analog reference. Drive operation becomes more stable as the programmed time becomes longer, but it also becomes less responsive to rapidly changing analog signals.

No.	Name	Setting Range	Default
H3-13	Analog Input Filter Time Constant	0.00 to 2.00 s	0.03 s

■ H3-14: Analog Input Terminal Enable Selection

When one of the multi-function digital input parameters is set for "Analog input enable" (H1- $\Box\Box$ =C), the value set to H3-14 determines which analog input terminals are enabled when the input is closed. All of the analog input terminals will be enabled all of the time when H1- $\Box\Box$ = C. The terminals not set as the target are not influenced by input signals.

No.	Name	Setting Range	Default
Н3-14	Analog Input Terminal Enable Selection	1 to 7	7

Setting 1: A1 Only Enabled

Setting 2: A2 Only Enabled

Setting 3: A1 and A2 Only Enabled

Setting 4: A3 Only Enabled

Setting 5: A1 and A3 Only Enabled

Setting 6: A2 and A3 Only Enabled

Setting 7: All Analog Input Terminals Enabled

■ H3-16 to H3-18: Terminal A1/A2/A3 Offset

Set the offset level of the selected input value to terminals A1, A2, or A3 that is equal to 0 Vdc input. These parameters rarely require adjustment.

No.	Name	Setting Range	Default
Н3-16	Terminal A1 Offset	-500 to 500	0
Н3-17	Terminal A2 Offset	-500 to 500	0
H3-18	Terminal A3 Offset	-500 to 500	0

■ Multi-Function Analog Input Terminal Settings

See *Table 5.42* for information on how H3-02, H3-10, and H3-06 determine functions for terminals A1, A2, and A3.

Note: The scaling of all input functions depends on the gain and bias settings for the analog inputs. Set these to appropriate values when selecting and adjusting analog input functions.

Table 5.42 Multi-Function Analog Input Terminal Settings

Setting	Function	Page
0	Frequency Bias	345
1	Frequency Gain	345
2	Auxiliary Frequency Reference 1	345
3	Auxiliary Frequency Reference 2	345
4	Output Voltage Bias	345
5	Accel/Decel Time Gain	345
6	DC Injection Braking Current	345
7	Torque Detection Level	346
8	Stall Prevention Level During Run	346
9	Output Frequency Lower Limit Level	346
В	PID Feedback	346

Setting	Function	Page
С	PID Setpoint	346
D	Frequency Bias	346
E	Motor Temperature (PTC Input)	346
F	Through Mode	346
10	Forward Torque Limit	
11	Reverse Torque Limit	346
12	Regenerative Torque limit	
13	Torque Limit Using Torque Reference/Speed Limit	347
14	Torque Compensation	347
15	General Torque Limit	346
16	Differential PID Feedback	347

7	ō
1	Ē
	7
3	ä
è	۳
٠	-
4	4
4	١,

Setting	Function	Page
17 <1>	Motor Thermistor (NTC)	347
1F	Through Mode	346
30	DriveWorksEZ Analog Input 1	
31	DriveWorksEZ Analog Input 2	347
32	DriveWorksEZ Analog Input 3	

<1> This function is only available in models 4A0930 to 4A1200.

Setting 0: Frequency Bias

The input value of an analog input set to this function will be added to the analog frequency reference value. When the frequency reference is supplied by a different source other than the analog inputs, this function will have no effect. Use this setting also when only one of the analog inputs is used to supply the frequency reference.

By default, analog inputs A1 and A2 are set for this function. Simultaneously using A1 and A2 increases the frequency reference by the total of all inputs.

Example: If the analog frequency reference from analog input terminal A1 is 50% and a bias of 20% is applied by analog input terminal A2, the resulting frequency reference will be 70% of the maximum output frequency.

Setting 1: Frequency Gain

The input value of an analog input set to this function will be multiplied with the analog frequency reference value.

Example: If the analog frequency reference from analog input terminal A1 is 80% and a gain of 50% is applied from analog input terminal A2, the resulting frequency reference will be 40% of the maximum output frequency.

Setting 2: Auxiliary Reference 1

Sets the auxiliary frequency reference 1 when multi-step speed operation is selected. *Refer to Multi-Step Speed Selection on page 278* for details.

Setting 3: Auxiliary Reference 2

Sets the auxiliary frequency reference 2 when multi-step speed operation is selected. Refer to Multi-Step Speed Selection on page 278 for details.

Setting 4: Output Voltage Bias

Voltage bias boosts the output voltage of the V/f curve as a percentage of the maximum output voltage (E1-05). Available only when using V/f Control.

Setting 5: Accel/Decel Time Gain

Adjusts the gain level for the acceleration and deceleration times set to parameters C1-01 through C1-08.

The drive acceleration time is calculated by multiplying the gain level to $C1-\Box\Box$ as follows:

 $C1-\Box\Box \times Accel/decel$ time gain = Drive accel/decel time

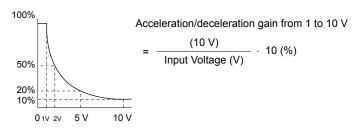


Figure 5.83 Accel/Decel Time Gain with Analog Input Terminal

Setting 6: DC Injection Braking Current

The current level used for DC Injection Braking is set as a percentage of the drive rated current.

DC Injection Braking Current Level 100% Drive Rated Current 0 10 V (4) (20 mA)

Figure 5.84 DC Injection Braking Current Using an Analog Input Terminal

Setting 7: Torque Detection Level

Using this setting, the overtorque/undertorque detection level for torque detection 1 (L6-01) can be set by an analog input. The analog input replaces the level set to L6-02. An analog input of 100% (10 V or 20 mA) sets a torque detection level equal to 100% drive rated current/motor rated torque. Adjust the analog input gain if higher detection level settings are required. **Refer to L6: Torque Detection on page 376** for details on torque detection.

Setting 8: Stall Prevention Level

Allows an analog input signal to adjust the Stall Prevention level. *Figure 5.85* shows the setting characteristics. The drive will use the lower value of the Stall Prevention level set to L3-06 or the level coming from the selected analog input terminal.

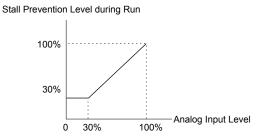


Figure 5.85 Stall Prevention During Run Using an Analog Input Terminal

Setting 9: Output Frequency Lower Limit Level

The user can adjust the lower limit of the output frequency using an analog input signal.

Setting B: PID Feedback

Supplies the PID feedback value. This setting requires PID operation to be enabled in b5-01. *Refer to PID Feedback Input Methods on page 250*.

Setting C: PID Setpoint

Supplies the PID setpoint value and makes the frequency reference selected in parameter b1-01 no longer the PID setpoint. PID operation to be enabled in b5-01 to use this setting. *Refer to PID Setpoint Input Methods on page 250*.

Setting D: Frequency Bias

The input value of an analog input set to this function will be added to the frequency reference. This function can be used with any frequency reference source.

Setting E: Motor Temperature

In addition to motor overload fault detection oL1, it is possible to use a Positive Temperature Coefficient (PTC) thermistor for motor insulation protection. *Refer to Motor Protection Using a Positive Temperature Coefficient (PTC) Thermistor on page 355* for a detailed explanation.

Setting F, 1F: Through Mode

When set to F or 1F, an input does not affect any drive function, but the input level can still be read out by a PLC via a communication option or MEMOBUS/Modbus communications.

Setting 10, 11, 12, 15: Forward, Reverse, Regenerative, General Torque Limit (OLV, CLV, AOLV/PM, CLV/PM)

These functions set a torque limit using analog inputs for different operating conditions. *Refer to L7: Torque Limit on page* 379 for details.

Setting 13: Torque Limit Using Torque Reference/Speed Limit

Sets the torque reference (when in Torque Control) or the torque limit (when in Speed Control). *Refer to Setting the Torque Reference, Speed Limit, and Torque Compensation Values on page 287* for details.

Setting 14: Torque Compensation

Sets a torque compensation value when using Torque Control. *Refer to Setting the Torque Reference, Speed Limit, and Torque Compensation Values on page 287* for details.

Setting 16: Differential PID Feedback

If an analog value is set for this function, the PID controller is set for differential feedback. The difference of the PID feedback input value and the differential feedback input value builds the feedback value used to calculate the PID input. *Refer to PID Feedback Input Methods on page 250*.

Setting 17: Motor Thermistor (NTC)

Used as a complement or a substitution for oL1. *Refer to Motor Protection Using an NTC Thermistor Input on page 357* for details.

Setting 30, 31, 32: DriveWorksEZ Analog Inputs 1, 2, and 3

These settings are for DriveWorksEZ functions. Normally there is no need to change or apply these settings.

◆ H4: Multi-Function Analog Outputs

These parameters assign functions to analog output terminals FM and AM for monitoring a specific aspect of drive performance.

■ H4-01, H4-04: Multi-Function Analog Output Terminal FM, AM Monitor Selection

Sets the desired drive monitor parameter $U\Box \neg \Box\Box$ to output as an analog value via terminal FM and AM. *Refer to U: Monitor Parameters on page 406* for a list of all monitors. The "Analog Output Level" column indicates whether a monitor can be used for analog output.

Example: Enter "103" for U1-03.

No.	Name	Setting Range	Default
H4-01	Multi-Function Analog Output Terminal FM Monitor Selection	000 to 999	102
H4-04	Multi-Function Analog Output Terminal AM Monitor Selection	000 to 999	103

A setting of 031 or 000 applies no drive monitor to the analog output. With either of these settings, the output level of the terminals FM and AM can be set by a PLC via a communication option or MEMOBUS/Modbus (through mode).

■ H4-02, H4-03: Multi-Function Analog Output Terminal FM Gain and Bias H4-05, H4-06: Multi-Function Analog Output Terminal AM Gain and Bias

Parameters H4-02 and H4-05 set the terminal FM and AM output signal level when the value of the selected monitor is at 100%. Parameters H4-03 and H4-06 set the terminal FM and AM output signal level when the value of the selected monitor is at 0%. Both are set as a percentage, where 100% equals 10 Vdc or 20 mA analog output and 0% equals 0 V or 4 mA. The output voltage of both terminals is limited to +/-10 Vdc.

The output signal range can be selected between 0 to +10 Vdc or -10 to +10 Vdc, or 4 to 20 mA using parameter H4-07 and H4-08. *Figure 5.86* illustrates how gain and bias settings work.

No.	Name	Setting Range	Default
H4-02	Multi-Function Analog Output Terminal FM Gain	-999.9 to 999.9%	100.0%
H4-03	Multi-Function Analog Output Terminal FM Bias	-999.9 to 999.9%	0.0%
H4-05	Multi-Function Analog Output Terminal AM Gain	-999.9 to 999.9%	50.0%
H4-06	Multi-Function Analog Output Terminal AM Bias	-999.9 to 999.9%	0.0%

Using Gain and Bias to Adjust Output Signal Level

The output signal is adjustable while the drive is stopped.

Terminal FM

- 1. View the value set to H4-02 (Terminal FM Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being set in H4-01 will be output from terminal FM.
- Adjust H4-02 viewing the monitor connected to the terminal FM.

- **3.** View the value set to H4-03 on the digital operator; terminal FM will output a voltage equal to 0% of the parameter being set in H4-01.
- **4.** Adjust H4-03 viewing the output signal on the terminal FM.

Terminal AM

- 1. View the value set to H4-05 (Terminal AM Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being set in H4-04 will be output from terminal AM.
- 2. Adjust H4-05 viewing the monitor connected to the terminal AM.
- **3.** View the value set to H4-06 on the digital operator; terminal AM will output a voltage equal to 0% of the parameter being set in H4-04.
- **4.** Adjust H4-06 viewing the output signal on the terminal AM.

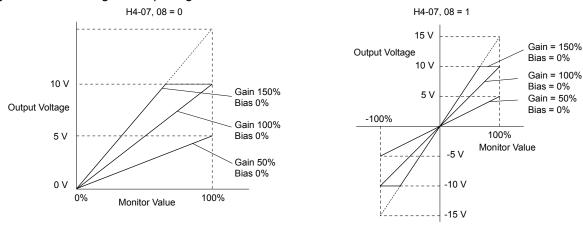


Figure 5.86 Analog Output Gain and Bias Setting Example 1 and 2

Set H4-03 to 30% for an output signal of 3 V at terminal FM when the monitored value is at 0%.

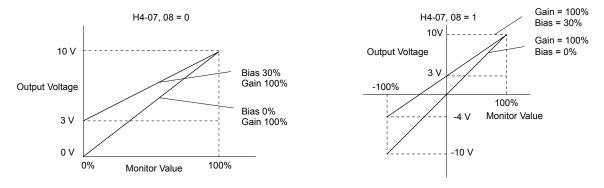


Figure 5.87 Analog Output Gain and Bias Setting Example 3

■ H4-07, H4-08: Multi-Function Analog Output Terminal FM, AM Signal Level Selection

Sets the voltage output level of U parameter (monitor parameter) data to terminal FM and terminal AM using parameters H4-07 and H4-08.

Set jumper S5 on the terminal board accordingly when changing these parameters. *Refer to Terminal AM/FM Signal Selection on page 173* for details on setting S5.

No.	Name	Setting Range	Default
H4-07	Multi-Function Analog Output Terminal FM Signal Level Selection	0 to 2	0
H4-08	Multi-Function Analog Output Terminal AM Signal Level Selection	0 to 2	0

Setting 0: 0 to 10 V Setting 1: -10 V to 10 V Setting 2: 4 to 20 mA

◆ H5: MEMOBUS/Modbus Serial Communication

Serial communication is possible in the drive using the built-in RS-422/485 port (terminals R+, R-, S+, S-) and programmable logic controllers (PLCs) or similar devices running the MEMOBUS/Modbus protocol.

The H5- $\Box\Box$ parameters set the drive for MEMOBUS/Modbus Communications. *Refer to MEMOBUS/Modbus Serial Communication on page 719* for detailed descriptions of the H5- $\Box\Box$ parameters.

◆ H6: Pulse Train Input/Output

A one-track pulse train signal with a maximum frequency of 32 kHz can be input to the drive at terminal RP. This pulse train signal can be used as the frequency reference, for PID functions, or as the speed feedback signal in V/f Control.

The pulse output monitor terminal MP can output drive monitor values as a pulse train signal with a maximum frequency of 32 kHz in sinking or sourcing mode. *Refer to Using the Pulse Train Output on page 171* for details.

Use parameters H6- \square to set the scale and other aspects of the pulse input terminal RP and pulse output terminal MP.

■ H6-01: Pulse Train Input Terminal RP Function Selection

Selects the function of pulse train input terminal RP.

No.	Name	Setting Range	Default
H6-01	Pulse Train Input Terminal RP Function Selection	0 to 3	0

Setting 0: Frequency Reference

If the pulse input is set for this function and the frequency reference source is set to pulse input (b1-01, b1-15=4), the drive reads the frequency value from terminal RP.

Setting 1: PID Feedback Value

Using this setting, the feedback value for PID control can be supplied as a pulse signal at terminal RP. *Refer to b5: PID Control on page 249* for details on PID control.

Setting 2: PID Setpoint Value

Using this setting, the setpoint value for PID control can be supplied as a pulse signal at terminal RP. *Refer to b5: PID Control on page 249* for details on PID control.

Setting 3: Speed Feedback (V/f Control with Simple Speed Feedback)

This setting can be used in V/f control to increase the speed control precision by using a motor speed feedback signal. The drive reads the speed feedback from terminal RP, compares it to the frequency reference and compensates the motor slip using a speed regulator (ASR, set up in the C5- $\Box\Box$ parameters) like shown in *Figure 5.88*. Because input terminal RP is incapable of detecting motor direction, a separate way of determining motor direction still needs to be set up:

1. Using a Digital Input

If a digital input programmed for "Forward/reverse detection" (H1- $\square\square$ = 7E) is closed, the drive assumes reverse rotation. If open, then the drive assumes that the motor is rotating forwards.

2. Using the Frequency Reference Direction

If no digital input is set to "Forward/reverse detection" (H1- $\Box\Box$ = 7E), the drive uses the direction of the frequency reference as the direction for the speed feedback detected at the pulse input.

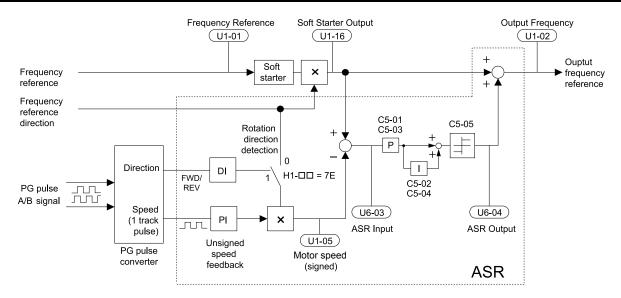


Figure 5.88 Speed Control with ASR in V/f with Simple Speed Feedback

Enabling V/f Control with Simple Speed Feedback:

- 1. Set the drive to V/f Control (A1-02 = 0).
- 2. Connect the motor speed pulse signal to the pulse input RP, set H6-01 = 3, and set the pulse signal frequency that is equal to the maximum speed to H6-02 (pulse input scaling). Make sure the pulse input bias (H6-04) is 0% and the gain (H6-03) is 100%.
- **3.** Decide on the signal used for detecting the direction. Set $H1-\Box\Box=7E$ if using a digital input.
- **4.** Use the ASR gain and integral time parameters described in *C5: Automatic Speed Regulator (ASR)* on page *270* for adjusting the responsiveness.

Note:

- 1. C5 parameters will appear when using V/f Control (A1-02 = 0) and when the pulse input RP function is set for simple PG feedback in V/f Control (H6-01 = 3).
- 2. If running two motors from the same drive, V/f Control with simple PG feedback can be used for motor 1 only.

■ H6-02: Pulse Train Input Scaling

Sets the pulse signal frequency that is equal to 100% of the input value selected in parameter H6-01.

No.	Name	Setting Range	Default
H6-02	Pulse Train Input Scaling	100 to 32000 Hz	1440 Hz

■ H6-03: Pulse Train Input Gain

Sets the level of the input value selected in H6-01 when a pulse train signal with the frequency set in H6-02 is input to terminal RP.

No.	Name	Setting Range	Default
H6-03	Pulse Train Input Gain	0.0 to 1000.0%	100.0%

■ H6-04: Pulse Train Input Bias

Sets the level of the input value selected in H6-01 when no signal (0 Hz) is input to terminal RP.

No.	Name	Setting Range	Default
H6-04	Pulse Train Input Bias	-100.0 to 100.0%	0.0%

■ H6-05: Pulse Train Input Filter Time

Sets the pulse train input filter time constant in seconds.

No.	Name	Setting Range	Default
H6-05	Pulse Train Input Filter Time	0.00 to 2.00 s	0.10 s

■ H6-06: Pulse Train Monitor Selection

Selects the monitor to output as a pulse train signal via terminal MP. Enter the three digits in $U\Box -\Box\Box$ to indicate which monitor to output. *Refer to U: Monitor Parameters on page 406* for a complete list of monitors. Monitors that can be selected by H6-06 appear in the table below.

No.	Name	Setting Range	Default
Н6-06	Pulse Train Monitor Selection	000 ^{<1>} , 031 ^{<1>} , 101, 102, 105, 116, 501, 502, 801 to 809	102

<1> Set "000" when the terminal is not used or when using the terminal in the through mode.

■ H6-07: Pulse Train Monitor Scaling

Sets the output frequency at terminal MP when the specified monitor item is at 100%. Set H6-06 to 102 and H6-07 to 0 to make the pulse train monitor output synchronous to the output frequency.

No.	Name	Setting Range	Default
H6-07	Pulse Train Monitor Scaling	0 to 32000 Hz	1440 Hz

■ H6-08: Pulse Train Input Minimum Frequency

Sets the minimum output frequency detected by the pulse train input. Increasing this setting reduces the time the drive needs to react to changes in the input signal.

- The pulse input value becomes 0 when the pulse input frequency falls below this level.
- Enabled when H6-01 = 0, 1, or 2.
- When simple speed feedback in V/f Control is set as the function for terminal RP (H6-01 = 3), the minimum frequency becomes the detection time for PG disconnect (F1-14).

No.	Name	Setting Range	Default
H6-08	Pulse Train Input Minimum Frequency	0.1 to 1000.0 Hz	0.5 Hz

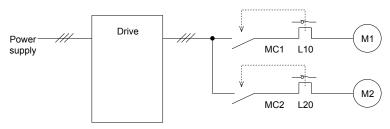
5.8 L: Protection Functions

◆ L1: Motor Protection

■ L1-01: Motor Overload Protection Selection

The drive has an electronic overload protection function that estimates the motor overload level based on output current, output frequency, thermal motor characteristics, and time. When the drive detects a motor overload an oL1 fault is triggered and the drive output shuts off.

L1-01 sets the overload protection function characteristics according to the motor being used.


No.	Name	Setting Range	Default
L1-01	Motor Overload Protection Selection	0 to 6	Determined by A1-02

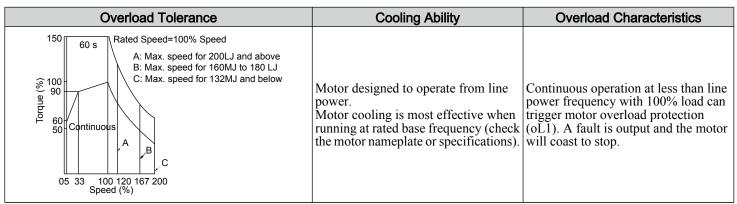
Note:

- 1. When the motor protection function is enabled (L1-01≠0), an oL1 alarm can be output through one of the multi-function outputs by setting H2-01 to 1F. The output closes when the motor overload level reaches 90% of the oL1 detection level.
- 2. Set L1-01 to a value between 1 and 6 when running a single motor from the drive to select a method to protect the motor from overheat. An external thermal relay is not necessary.

Setting 0: Disabled (Motor Overload Protection Is Not Provided)

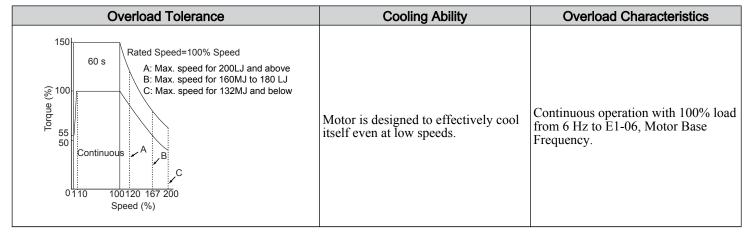
Use this setting if no motor overheat protection is desired or if multiple motors are connected to a single drive. If multiple motors are connected to a single drive, install a thermal relay for each motor as shown in *Figure 5.89*.

MC1, MC2: Magnetic contactors L10, L20: Thermal relays

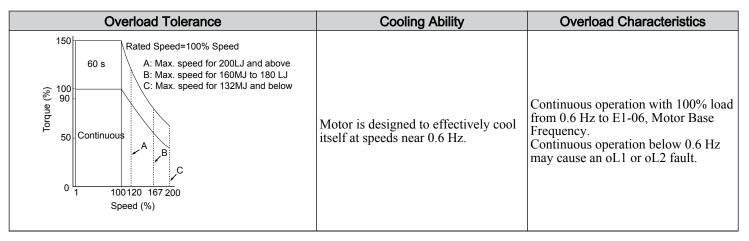

Figure 5.89 Example of Protection Circuit Design for Multiple Motors

NOTICE: Thermal protection cannot be provided when running multi-motors simultaneously with the same drive, or when using motors with a relatively high current rating compared to other standard motors (such as a submersible motor). Failure to comply could result in motor damage. Disable the electronic overload protection of the drive (L1-01 = "0: Disabled") and protect each motor with individual motor thermal overloads.

Note: Close MC1 and MC2 before operating the drive. MC1 and MC2 cannot be switched off during run.


Setting 1: General-purpose Motor (Standard Self-cooled)

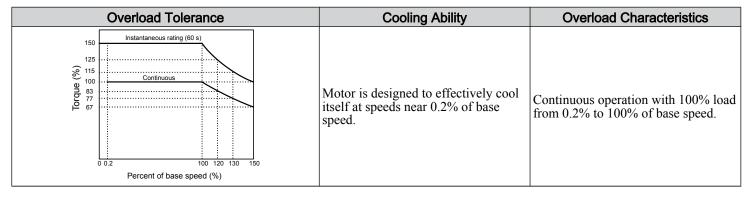
Because the motor is self-cooled, the overload tolerance drops when the motor speed is lowered. The drive appropriately adjusts the electrothermal trigger point according to the motor overload characteristics, protecting the motor from overheat throughout the entire speed range.


Setting 2: Drive Dedicated Motor (Speed Range for Constant Torque: 1:10)

Use this setting when operating a drive duty motor that allows constant torque in a speed range of 1:10. The drive will allow the motor to run with 100% load from 10% up to 100% speed. Running at slower speeds with full load can trigger an overload fault

Setting 3: Vector Motor (Speed Range for Constant Torque: 1:100)

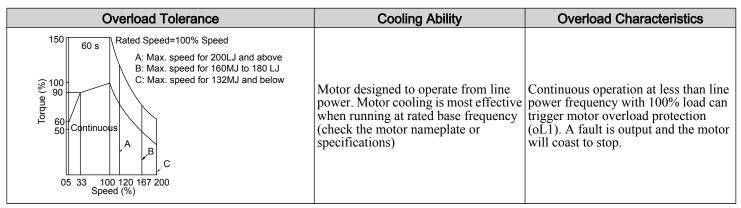
Use this setting when operating a drive-dedicated motor that allows constant torque in a speed range of 1:100. This motor type is allowed to run with 100% load from 1% up to 100% speed. Running slower speeds with full load can trigger an overload fault.


Setting 4: PM Derated Torque Motor

Use this setting when operating a PM motor. PM motors for derated torque have a self-cooling design and the overload tolerance drops as the motor slows. Electronic thermal overload is triggered in accordance with the motor overload characteristics, providing overheat protection across the entire speed range.

Overload Tolerance	Cooling Ability	Overload Characteristics
150 120 8 100 9 80 0.0 10 33 100 Motor Speed (%)	Motor is designed to produce 100% torque at base speed. Built with effective cooling capabilities.	Reaching 100% when operating at below the base frequency causes a motor overload fault (oL1). The drive fault output closes and the motor coasts to stop.

Setting 5: Constant Torque PM Motors (Constant Torque Range of 1:500)


Sets necessary protection characteristics when driving a PM with constant torque. These motors allow for a speed control from 0.2% to 100% when operating with 100% load. Slower speeds with 100% load will trigger overload.

Setting 6: General-purpose Motor

Note: General-purpose motors are designed with a base speed that operates at line frequency (50/60 Hz depending on geographic region).

Because the motor is self-cooled, the overload tolerance drops when the motor speed is lowered. The drive appropriately adjusts the electrothermal trigger point according to the motor overload characteristics and protects the motor from overheat throughout the entire speed range.

■ L1-02: Motor Overload Protection Time

Sets the time for the drive to shut down on motor overload (oL1) when the motor is running with excessive current. Enter the time the motor can withstand operating at 150% current after previously running at 100% current (hot motor overload condition). This parameter rarely requires adjustment.

No.	Name	Setting Range	Default
L1-02	Motor Overload Protection Time	0.1 to 5.0 minutes	1.0 minutes

Defaulted to operate with an allowance of 150% overload operation for one minute in a hot start after continuous operation at 100%.

Figure 5.90 illustrates an example of the electrothermal protection operation time using a general-purpose motor operating at the value of E1-06, Motor Base Speed, with L1-02 set to one minute.

Motor overload protection operates in the area between a cold start and a hot start.

- Cold start: Characteristics of motor protection operation time in response to an overload situation that was suddenly reached when starting a stationary motor.
- Hot start: Characteristics of motor protection operation time in response to an overload situation that occurred while the motor was operating continuously at or below its rated current.

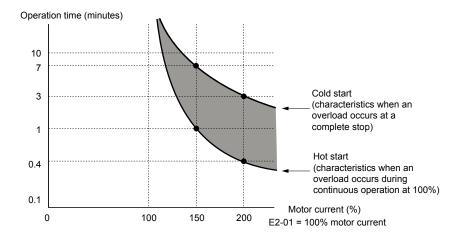


Figure 5.90 Protection Operation Time for General Purpose Motors at the Rated Output Frequency

■ Motor Protection Using a Positive Temperature Coefficient (PTC) Thermistor

Connect a motor PTC can to an analog input of the drive for motor overheat protection.

The motor overheat alarm level triggers an oH3 alarm and the drive continues the operation selected in L1-03. The overheat fault level triggers an oH4 fault, outputs a fault signal, and the drive stops the motor using the stop method selected in L1-04.

Connect the PTC between terminals AC and A3 and set jumper S4 on the terminal board to "PTC" as shown in *Figure 5.91*. Set H3-05 to 0 and H3-06 to E.

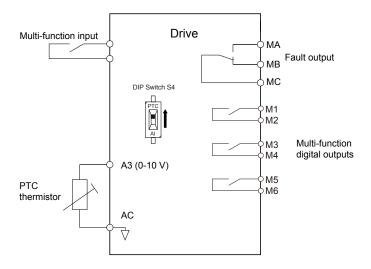


Figure 5.91 Connection of a Motor PTC

The PTC must exhibit the characteristics shown in *Figure 5.92* in one motor phase. The motor overload protection of the drive expects 3 of these PTCs to be connected in a series.

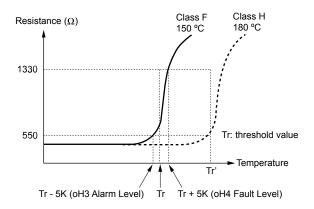


Figure 5.92 Motor PTC Characteristics

Set up overheat detection using a PTC using parameters L1-03, L1-04, and L1-05 as explained in the following sections.

■ L1-03: Motor Overheat Alarm Operation Selection (PTC input)

Sets the drive operation when the PTC input signal reaches the motor overheat alarm level (oH3).

No.	Name	Setting Range	Default
L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3

Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

Setting 1: Coast to Stop

The drive output is switched off and the motor coasts to stop.

Setting 2: Fast Stop

The drive stops the motor using the Fast Stop time set in parameter C1-09.

Setting 3: Alarm Only

The operation is continued and an oH3 alarm is displayed on the digital operator.

■ L1-04: Motor Overheat Fault Operation Selection (PTC input)

Sets the drive operation when the PTC input signal reaches the motor overheat fault level (oH4).

No.	Name	Setting Range	Default
L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1

Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

Setting 1: Coast to Stop

The drive output is switched off and the motor coasts to stop.

Setting 2: Fast Stop

The drive stops the motor using the Fast Stop time set in parameter C1-09.

■ L1-05: Motor Temperature Input Filter Time (PTC input)

Sets a filter on the PTC input signal to prevent erroneous detection of a motor overheat fault.

No.	Name	Setting Range	Default
L1-05	Motor Temperature Input Filter Time (PTC input)	0.00 to 10.00 s	0.20 s

■ L1-08: oL1 Current Level

Sets the reference current for motor thermal overload detection for motor 1 in amperes. When L1-08 is set to 0.0 A (default), parameter E2-01 (E5-03 in PM control modes) is used as the reference for motor overload protection. When L1-08 \neq 0.0 A, the set value is used as the reference for motor overload protection.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L1-08	oL1 Current Level	0.0 A or 10 to 150% of drive rated current <1> <2>	0.0 A

<1> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units. 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

<2> Cannot be set to a value smaller than 10% of drive rated current when the current level is set to a value greater than 0.0 A.

■ L1-09: oL1 Current Level for Motor 2

Sets the reference current for motor thermal overload detection for motor 2 in amperes. When L1-09 is set to 0.0 A (default), parameter E4-01 is used as the reference for motor overload protection. When L1-09 \neq 0.0 A, the set value is used as the reference for motor overload protection.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L1-09	oL1 Current Level for Motor 2	0.0 A or 10 to 150% of drive rated current <1> <2>	0.0 A

<1> Display is in the following units:

 $2A0004\ to\ 2A0040,\ 4A0002\ to\ 4A0023,\ and\ 5A0007\ to\ 5A0017;\ 0.01\ A\ units.$

2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

<2> Cannot be set to a value smaller than 10% of drive rated current when the current level is set to a value greater than 0.0 A.

■ L1-13: Continuous Electrothermal Operation Selection

Determines whether to hold the current value of the electrothermal motor protection (L1-01) when the power supply is interrupted.

No.	Name	Setting Range	Default
L1-13	Continuous Electrothermal Operation Selection	0, 1	1

Setting 0: Disabled

Setting 1: Enabled

■ Motor Protection Using an NTC Thermistor Input

Motor protection is possible for models 4A0930 and 4A1200 by connecting the NTC thermistor input in the motor windings to one of the drive analog input terminals.

This enables the drive to provide torque compensation in response to changes in motor temperature and protect the motor from overheating.

If the NTC input signal using the drive multi-function analog input terminal exceeds the overheat alarm level set to L1-16 (or L1-18 for motor 2), then "oH5" will flash on the digital operator screen. The drive will respond to the alarm according to the setting of L1-20 (default setting is to continue operation when an oH5 alarm occurs).

Figure 5.93 shows a circuit using the NTC thermistor and the terminal resistance values. Set DIP switch S1 on the drive to "V" for voltage input when wiring the NTC thermistor input to terminal A2 on the drive.

Note: This example assumes that H3-10 = 17, H3-09 = 0, and that DIP switch S1 has been set for voltage input.

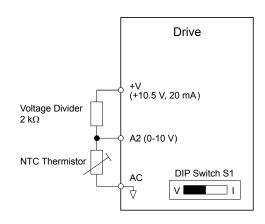


Figure 5.93 Motor Protection Circuit Using NTC Input

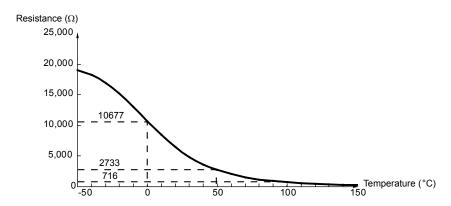


Figure 5.94 Temperature and Resistance of NTC Thermistor

L1-15 to L1-20 can determine the overheat protection settings using the NTC thermistor input. Parameter descriptions are listed below.

■ L1-15: Motor 1 Thermistor Selection (NTC)

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L1-15	Motor 1 Thermistor Selection (NTC)	0 to 2	0

Setting 0: Disabled

Setting 1: Thermistor Input by Analog Input

Setting 2: Thermistor Input by Special Thermistor Input

■ L1-16: Motor 1 Overheat Temperature

Note: This parameter is only available in models 4A0930 and 4A1200.

Sets the temperature that will trigger an overheat fault (oH5) for motor 1.

No.	Name	Setting Range	Default
L1-16	Motor 1 Overheat Temperature	50 to 200 °C	120 °C

■ L1-17: Motor 2 Thermistor Selection (NTC)

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L1-17	Motor 2 Thermistor Selection (NTC)	0 to 2	0

Setting 0: Disabled

Setting 1: Thermistor Input by Analog Input

Setting 2: Thermistor Input by Special Thermistor Input

■ L1-18: Motor 2 Overheat Temperature

Note: This parameter is only available in models 4A0930 and 4A1200.

Sets the temperature that will trigger an overheat fault (oH5) for motor 2.

No.	Name	Setting Range	Default
L1-18	Motor 2 Overheat Temperature	50 to 200 °C	120 °C

■ L1-19: Operation Time at Thermistor Disconnect (NTC)

Note: This parameter is only available in models 4A0930 and 4A1200.

Determines drive operation when a thermistor disconnect fault (THo) occurs.

No.	Name	Setting Range	Default
L1-19	Operation Time at Thermistor Disconnect (NTC)	0 to 3	3

Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time set in parameter C1-02.

Setting 1: Coast to Stop

The drive output is switched off and the motor coasts to a stop.

Setting 2: Fast Stop

The drive stops the motor using the Fast stop time set in parameter C1-09.

Setting 3: Alarm Only

The operation is continued and a THo alarm is displayed on the digital operator.

■ L1-20: Operation at Motor Overheat

Note: This parameter is only available in models 4A0930 and 4A1200.

Determines drive operation when a motor overheat fault (oH5) occurs.

No.	Name	Setting Range	Default
L1-20	Operation at Motor Overheat	0 to 3	1

Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time set in parameter C1-02.

Setting 1: Coast to Stop

The drive output is switched off and the motor coasts to a stop.

Setting 2: Fast Stop

The drive stops the motor using the Fast stop time set in parameter C1-09.

Setting 3: Alarm Only

The operation is continued and an oH5 alarm is displayed on the digital operator.

◆ L2: Momentary Power Loss Ride-Thru

■ L2-01: Momentary Power Loss Operation Selection

When a momentary power loss occurs (DC bus voltage falls below the level set in L2-05), the drive can automatically return to the operation it was performing prior to the power loss based on certain conditions.

No.	Name	Setting Range	Default
L2-01	Momentary Power Loss Operation Selection	0 to 5	0

Setting 0: Disabled

If power is not restored within 15 ms, a Uv1 fault will result and the motor coasts to stop.

Setting 1: Recover within L2-02

When a momentary power loss occurs, the drive output will be shut off. If the power returns within the time set to parameter L2-02, the drive will perform Speed Search and attempt to resume operation. If power is not restored within this time (i.e., DC bus voltage level remains below Uv1 detection level L2-05), then a Uv1 fault is triggered and the drive will stop.

Setting 2: Recover as long as CPU Has Power

When a momentary power loss occurs, the drive output will be shut off. If the power returns and the drive control circuit has power, the drive will attempt to perform Speed Search and resume the operation. This will not trigger a Uv1 fault.

Setting 3: Kinetic Energy Backup (KEB) Ride-Thru Operation within L2-02

The drive decelerates using regenerative energy from the motor until the time set in L2-02 has expired. It then tries to accelerate back to the frequency reference. If the power does not return within the time set to L2-02, it will trigger a Uv1 fault and the drive output will shut off. The type of KEB operation is determined by the L2-29 setting.

Setting 4: KEB Ride-Thru as long as CPU Has Power

The drive decelerates using regenerative energy from the motor until the power returns and then restarts. If the motor comes to a stop before the power returns, the drive loses control power and the drive output shuts off. A Uv1 fault is not triggered. The type of KEB operation is determined by the L2-29 setting.

Setting 5: Ramp to Stop with KEB Deceleration

The drive ramps to stop using the regenerative energy from the motor. Even if the power is restored, the drive will continue to decelerate until the motor comes to a complete stop. The type of KEB operation is determined by the L2-29 setting. If an input terminal set for KEB 1 (H1- $\square\square$ = 65, 66) is triggered while the drive is decelerating, it will accelerate back up to speed when the input is released.

Notes on Settings 1 through 5

- "Uv" will flash on the operator while the drive is attempting to recover from a momentary power loss. A fault signal is not output at this time.
- A Momentary Power Loss Unit is available to allow for a longer momentary power loss ride through time in models 2A0004 to 2A0056 and 4A0002 to 4A0031. This option makes it possible to continue running the drive after up to two seconds of power loss.
- When using a magnetic contactor between the motor and the drive, keep the magnetic contactor closed as long as the drive performs KEB operation or attempts to restart with Speed Search.
- Keep the Run command active during KEB operation or the drive cannot accelerate back to the frequency reference when the power returns.
- When L2-01 is set to 3, 4, or 5, KEB Ride-Thru will be executed as specified in L2-29.

■ KEB Ride-Thru Function

When the drive detects a power loss, KEB Ride-Thru decelerates the motor and uses regenerative energy to keep the main circuit operating. Despite power loss, the drive output is not interrupted.

Choose between Single Drive KEB Ride-Thru 1 and 2 (L2-29 = 0 or 1 for applications driven by a single drive.

Choose between System KEB Ride-Thru 1 and 2, (L2-29 = 2 or 3) for applications where multiple drives have to perform KEB operation while keeping a certain speed ratio.

Single Drive KEB Ride-Thru 1 (L2-29 = 0)

After KEB Ride-Thru begins, the drive uses regenerative energy from the motor to keep the DC bus voltage at the level set to L2-11 while adjusting the rate of deceleration based on the time set to L2-06. The user must set L2-06 properly to prevent Uv1 and ov faults.

Note: Shorten the KEB deceleration time (L2-06) if undervoltage (Uv1) occurs in the DC bus. Increase the KEB deceleration time if overvoltage (ov) occurs.

Single Drive KEB Ride-Thru 2 (L2-29 = 1)

The drive uses information about the inertia of the connected machinery to determine the deceleration rate necessary to keep the DC bus voltage at the level set in parameter L2-11. The resulting deceleration time is calculated based on the system inertia and cannot be adjusted.

System KEB Ride-Thru 1 (L2-29 = 2)

The drive decelerates at the KEB deceleration time set to L2-06. L2-06 is the time required to decelerate from the current frequency reference to 0. Using this setting, multiple drives can decelerate while keeping the speed ratio constant between those drives. This function requires a braking resistor and disregards the voltage level in the DC bus.

System KEB Ride-Thru 2 (L2-29 = 3)

The drive decelerates based on the KEB deceleration time set to L2-06 while monitoring the DC bus voltage. If the voltage level rises, the drive briefly holds the frequency before continuing to decelerate.

■ KEB Ride-Thru Start

KEB operation is triggered independently of the selected KEB operation mode. When the KEB function is selected as the function to be executed when power loss operation occurs (L2-01 = 3, 4, or 5), then KEB Ride-Thru will be activated if one of the following conditions becomes true:

- A digital input programmed for H1- $\square\square$ = 65 or 66 is activated. This will start KEB operation using the mode selected in parameter L2-29.
- A digital input programmed for H1- $\Box\Box$ = 7A or 7B is activated. This will automatically select Single KEB Ride-Thru 2, disregarding the setting of L2-29.
- The DC bus voltage fell below the level specified in L2-05. The KEB operation will start as specified in L2-29.

 Note: Attempting to simultaneously assign KEB Ride-Thru 1 and 2 to input terminals will trigger an oPE3 error.

When using a digital input to trigger KEB operation and the device controlling the input acts relatively slow, set a minimum KEB operation time in parameter L2-10. In the example below, the DC bus voltage triggers KEB operation and a digital input triggers the Hold command.

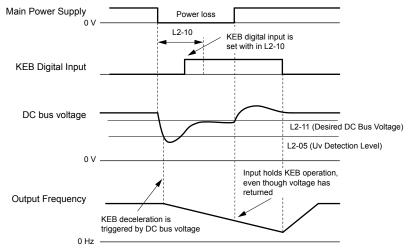


Figure 5.95 KEB Operation Using a KEB Input

■ KEB Ride-Thru End Detection

The KEB function end detection depends on the setting of parameter L2-01 and whether a digital input programmed for KEB (H1- $\square\square$ = 65, 66, 7A, 7B) is used.

KEB Ride-Thru Operation in L2-02, Input Terminals Not Used

Here, L2-01 = 3 and the input terminals have not been set for KEB Ride-Thru (H1- $\Box\Box$ does not equal 65, 66, 7A, 7B). After decelerating for the time set in parameter L2-02, the drive ends KEB operation and attempts to accelerate back to the frequency reference. A Uv1 fault occurs and the drive output shuts off if the power does not return within the time set to L2-02.

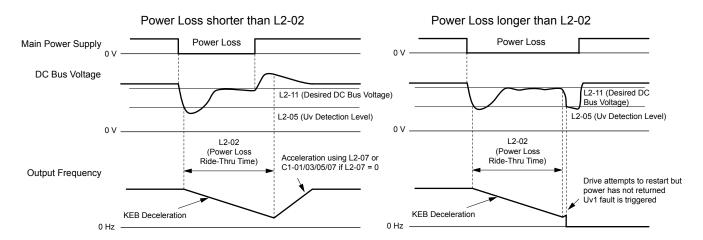


Figure 5.96 KEB Operation Using L2-02, Without KEB Input

KEB Ride-Thru Operation Within L2-02, Input Terminals Used

Here, L2-01 = 3 and an input terminal is set to issue KEB Ride-Thru (H1- $\square\square$ = 65, 66, 7A, 7B). After decelerating for the time set in parameter L2-02, the drive checks the DC bus voltage and the status of the digital input. If the DC bus voltage is still below the level set in L2-11 or if the KEB digital input is still active, KEB deceleration continues. If the voltage level has risen above the value set to L2-11, then normal operation is resumed.

Note: If L2-10 is set to a longer time than L2-02, the drive checks the DC bus voltage level and the status of the terminal assigned to KEB Ride-Thru after the time set to L2-02 passes. The drive will then try to restart.

Figure 5.97 KEB Operation Using L2-02 and KEB Input

KEB Ride-Thru Operation as Long as CPU Has Power, KEB Input Not Used

Here, L2-01 = 4 and the input terminals have not been set for KEB Ride-Thru (H1- \square does not equal 65, 66, 7A, 7B). After decelerating for the time set to parameter L2-10, the drive checks the DC bus voltage level. Deceleration continues if the DC bus voltage is lower than the level set in L2-11. Normal operation resumes when the DC bus voltage rises above the value of L2-11.

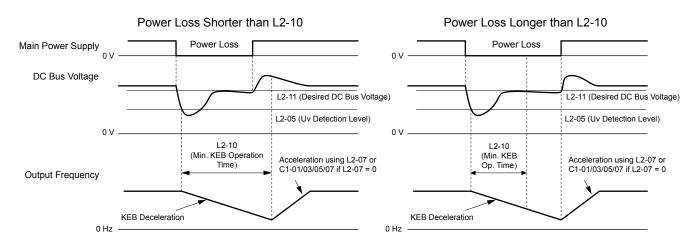


Figure 5.98 KEB Operation Using L2-10, Without KEB Input

KEB Ride-Thru Operation as Long as CPU Has Power, KEB Input Used

Here, L2-01 = 3 and an input terminal is set to issue KEB Ride-Thru (H1- $\Box\Box$ = 65, 66, 7A, 7B). After decelerating for the time set to parameter L2-10, the drive checks the DC bus voltage and the status of the digital input. Deceleration continues if the DC bus voltage is still below the level set in L2-11 or if the digital input assigned to KEB Ride-Thru is still active. Normal operation resumes when the DC bus voltage rises above the value of L2-11 and the terminal that initiated KEB Rid-Thru is released.

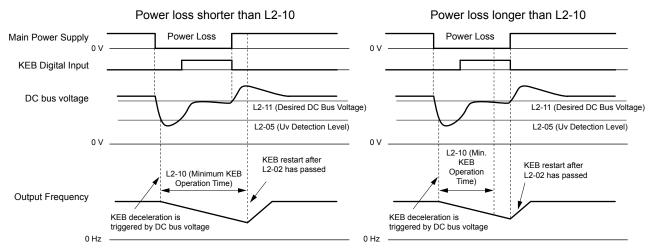


Figure 5.99 KEB Operation Using L2-10 and KEB Input

L2-01 = 5

KEB operation ends when the motor has come to a stop, even if the power returns and the digital input terminal that initiated KEB Ride-Thru is cleared.

■ KEB Operation Wiring Example

Figure 5.100 shows a wiring example to trigger the KEB Ride-Thru at power loss using an undervoltage relay. When a power loss occurs, the undervoltage relay triggers KEB Ride-Thru at terminal S6 (H1-06 = 65, 66, 7A, 7B). Note that using System KEB Ride-Thru requires an additional dynamic braking option.

Note:

- 1. Do not switch off the Run command during momentary power loss. If the Run command is shut off, the drive will not accelerate back to speed when the power is restored.
- 2. A dynamic braking option is required to use System KEB 1 (L2-29 = 2).

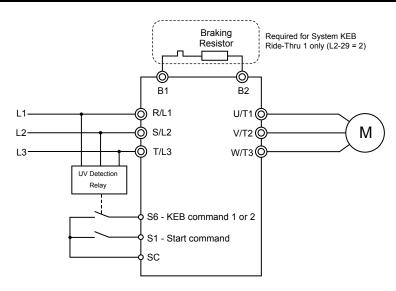


Figure 5.100 KEB Function Wiring Example

■ Parameters for KEB Ride-Thru

Table 5.43 lists parameters needed to set up KEB Ride-Thru depending on the type of KEB Ride-Thru selected in L2-29.

Table 5.43	KEB	Function	Related	Adjustments
------------	-----	----------	---------	-------------

Donomotor	Nome	Cotting Instructions	KE	3 Mod	le (L2	-29)
Parameter	Name	Setting Instructions	0	1	2	3
C1-09	Fast Stop Time	 Increase if an overvoltage fault occurs during KEB deceleration. Decrease if an undervoltage fault occurs during KEB deceleration. 	YES	NO	NO	NO
C2-03	S-Curve at Deceleration Start	 Shorten if undervoltage occurs immediately after KEB Ride-Thru is triggered. Lengthen this setting if overvoltage occurs immediately after KEB operation starts. 	YES	NO	YES	YES
L2-05	Undervoltage Detection Level	Increase if an undervoltage fault occurs at KEB operation start to let the drive detect power loss more quickly.	YES	YES	YES	YES
L2-06	KEB Deceleration Time	 Increase if an overvoltage fault occurs during KEB deceleration Decrease if an undervoltage fault occurs during KEB deceleration 	NO	NO	YES	YES
L2-07	KEB Acceleration Time	Adjust to the desired acceleration time. If set to 0, standard acceleration times are used (C1-01, C1-03, C1-05, C1-07).	YES	YES	YES	YES
L2-08	Frequency Gain at KEB Start	 Increase if an undervoltage fault occurs immediately after KEB operation starts. Decrease if an overvoltage fault occurs immediately after KEB operation starts. 	YES	NO	YES	YES
L2-10	KEB Detection Time	 Increase when a digital input is set for KEB Ride-Thru and an undervoltage fault occurs after power was lost because the device controlling the input does not react quickly enough. If the DC bus voltage overshoots after KEB Ride-Thru begins (and no input terminal is set to KEB Ride-Thru), increase L2-10 to longer than the overshoot. 	YES	YES	YES	YES
L2-11	Desired DC Bus Voltage during KEB	 Set to approximately 1.22 times the input voltage for Single Drive KEB Ride-Thru 2. Set to approximately 1.4 times the input voltage for Single Drive KEB Ride-Thru 1 and System KEB Ride-Thru modes. 	YES	YES	YES	YES
L3-20	Main Circuit Adjustment Gain	 Increase this setting in steps of 0.1 if overvoltage or undervoltage occurs at the beginning of deceleration Reduce if torque ripple occurs during deceleration while executing KEB Ride-Thru. 	NO	YES	NO	NO

~~	
ο.	
_	
4	

Doromotor	Name	Setting Instructions		KEB Mode (L2-29)			
Parameter				1	2	3	
1 4 7 1	Accel/Decel Rate Calculation Gain	 Reduce L3-21 in steps of 0.05 if there is a fairly large speed or current ripple. Decreasing this setting too much can cause a slow DC bus voltage control response, and may lead to problems with overvoltage or undervoltage. 	NO	YES	NO	NO	
L3-24	Motor Acceleration Time	Set the motor acceleration time as described on page <i>372</i> .	NO	YES	NO	NO	
L3-25	Load Inertia Ratio	Set the load/inertia ratio as described on page 372.	NO	YES	NO	NO	

■ L2-02: Momentary Power Loss Ride-Thru Time

Sets the maximum time allowed to ride through a power loss. If power loss operation exceeds this time, the drive will attempt to accelerate back to the frequency reference. This parameter is valid if L2-01 = 1 or 3.

Note: The amount of time the drive is capable of recovering after a power loss is determined by the capacity of the drive. Drive capacity determines the upper limit for L2-02.

No.	Name	Setting Range	Default
L2-02	Momentary Power Loss Ride-Thru Time	0.0 to 25.5 s	Determined by C6-01 and o2-04

■ L2-03: Momentary Power Loss Minimum Baseblock Time

Sets the minimum baseblock time when power is restored following a momentary power loss. This determines the time the drive waits for the residual voltage in the motor to dissipate. Increase this setting if overcurrent or overvoltage occurs at the beginning of Speed Search, after a power loss, or during DC Injection Braking.

No.	Name	Setting Range	Default
L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 to 5.0 s	Determined by C6-01 and o2-04

■ L2-04: Momentary Power Loss Voltage Recovery Ramp Time

Sets the time for the drive to restore the output voltage to the level specified by the V/f pattern after Speed Search. The setting value determines the time for the voltage to go from $0\ V$ to the maximum voltage.

No).	Name	Setting Range	Default
L2-(04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0 s	Determined by C6-01 and o2-04

■ L2-05: Undervoltage Detection Level (Uv)

Determines the voltage at which a Uv1 fault is triggered or at which the KEB function is activated. This setting rarely needs to be changed.

No.	Name	Setting Range	Default
L2-05	Undervoltage Detection Level	150 to 210 Vdc <1>	Determined by E1-01 <2>

- <1> Values are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- <2> The default setting for 400 V class drives depends on whether the drive input voltage is over 400 V or under 400 V.

Note: 1. Install an AC reactor option on the input side of the power supply when setting L2-05 below the default value to prevent damage to drive circuitry.

2. If using KEB Ride-Thru and L2-05 is set too low, then undervoltage in the DC bus (Uv1) will be triggered before KEB Ride-Thru can be executed. Take caution not to set this value too low.

■ L2-06: KEB Deceleration Time

Sets the time to decelerate from the frequency reference at the time KEB Ride-Thru was initiated to zero speed. This setting can be used only when L2-29 = 2 (System KEB Ride-Thru 1).

No.	Name	Setting Range	Default
L2-06	KEB Deceleration Time	0.00 to 6000.0 s <1>	0.00 s

<1> Setting range is determined by the accel/decel time units set in C1-10. If the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s.

■ L2-07: KEB Acceleration Time

Sets the time to reaccelerate from the speed when KEB was deactivated to the frequency reference.

When set to 0.0 s, the drive will accelerate to speed according to the active acceleration time set by C1-01, C1-03, C1-05, or C1-07.

No.	Name	Setting Range	Default
L2-07	KEB Acceleration Time	0.00 to 6000.0 s <1>	0.00 s

<1> Setting range is determined by the accel/decel time units set in C1-10. If the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s.

■ L2-08: Frequency Gain at KEB Start

When the KEB Ride-Thru command is input, the output frequency is reduced in a single step to quickly get the motor into a regenerative state. Calculate the amount of this frequency reduction using the formula below. L2-08 can only be used with induction motors.

Amount of reduction = Slip frequency prior to KEB \times (L2-08/100) \times 2

No.	Name	Setting Range	Default
L2-08	Frequency Gain at KEB Start	0 to 300%	100%

■ L2-10: KEB Detection Time (Minimum KEB Time)

Determines the duration of KEB Ride-Thru operation after it is triggered. *Refer to KEB Ride-Thru End Detection on page 361* for details.

No.	Name	Setting Range	Default
L2-10	KEB Detection Time	0 to 2000 ms	50 ms

■ L2-11: DC Bus Voltage Setpoint during KEB

Determines the setpoint (target value) for the DC bus voltage during Single KEB Ride-Thru 2. For Single KEB Ride-Thru 1 and System KEB Ride-Thru, parameter L2-11 defines the voltage level to end KEB Ride-Thru.

No.	Name	Setting Range	Default
L2-11	DC Bus Voltage Setpoint during KEB	150 to 400 Vdc <1>	[E1-01] × 1.22

<1> Values are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives, but set the value below 1040 Vdc (overvoltage protection level).

■ L2-29: KEB Method Selection

Selects the way the Kinetic Energy Buffering function operates.

Note: If a multi function input is set for Single KEB Ride-Thru 2 (H1- $\Box\Box$ = 7A, 7B), the setting of L2-29 is disregarded and the KEB mode equal to L2-29 = 1 is automatically selected.

No.	Name	Setting Range	Default
L2-29	KEB Method Selection	0 to 3	0

Setting 0: Single Drive KEB Ride-Thru 1

Setting 1: Single Drive KEB Ride-Thru 2

Setting 2: System KEB Ride-Thru 1

Setting 3: System KEB Ride-Thru 2

Refer to KEB Ride-Thru Function on page 360 for detailed explanations.

L3: Stall Prevention

The motor may experience excessive slip because it cannot keep up with the frequency reference when the load is too high or acceleration and deceleration times are too short. If the motor slips during acceleration, it usually causes an overcurrent fault (oC), drive overload (oL2), or motor overload (oL1). If the motor slips during deceleration, it can cause excessive regenerative

power to flow back into the DC bus capacitors, and eventually cause the drive to fault out from overvoltage (oV). The Stall Prevention Function prevents the motor from stalling and while allowing the motor to reach the desired speed without requiring the user to change the acceleration or deceleration time settings. The Stall Prevention function can be set separately for acceleration, operating at constant speeds, and deceleration.

■ L3-01: Stall Prevention Selection during Acceleration

Stall Prevention during acceleration prevents tripping with overcurrent (oC), motor overload (oL1), or drive overload (oL2) faults common when accelerating with heavy loads.

L3-01 determines the type of Stall prevention the drive should use during acceleration.

No.	Name	Setting Range	Default
L3-01	Stall Prevention Selection during Acceleration	0 to 2 < 1>	1

<1> Setting 2 is not available for OLV/PM.

Setting 0: Disabled

No Stall Prevention is provided. If the acceleration time is too short, the drive may not be able to get the motor up to speed fast enough, causing an overload fault.

Setting 1: Enabled

Enables Stall Prevention during acceleration. Operation varies depending on the control mode.

• V/f Control, V/f Control with PG, and Open Loop Vector Control:

Acceleration is reduced when the output current value exceeds 85% of the level set to parameter L3-02 for a longer than the time set to L3-27. The acceleration stops when the current exceeds L3-02. Acceleration continues when the current falls below L3-02 for longer than the time set to L3-27.

The Stall Prevention level is automatically reduced in the constant power range. *Refer to L3-03: Stall Prevention Limit during Acceleration on page 368*.

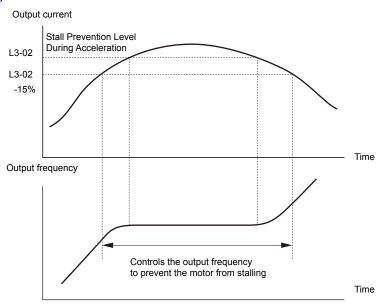


Figure 5.101 Stall Prevention During Acceleration for Induction Motors

• Open Loop Vector Control for PM:

Acceleration stops when the output current reaches the level set to parameter L3-02. When the time set to parameter L3-27 passes, the drive decelerates using the deceleration time set to L3-22 (*Refer to L3-22: Deceleration Time at Stall Prevention during Acceleration on page 368*). Deceleration stops when the current falls below 85% of L3-02,. The drive will attempt to reaccelerate after the time set to L3-27.

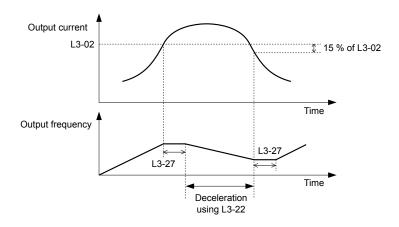


Figure 5.102 Stall Prevention During Acceleration for Permanent Magnet Motors

Setting 2: Intelligent Stall Prevention

The drive disregards the selected acceleration time and attempts to accelerate in the minimum time. The acceleration rate is adjusted so the current does not exceed the value set to parameter L3-02.

■ L3-02: Stall Prevention Level during Acceleration

Sets the output current level at which the Stall Prevention during acceleration is activated.

No.	Name	Setting Range	Default
L3-02	Stall Prevention Level during Acceleration	0 to 150% <1>	<1>

<1> The upper limit and default value is determined by the duty rating and the carrier frequency derating selection (C6-01 and L8-38 respectively).

- Lower L3-02 if stalling occurs when using a motor that is relatively small compared to the drive.
- Also set parameter L3-03 when operating the motor in the constant power range.

■ L3-03: Stall Prevention Limit during Acceleration

The Stall Prevention level is automatically reduced when the motor is operated in the constant power range. L3-03 sets the lower limit for this reduction as a percentage of the drive rated current.

No.	Name	Setting Range	Default
L3-03	Stall Prevention Limit during Acceleration	0 to 100%	50%

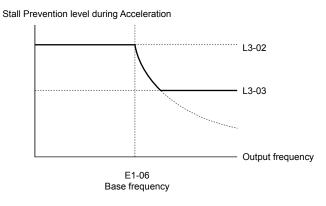


Figure 5.103 Stall Prevention Level and Limit During Acceleration

■ L3-22: Deceleration Time at Stall Prevention during Acceleration

Sets the brief deceleration time used when stalling occurs while accelerating a PM motor. When set to 0, this function is disabled and the drive decelerates at the selected deceleration time when stalling occurs.

The function is effective only in OLV/PM control and when parameter L3-01 is set to 1.

No.	Name	Setting Range	Default
L3-22	Deceleration Time at Stall Prevention During Acceleration	0.0 to 6000.0 s	0.0 s

■ L3-04: Stall Prevention Selection during Deceleration

Stall Prevention during deceleration controls the deceleration based on the DC bus voltage and prevents an overvoltage fault caused by high inertia or rapid deceleration.

No.	Name	Setting Range	Default
L3-04	Stall Prevention Selection During Deceleration	0 to 5 <1>	1

<1> Settings 3 through 5 are not available in OLV/PM. Settings 2 through 5 are not available in AOLV/PM and CLV/PM. Setting 3 is not available in models 4A0930 or 4A1200.

Setting 0: Disabled

The drive decelerates according to the set deceleration time. With high inertia loads or rapid deceleration, an overvoltage fault may occur. If an overvoltage fault occurs, use dynamic braking options or switch to another L3-04 selection.

Setting 1: General-purpose Stall Prevention

The drive tries to decelerate within the set deceleration time. The drive pauses deceleration when the DC bus voltage exceeds the Stall Prevention level and then continues deceleration when the DC bus voltage drops below that level. Stall Prevention may be triggered repeatedly to avoid an overvoltage fault. The DC bus voltage level for Stall Prevention depends on the input voltage setting E1-01.

Drive Input Voltage	Stall Prevention Level during Deceleration
200 V Class	377 Vdc
400 V Class	754 Vdc
600 V Class	1084 Vdc

Note:

- 1. Do not use this setting in combination with a Dynamic Braking Resistor or other dynamic braking options. If Stall Prevention during deceleration is enabled, it will be triggered before the braking resistor option can operate.
- 2. This method may lengthen the total deceleration time compared to the set value. If this is not appropriate for the application consider using a dynamic braking option.

Figure 5.104 illustrates the function of Stall Prevention during deceleration.

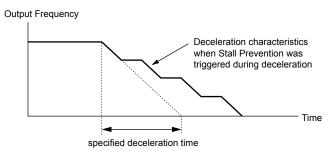


Figure 5.104 Stall Prevention During Deceleration

Setting 2: Intelligent Stall Prevention

The drive adjusts the deceleration rate so the DC bus voltage is kept at the level set to parameter L3-17. This produces the shortest possible deceleration time while protecting the motor from stalling. The selected deceleration time is disregarded and the achievable deceleration time cannot be smaller than 1/10 of the set deceleration time.

This function uses the following parameters for adjusting the deceleration rate:

- DC bus voltage gain (L3-20)
- Deceleration rate calculations gain (L3-21)
- Inertia calculations for motor acceleration time (L3-24)
- Load inertia ratio (L3-25)

Note: The deceleration time is not constant. Do not use Intelligent Stall Prevention in applications where stopping accuracy is a concern. Use dynamic braking options instead.

5

Setting 3: Stall Prevention with Dynamic Braking Option

Enables the Stall Prevention function while using a dynamic braking resistor. Overvoltage problems in the DC bus can occur if Stall Prevention during deceleration is disabled (L3-04) in OLV and a dynamic braking option is installed. Set L3-04 to 3 to remedy this situation.

Setting 4: Overexcitation Deceleration 1

Overexcitation Deceleration 1 (increasing the motor flux) is faster than deceleration with no Stall Prevention (L3-04 = 0). Setting 4 changes the selected decel time and functions to provide protection from an overvoltage trip. *Refer to Overexcitation Deceleration (Induction Motors) on page 390* for details.

Setting 5: Overexcitation Deceleration 2

Overexcitation Deceleration 2 slows down the motor while trying to maintain the DC bus voltage at the level set to parameter L3-17. This function shortens the achievable deceleration time more than by using Overexcitation Deceleration 1. Setting 5 will shorten/lengthen the decel time to maintain the L3-17 bus level. *Refer to Overexcitation Deceleration (Induction Motors) on page 390* for details.

■ L3-05: Stall Prevention Selection during Run

Determines how Stall Prevention works during Run. Stall Prevention during run prevents the motor from stalling by automatically reducing the speed when a transient overload occurs while the motor is running at constant speed.

No.	Name	Setting Range	Default
L3-05	Stall Prevention Selection During Run	0 to 2	1

Note:

- 1. This parameter is available in V/f, V/f w/PG, and OLV/PM.
- 2. Stall Prevention during run is disabled when the output frequency is 6 Hz or lower regardless of the L3-05 and L3-06 settings.

Setting 0: Disabled

Drive runs at the set frequency reference. A heavy load may cause the motor to stall and trip the drive with an oC or oL fault.

Setting 1: Decelerate Using C1-02

If the current exceeds the Stall Prevention level set in parameter L3-06, the drive will decelerate at decel time 1 (C1-02). When the current level drops below the value of L3-06 minus 2% for 100 ms, the drive accelerates back to the frequency reference at the active acceleration time.

Setting 2: Decelerate Using C1-04

Same as setting 1 except the drive decelerates at decel time 2 (C1-04).

■ L3-06: Stall Prevention Level during Run

Sets the current level to trigger Stall Prevention during run. Depending on the setting of parameter L3-23, the level is automatically reduced in the constant power range (speed beyond base speed). A setting of 100% is equal to the drive rated current.

The Stall Prevention level can be adjusted using an analog input. *Refer to Multi-Function Analog Input Terminal Settings on page 344* for details.

No.	Name	Setting Range	Default
L3-06	Stall Prevention Level During Run	30 to 150% <1>	<1>

<1> The upper limit and default for this setting is determined by C6-01 and L8-38.

■ L3-23: Automatic Reduction Selection for Stall Prevention during Run

Reduces the Stall Prevention during run level in the constant power range.

No.	Name	Setting Range	Default
L3-23	Automatic Reduction Selection for Stall Prevention During Run	0, 1	0

Setting 0: Disabled

The level set in L3-06 is used throughout the entire speed range.

Setting 1: Enabled

The Stall Prevention level during run is reduced in the constant power range. The lower limit will be 40% of L3-06.

■ Overvoltage Suppression Function

Suppresses overvoltage faults by decreasing the regenerative torque limit and slightly increasing the output frequency when the DC bus voltage rises. This function can drive loads with cyclic regenerative operation, such as a punch press or other applications that involve repetitive crank movements.

The regenerative torque limit and the output frequency are adjusted during ov suppression so that the DC bus voltage does not exceed the level set to parameter L3-17. In addition to the parameters explained below, ov suppression also uses these settings for frequency adjustment:

- DC bus voltage gain (L3-20)
- Deceleration rate calculations gain (L3-21)
- Inertia calculations for motor acceleration time (L3-24)
- Load inertia ratio (L3-25)

Note:

- 1. The motor speed will exceed the frequency reference when overvoltage suppression is triggered. Consequently, overvoltage suppression is not appropriate in applications that require a perfect match between the frequency reference and the motor speed.
- 2. Disable overvoltage suppression when using a braking resistor.
- 3. Overvoltage may still occur if there is a sudden increase to a regenerative load.
- **4.** This function is enabled only when operating just below the maximum frequency. Overvoltage suppression does not increase the output frequency beyond the maximum frequency. If the application requires this, increase the maximum frequency and change the base frequency setting.

■ L3-11: Overvoltage Suppression Function Selection

Enables or disables the overvoltage suppression function.

No.	Name	Setting Range	Default
L3-11	Overvoltage Suppression Function Selection	0, 1	0

Setting 0: Disabled

The regenerative torque limit and the output frequency are not adjusted. A regenerative load may trip the drive with an overvoltage fault. Use this setting if dynamic braking options are installed.

Setting 1: Enabled

When the DC bus voltage rises due to regenerative load, an overvoltage fault is prevented by decreasing the regenerative torque limit and increasing the output frequency.

■ L3-17: Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention

Sets the target DC bus voltage level used by the overvoltage suppression function (L3-11 = 1), Intelligent Stall Prevention during deceleration (L3-04 = 2).

No.	Name	Setting Range	Default
L3-17	Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention	150 to 400 Vdc <1>	375 Vdc <1> <2>

<1> Values are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives, but set the value below 1040 Vdc (overvoltage protection level).

■ L3-20: DC Bus Voltage Adjustment Gain

Determines the proportional gain used by overvoltage suppression (L3-11 = 1), Single Drive KEB 2 (L2-29 = 1), KEB Ride-Thru 2 (H1- $\square\square$ = 7A or 7B) ,and Intelligent Stall Prevention during deceleration (L3-04 = 2) to control the DC bus voltage.

No.	Name	Setting Range	Default
L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	Determined by A1-02

Adjustment for Single Drive KEB 2 (L2-29 = 1) and Intelligent Stall Prevention during Deceleration

- Increase this setting slowly in steps of 0.1 if overvoltage or undervoltage occurs at the beginning of deceleration.
- Decrease this setting if there is a fair amount of speed or torque ripple.

Adjustment for Overvoltage Suppression

• Increase this setting slowly in steps of 0.1 if overvoltage suppression is enabled (L3-11 = 1) and a sudden increase in a regenerative load causes an overvoltage fault.

<2> This value is initialized when E1-01 is changed.

• Decrease this setting if there is a fair amount of speed or torque ripple.

■ L3-21: Accel/Decel Rate Calculation Gain

Determines the proportional gain used by overvoltage suppression (L3-11 = 1), Single Drive KEB 2 (L2-29 = 1), and Intelligent Stall Prevention during deceleration (L3-04 = 2) to calculate acceleration and deceleration rates.

No.	Name	Setting Range	Default
L3-21	Accel/Decel Rate Calculation Gain	0.10 to 10.00	<1>

<1> This value is reset to its default value when the control mode is changed (A1-02). The value shown here is for OLV.

Adjustment for Single Drive KEB 2 (L2-29 = 1) and Intelligent Stall Prevention during Deceleration

- Reduce L3-21 in steps of 0.05 if there is a fairly large speed or current ripple.
- Small reductions of L3-21 can help solve problems with overvoltage and overcurrent.
- Decreasing this setting too much can cause slow DC bus voltage control response and may also lengthen deceleration times beyond optimal levels.

Adjustment for Overvoltage Suppression

- Increase this setting in steps of 0.1 if overvoltage occurs as a result of a regenerative load when overvoltage suppression is enabled (L3-11 = 1).
- Decrease L3-21 in steps of 0.05 if there is a fairly large speed ripple when overvoltage suppression is enabled.

■ L3-24: Motor Acceleration Time for Inertia Calculations

Sets the time to accelerate the motor from stop to the maximum speed at motor rated torque. Set this parameter when using Single Drive KEB 2 (L2-29 = 1), Intelligent Stall Prevention during Deceleration (L3-04 = 2), or the Overvoltage Suppression function (L3-11 = 1).

No.	Name	Setting Range	Default
L3-24	Motor Acceleration Time for Inertia Calculations	0.001 to 10.000 s	Determined by o2-04, C6-01, E2-11, and E5-01 <1>

<1> Parameter L3-24 is defaulted for a Yaskawa standard 4-pole motor. During Auto-Tuning, L3-24 will be initialized to a Yaskawa standard 4-pole motor if parameter E2-11 is changed. This value also changes based on the motor code set to E5-01 when using OLV/PM.

Automatic Parameter Setup

In CLV/PM, use the Inertia Auto-Tuning function to let the drive automatically adjust this parameter. *Refer to Auto-Tuning on page 201*.

Manual Parameter Setup

Make the calculations in the formula below:

L3-24 =
$$\frac{2 \cdot \pi \cdot J [kgm^2] \cdot n_{rated} [r/min]}{60 \cdot T_{rated} [Nm]}$$

Calculate the rated torque in the formula below:

$$T_{rated}[Nm] = \frac{60 \cdot P_{Motor}[kW] \cdot 10^{3}}{2 \cdot \pi \cdot n_{rated}[r/min]}$$

■ L3-25: Load Inertia Ratio

Determines the ratio between the rotor inertia and the load. Set this parameter when using Single Drive KEB 2 (L2-29 = 1), Intelligent Stall Prevention during deceleration (L3-04 = 2), or the overvoltage suppression function (L3-11 = 1).

No.	Name	Setting Range	Default
L3-25	Load Inertia Ratio	1.0 to 1000.0	1.0

When set incorrectly, a fairly large current ripple can result during Single Drive KEB 2 (L2-29 = 1). This may cause overvoltage suppression (L3-11 = 1) or other faults such as ov, Uv1, and oC.

Automatic Parameter Setup

In CLV for induction motors or PM motors, use the Inertia Auto-Tuning function to let the drive automatically adjust this parameter. *Refer to Auto-Tuning on page 201*.

Manual Parameter Setup

Calculate parameter L3-25 in the formula below:

■ L3-26: Additional DC Bus Capacitors

Sets the capacity of any additionally installed DC bus capacitors. This data is used in calculations for Single Drive KEB Ride-Thru 2. Adjust this setting only if external capacity is connected to the DC bus and Single Drive KEB 2 is used.

No.	Name	Setting Range	Default
L3-26	Additional DC Bus Capacitors	0 to 65000 μF	0 μF

■ L3-27: Stall Prevention Detection Time

Sets a delay time from when the Stall Prevention level is reached and the actual Stall Prevention function is activated.

No.	Name	Setting Range	Default
L3-27	Stall Prevention Detection Time	0 to 5000 ms	50 ms

■ L3-34: Torque Limit Delay Time

Sets the filter time constant in seconds for the torque limit value to return to set value when the Power KEB Ride-Thru is enabled (L2-29 = 1). Gradually increase this setting in increments of 0.010 s if oscillation occurs during Power KEB Ride-Thru.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L3-34	Torque Limit Delay Time	0.000 to 1.000 s	Determined by A1-02 <1>

<1> L3-34 = 0.200 when A1-02 = 6, L3-34 = 0.020 when A1-02 = 7.

■ L3-35: Speed Agree Width at Intelligent Stall Prevention during Deceleration

Sets the speed agree width when L3-04 = 2 (Intelligent Stall Prevention during Deceleration) in unit of 0.01 Hz. Use this parameter when hunting is started by a frequency reference in analog input. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L3-35	Speed Agree Width at Intelligent Stall Prevention during Deceleration	0.00 to 1.00 Hz	0.00 Hz

L4: Speed Detection

These parameters set up the speed agree and speed detection functions that can be assigned to the multi-function output terminals.

The speed is detected using the motor speed when A1-02 = 3 or 7.

■ L4-01, L4-02: Speed Agree Detection Level and Detection Width

Parameter L4-01 sets the detection level for the digital output functions Speed agree 1, User-set speed agree 1, Frequency detection 1, and Frequency detection 2.

Parameter L4-02 sets the hysteresis level for these functions.

No.	Name	Setting Range	Default
L4-01	Speed Agree Detection Level	0.0 to 400.0 Hz	0.0 Hz
L4-02	Speed Agree Detection Width	0.0 to 20.0 Hz	Determined by A1-02

Refer to H2-01 to H2-03: Terminal M1-M2, M3-M4, and M5-M6 Function Selection on page 331, Settings 2, 3, 4, and 5.

■ L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-)

Parameter L4-03 sets the detection level for the digital output functions Speed agree 2, User-set speed agree 2, Frequency detection 3, and Frequency detection 4.

Parameter L4-04 sets the hysteresis level for these functions.

No.	Name	Setting Range	Default
L4-03	Speed Agree Detection Level (+/-)	-400.0 to 400.0 Hz	0.0 Hz
L4-04	Speed Agree Detection Width (+/-)	0.0 to 20.0 Hz	Determined by A1-02

Refer to H2-01 to H2-03: Terminal M1-M2, M3-M4, and M5-M6 Function Selection on page 331, Settings 13, 14, 15, and 16

■ L4-05: Frequency Reference Loss Detection Selection

The drive can detect a loss of an analog frequency reference from input A1, A2, or A3. Frequency reference loss is detected when the frequency reference drops below 10% of the reference or below 5% of the maximum output frequency within 400 ms.

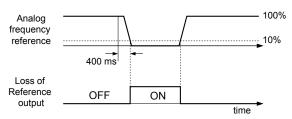


Figure 5.105 Loss of Reference Function

Set H2-01, H2-02, or H2-03 to C for a digital output to trigger when frequency reference loss occurs. *Refer to Setting C: Frequency Reference Loss on page 335* for details on setting the output function.

Parameter L4-05 selects the operation when a frequency reference loss is detected.

No.	Name	Setting Range	Default
L4-05	Frequency Reference Loss Detection Selection	0, 1	0

Setting 0: Stop

Drive follows the frequency reference (which is no longer present) and stops the motor.

Setting 1: Continue operation with reduced frequency reference

The drive will continue operation at the frequency reference value set to parameter L4-06. When the external frequency reference value is restored, the operation is continued with the frequency reference.

■ L4-06: Frequency Reference at Reference Loss

Sets the frequency reference level at which the drive runs when L4-05 = 1 and when detecting a reference loss. The value is set as a percentage of the frequency reference before the loss was detected.

No.	Name	Setting Range	Default
L4-06	Frequency Reference at Reference Loss	0.0 to 100.0%	80.0%

■ L4-07: Speed Agree Detection Selection

Determines when frequency detection is active using parameters L4-01 through L4-04.

No.	Name	Setting Range	Default
L4-07	Speed Agree Detection Selection	0, 1	0

Setting 0: No Detection during baseblock

Setting 1: Detection always enabled

L5: Fault Restart

After a fault has occurred, Fault Restart attempts to automatically restart the motor and continue operation instead of stopping.

The drive can perform a self-diagnostic check and resume the operation after a fault has occurred. If the self-check is successful and the cause of the fault has disappeared, the drive restarts by first performing Speed Search (*Refer to b3: Speed Search on page 242* for details).

WARNING! Sudden Movement Hazard. Do not use the fault restart function in lifting applications. Fault restart may cause the machine to drop the load, which could result in death or serious injury.

The drive can attempt to restart itself following the faults listed below.

Fault	Name	Fault	Name	
GF	Ground Fault	oL4	Overtorque 2	
LF	Output Open Phase	ov	DC Bus Overvoltage	
oC	Overcurrent	PF	Input Phase Loss	
oH1	Drive Overheat	rH	Braking Resistor Fault	
oL1	Motor Overload	rr	Braking Transistor Fault	
oL2	Drive Overload	Uv1	DC Bus Undervoltage <1>	
oL3	Overtorque 1	STo	Pull-Out Detection	

<1> When L2-01 is set to 1 through 4 (continue operation during momentary power loss)

Use parameters L5-01 to L5-05 to set up automatic fault restart.

Set H2-01, H2-02, or H2-03 to 1E. to output a signal during fault restart.

■ L5-01: Number of Auto Restart Attempts

Sets the number of times that the drive may attempt to restart itself.

Parameter L5-05 determines the method of incrementing the restart counter. When the counter reaches the number set to L5-01, the operation stops and the fault must be manually cleared and reset.

The restart counter is incremented at each restart attempt, regardless of whether the attempt was successful. When the counter reaches the number set to L5-01, the operation stops and the fault must be manually cleared and reset.

The number of fault restarts is reset to zero when:

- The drive operates normally for 10 minutes following a fault restart.
- A fault is cleared manually after protective functions are triggered.
- The power supply is cycled.

No.	Name	Setting Range	Default
L5-01	Number of Auto Restart Attempts	0 to 10 Times	0 Times

■ L5-02: Auto Restart Fault Output Operation Selection

Determines if a fault output is triggered (H2- $\Box\Box$ = E) when the drive attempts to restart.

No.	Name	Setting Range	Default
L5-02	Auto Restart Fault Output Operation Selection	0, 1	0

Setting 0: No Fault Output

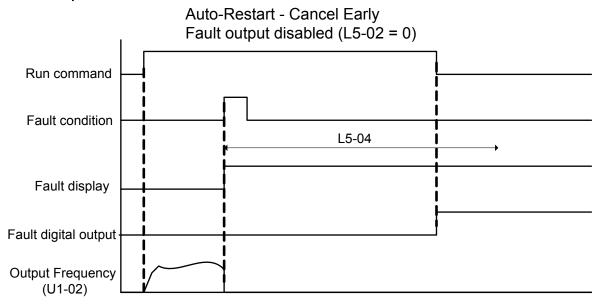


Figure 5.106 Auto Restart Cancel Early

Setting 1: Fault Output Is Set

■ L5-04: Fault Reset Interval Time

Determines the amount of time to wait between restart attempts when parameter L5-05 is set to 1.

No.	Name	Setting Range	Default
L5-04	Fault Reset Interval Time	0.5 to 600.0 s	10.0 s

■ L5-05: Fault Reset Operation Selection

No.	Name	Setting Range	Default
L5-05	Fault Reset Operation Selection	0, 1	0

Setting 0: Count Successful Restarts

The drive will continuously attempt to restart. If it restarts successfully, the restart counter is increased. This operation is repeated each time a fault occurs until the counter reaches the value set to L5-01.

Setting 1: Count Restart Attempts

The drive will attempt to restart using the time interval set to parameter L5-04. A record is kept of the number of attempts to restart to the drive, regardless of whether those attempts were successful. When the number of attempted restarts exceeds the value set to L5-01, the drive stops attempting to restart.

◆ L6: Torque Detection

The drive provides two independent torque detection functions that trigger an alarm or fault signal when the load is too heavy (oL), or suddenly drops (UL). These functions are set up using the L6- $\square\square$ parameters. Program the digital outputs as shown below to indicate the underload or overload condition to an external device:

Note: When overtorque occurs in the application, the drive may stop due to overcurrent (oC) or overload (oL1). To prevent the drive from stopping, use torque detection to indicate an overload situation to the controller before oC or oL1 occur. Use undertorque detection to discover application problems like a torn belt, a pump shutting off, or other similar trouble.

H2-01, H2-02, H2-03 Setting	Description	
В	Torque detection 1, N.O. (output closes when overload or underload is detected)	
17	Torque detection 1, N.C. (output opens when overload or underload is detected)	
18	Torque detection 2, N.O. (output closes when overload or underload is detected)	
19	Torque detection 2, N.C. (output opens when overload or underload is detected)	

Figure 5.107 and Figure 5.108 illustrate the functions of overtorque and undertorque detection.

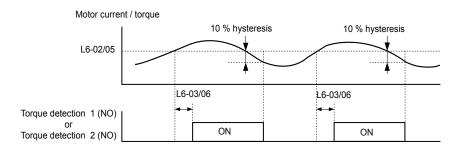


Figure 5.107 Overtorque Detection Operation

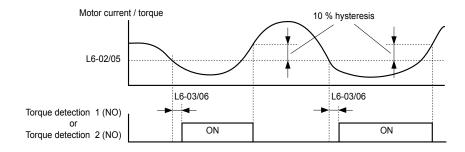


Figure 5.108 Undertorque Detection Operation

Note:

- 1. The torque detection function uses a hysteresis of 10% of the drive rated output current and motor rated torque.
- 2. In V/f, V/f w/PG and OLV/PM, the level is set as a percentage of the drive rated output current. In OLV, CLV, AOLV/PM and CLV/PM, the level is set as a percentage of the motor rated torque.

■ L6-01, L6-04: Torque Detection Selection 1, 2

The torque detection function is triggered when the current or torque exceed the levels set to L6-02 and L6-05 for longer than the times set to L6-03 and L6-06. L6-01 and L6-04 select the conditions for detection and the operation that follows.

No.	Name	Setting Range	Default
L6-01	Torque Detection Selection 1	0 to 8	0
L6-04	Torque Detection Selection 2	0 to 8	0

Setting 0: Disabled

Setting 1: oL3, oL4 at Speed Agree (Alarm)

Overtorque detection is active only when the output speed is equal to the frequency reference (i.e., no detection during acceleration and deceleration). The operation continues after detecting overtorque and triggering an oL3/oL4 alarm.

Setting 2: oL3, oL4 at Run (Alarm)

Overtorque detection works as long as the Run command is active. The operation continues after detecting overtorque and triggering an oL3/oL4 alarm.

Setting 3: oL3, oL4 at Speed Agree (Fault)

Overtorque detection is active only when the output speed is equal to the frequency reference, i.e., no detection during acceleration and deceleration. The operation stops and triggers an oL3/oL4 fault.

Setting 4: oL3, oL4 at Run (Fault)

Overtorque detection works as long as a Run command is active. The operation stops and triggers an oL3/oL4 fault.

Setting 5: UL3, UL4 at Speed Agree (Alarm)

Undertorque detection is active only when the output speed is equal to the frequency reference, i.e., no detection during acceleration and deceleration. The operation continues after detecting overtorque and triggering a UL3/UL4 alarm.

Setting 6: UL3, UL4 at Run (Alarm)

Undertorque detection works as long as the Run command is active. The operation continues after detecting overtorque and triggering a UL3/UL4 alarm.

Setting 7: UL3, UL4 at Speed Agree (Fault)

Undertorque detection is active only when the output speed is equal to the frequency reference, i.e., no detection during acceleration and deceleration. The operation stops and triggers a UL3/UL4 fault.

Setting 8: UL3, UL4 at Run (Fault)

Undertorque detection works as long as a Run command is active. The operation stops and triggers a UL3/UL4 fault.

■ L6-02, L6-05: Torque Detection Level 1, 2

These parameters set the detection levels for torque detection functions 1 and 2. In V/f and OLV/PM control modes, these levels are set as a percentage of the drive rated output current. In vector control modes, these levels are set as a percentage of the motor rated torque.

When Mechanical Weakening detection is enabled (L6-08 \neq 0), the level for L6-02 is set as a percentage of the drive rated output current in all control modes.

No.	Name	Setting Range	Default
L6-02	Torque Detection Level 1	0 to 300%	150%
L6-05	Torque Detection Level 2	0 to 300%	150%

Note:

The torque detection level 1 (L6-02) can also be supplied by an analog input terminal set to H3- $\Box\Box$ = 7. Here, the analog value has priority and the setting in L6-02 is disregarded. Torque detection level 2 (L6-05) cannot be set by an analog input.

■ L6-03, L6-06: Torque Detection Time 1, 2

These parameters determine the time required to trigger an alarm or fault after exceeding the levels in L6-02 and L6-05.

No.	Name	Setting Range	Default
L6-03	Torque Detection Time 1	0.0 to 10.0 s	0.1 s
L6-06	Torque Detection Time 2	0.0 to 10.0 s	0.1 s

■ Mechanical Weakening Detection

This function detects the mechanical weakening of a machine that leads to overtorque or undertorque situations after a set machine operation time has elapsed.

The function is activated in the drive when the cumulative operation counter U4-01 exceeds the time set to parameter L6-11. Mechanical Weakening Detection uses the torque detection 1 settings (L6-01, L6-02, L6-03) and triggers an oL5 or UL5 fault when overtorque or undertorque occurs in the speed range determined by parameter L6-08 and L6-09. The oL5 or UL5 operation is set by parameter L6-08.

Set H2-□□ to 22 to output a signal for Mechanical Weakening Detection.

■ L6-08: Mechanical Weakening Detection Operation

Sets the speed range to detect mechanical weakening and the action to take when mechanical weakening is detected.

No.	Name	Setting Range	Default
L6-08	Mechanical Weakening Detection Operation	0 to 8	0

Setting 0: Disabled

Setting 1: Continue Running if the Speed Is Greater than L6-09 (Signed) (Alarm)

Detection when the speed is above L6-09 (signed). Operation continues and triggers an oL5 alarm after detection.

Setting 2: Continue Running if the Speed Is Greater than L6-09 (Alarm)

Detection when the speed is above L6-09 (unsigned). Operation continues and triggers an oL5 alarm after detection.

Setting 3: Stop when Motor Speed Is Greater than L6-09 (Signed)

Detection when the speed is above L6-09 (signed). Operation stops and triggers an oL5 fault after detection.

Setting 4: Stop when Motor Speed Is Greater than L6-09

Detection when the speed is above L6-09 (unsigned). Operation stops and triggers an oL5 fault after detection.

Setting 5: Continue Running if the Speed Is Less than L6-09 (Signed) (Alarm)

Detection when the speed is below L6-09 (signed). Operation continues and triggers a UL5 alarm after detection.

Setting 6: Continue Running if the Speed Is Less than L6-09 (Alarm)

Detection when the speed is below L6-09 (unsigned). Operation continues and triggers a UL5 alarm after detection.

Setting 7: Stop when Motor Speed Is Less than L6-09 (Signed)

Detection when the speed is below L6-09 (signed). Operation stops and triggers a UL5 fault after detection.

Setting 8: Stop when Motor Speed Is Less than L6-09

Detection when the speed is below L6-09 (unsigned). Operation stops and triggers a UL5 fault after detection.

■ L6-09: Mechanical Weakening Detection Speed Level

Sets the speed level for Mechanical Weakening Detection as a percentage of the maximum frequency. If L6-08 is set for unsigned speed detection (L6-08 = 2, 4, 6, 8), the absolute value of L6-09 is used (negative settings are treated as positive values).

No.	Name	Setting Range	Default
L6-09	Mechanical Weakening Detection Speed Level	-110.0 to 110.0%	110%

■ L6-10: Mechanical Weakening Detection Time

Sets the time permitted for the situation selected in parameter L6-08 to arise before detecting mechanical weakening.

No.	Name	Setting Range	Default
L6-10	Mechanical Weakening Detection Time	0.0 to 10.0 s	0.1 s

■ L6-11: Mechanical Weakening Detection Start Time

Sets the cumulative drive operation time at which Mechanical Weakening Detection is activated. The function activates when U4-01 reaches the L6-11 value.

No.	Name	Setting Range	Default
L6-11	Mechanical Weakening Detection Start Time	0 to 65535 h	0 h

▶ L7: Torque Limit

The torque limit function limits the torque in each of the four quadrants individually to protect machinery in OLV, CLV, AOLV/PM, and CLV/PM control modes. Set the limit through parameters, analog inputs, or by switching a digital output programmed for "During torque limit" (H2-01, H2-02, H2-03 = 30) when the drive is operating at the torque limit.

■ Setting Torque Limits

Parameters L7-01 to L7-04 define the torque limits for each of the four operation quadrants. it is also possible to use Analog inputs to define a general limit for all operation conditions (H3-02, H3-06, H3-10 = 15) or to set separate limits for each operation condition (H3-02, H3-06, H3-10 = 10, 11, or 12). *Figure 5.109* shows limit setting is applied in each quadrant.

If two limit values are defined for the same operation conditions, the drive will use the lower value.

Note: The maximum output torque is ultimately limited by the drive output current (max. 150% of drive rated current in HD, 120% in ND). Output torque will not exceed the drive rated current limit even if the torque limits are set to higher values.

Example: If parameter L7-01 = 130%, L7-02 to L7-04 = 200%, and an analog input sets a general torque limit of 150% (H3-02, H3-06, H3-10 = 15), then the torque limit will be 130% in quadrant 1, but 150% in the other quadrants.

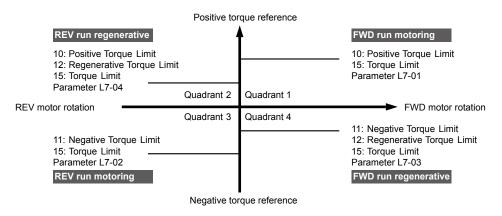


Figure 5.109 Torque Limit Parameters and Analog Input Settings

■ L7-01 to L7-04: Torque Limits

These parameters set the torque limits in each quadrant.

No.	Name	Setting Range	Default
L7-01	Forward Torque Limit	0 to 300%	200%
L7-02	Reverse Torque Limit	0 to 300%	200%
L7-03	Forward Regenerative Torque Limit	0 to 300%	200%
L7-04	Reverse Regenerative Torque Limit	0 to 300%	200%

Note:

If the multi-function analog input is programmed for "10: Forward torque limit", "11: Reverse torque limit", "12: Regenerative torque limit", or "15: General torque limit", the drive uses the lowest value from L7-01 through L7-04, or analog input torque limit.

■ L7-06: Torque Limit Integral Time Constant

Sets the integral time constant for the torque limit function. Decrease the setting for faster torque limit response. Increase the setting if oscillation occurs when operating at the torque limit.

No.	Name	Setting Range	Default
L7-06	Torque Limit Integral Time Constant	5 to 10000 ms	200 ms

■ L7-07: Torque Limit Control Method Selection during Accel/Decel

Selects the function of torque limit during acceleration and deceleration.

No.	Name	Setting Range	Default
L7-07	Torque Limit Control Method Selection during Accel/Decel	0, 1	0

Setting 0: Proportional Control

The torque limit function works with P control during accel and decel, and switches to I control at constant speed. Use this setting when accelerating or decelerating to the desired speed has priority over the torque limit during speed changes.

Setting 1: Integral Control

The torque limit function always uses I control. Use this setting when a highly accurate torque limit is required, even during speed changes. Using this function may increase the acceleration time, or prevent the motor speed from reaching the frequency reference if the torque limit is reached first.

■ L7-16: Torque Limit Process at Start

Assigns a time filter to allow the torque limit to build at start.

No.	Name	Setting Range	Default
L7-16	Torque Limit Process at Start	0, 1	1

Setting 0: Disabled

Torque limit is created at start without a delay time. Disable L7-16 to maximize the response time when the application requires sudden acceleration or deceleration at start.

Setting 1: Enabled

A delay time of 64 ms is added to allow the torque limit to build at start.

◆ L8: Drive Protection

■ L8-01: Internal Dynamic Braking Resistor Protection Selection (ERF type)

Selects the dynamic braking resistor protection when using an optional heatsink mounted braking resistor (ERF type, 3% ED).

Note: This parameter is not available in models 4A0930 and 4A1200.

N	No.	Name	Setting Range	Default
L8	8-01	Internal Dynamic Braking Resistor Protection Selection (ERF type)	0, 1	Determined by C6-01 and o2-04

Setting 0: Disabled

Disables braking resistor protection. Use this setting for any dynamic braking option other than the Yaskawa ERF-type resistor.

Setting 1: Enabled

Enables protection for Yaskawa ERF-type resistors.

■ L8-02: Overheat Alarm Level

Sets the overheat alarm (oH) detection level.

The drive outputs an alarm when the heatsink temperature exceeds the overheat alarm level. If the temperature reaches the overheat fault level, the drive will trigger an oH1 fault and stop operation.

When an output terminal is set for the oH pre-alarm (H2- $\square\square = 20$), the switch will close when the heatsink temperature rises above L8-02.

No.	Name	Setting Range	Default
L8-02	Overheat Alarm Level	50 to 150 °C	Determined by C6-01 and o2-04

■ L8-03: Overheat Pre-Alarm Operation Selection

Sets the operation when an overheat pre-alarm is detected.

Note: Change L8-03 setting only when necessary.

No.	Name	Setting Range	Default
L8-03	Overheat Pre-Alarm Operation Selection	0 to 4	3

Setting 0: Ramp to Stop

If an overheat alarm occurs, the drive decelerates to stop using the currently selected deceleration time. If a digital output is programmed for "fault" (H2- $\square\square$ = E), this output will be triggered.

Setting 1: Coast to Stop

If an overheat alarm occurs, the drive switches off the output and the motor coasts to stop. If a digital output is programmed for "fault" (H2- $\Box\Box$ = E), this output will be triggered.

Setting 2: Fast Stop

If an overheat alarm occurs, the drive decelerates to stop using the Fast Stop time (C1-09). If a digital output is programmed for "fault" (H2- $\square\square$ = E), this output will be triggered.

Setting 3: Alarm Only

If an overheat alarm occurs, an alarm is output and the drive continues operation.

Setting 4: Operation with Reduced Speed

If an overheat alarm occurs, the operation continues with the speed reduced to the level set to parameter L8-19. If the oH alarm is still present after 10 s, the speed is reduced again. The amount of speed reduction depends on how often the alarm repeats. If the oH alarm disappears while the drive is operating at a reduced speed, the drive will switch to the previous speed in 10 s increments until reaching base frequency. *Figure 5.110* explains the operation with reduced speed during an oH alarm. A digital output programmed for 4D is switched when the oH alarm is still active after ten reduction cycles.

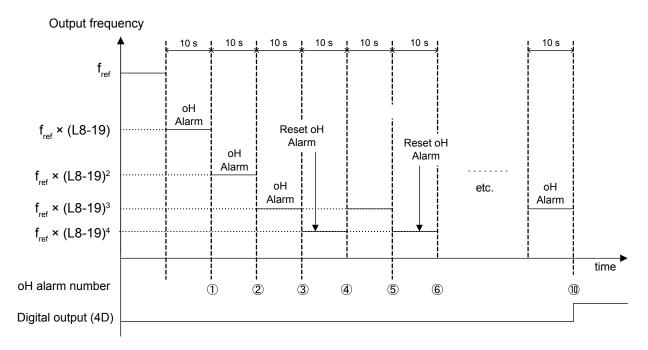


Figure 5.110 Output Frequency Reduction During Overheat Alarm

■ L8-05: Input Phase Loss Protection Selection

Enables or disables the input phase loss detection.

No.	Name	Setting Range	Default
L8-05	Input Phase Loss Protection Selection	0, 1	1

Setting 0: Disabled Setting 1: Enabled

Enables input phase loss detection. Since measuring the DC bus ripple detects input phase loss, a power supply voltage imbalance or main circuit capacitor deterioration may also trigger a phase loss fault (PF).

Detection is disabled if:

- The drive is decelerating.
- No Run command is active.
- Output current is less than or equal to 30% of the drive rated current.

■ L8-07: Output Phase Loss Protection Selection

Enables or disables the output phase loss detection triggered when the output current falls below 5% of the drive rated current.

Note:

- 1. Output phase loss detection can mistakenly be triggered if the motor rated current is very small compared to the drive rating. Disable this parameter in such cases.
- 2. Output phase loss detection is not possible when the drive is running a PM motor with light load.

No.	Name	Setting Range	Default
L8-07	Output Phase Loss Protection Selection	0 to 2	1

Setting 0: Disabled

Setting 1: Fault when One Phase Is Lost

An output phase loss fault (LF) is triggered when one output phase is lost. The output shuts off and the motor coasts to stop.

Setting 2: Fault when Two Phases Are Lost

An output phase loss fault (LF) is triggered when two or more output phases are lost. The output shuts off and the motor coasts to stop.

■ L8-09: Output Ground Fault Detection Selection

Enables or disables the output ground fault detection.

No.	Name	Setting Range	Default
L8-09	Output Ground Fault Detection Selection	0, 1	1

Setting 0: Disabled

Ground faults are not detected.

Setting 1: Enabled

A ground fault (GF) is triggered when high leakage current or a ground short circuit occurs in one or two output phases.

■ L8-10: Heatsink Cooling Fan Operation Selection

Selects the heatsink cooling fan operation.

No.	Name	Setting Range	Default
L8-10	Heatsink Cooling Fan Operation Selection	0, 1	0

Setting 0: Run with Timer

The fan is switched on when a Run command is active and switched off with the delay set to parameter L8-11 after releasing the Run command. This setting extends the fan lifetime.

Setting 1: Run Always

The fan runs when power is supplied to the drive.

■ L8-11: Heatsink Cooling Fan Off-Delay Time

Sets the cooling fan switch off-delay time if parameter L8-10 is set to 0.

No.	Name	Setting Range	Default
L8-11	Heatsink Cooling Fan Off-Delay Time	0 to 300 s	60 s

■ L8-12: Ambient Temperature Setting

Automatically adapts the drive rated current to safe values when used with parameter L8-35. This eliminates the need to reduce the drive rated current when the temperature where the drive is mounted is above the specified values. *Refer to Temperature Derating on page 571* for details.

No.	Name	Setting Range	Default
L8-12	Ambient Temperature Setting	-10 to +50 °C	40 °C

■ L8-15: oL2 Characteristics Selection at Low Speeds

Selects whether the drive overload capability (oL fault detection level) is reduced at low speeds to prevent premature output transistor failures.

Note: Contact Yaskawa for consultation before disabling this function. Disabling this function may shorten the operating life of the power transistors.

No.	Name	Setting Range	Default
L8-15	oL2 Characteristics Selection at Low Speed	0, 1	1

Setting 0: Protection Disabled at Low Speed

The overload protection level is not reduced. Frequently operating the drive with high output current at low speed can lead to premature drive faults.

Setting 1: Protection Enabled at Low Speed

The overload protection level (oL2 fault detection level) is automatically reduced at speeds below 6 Hz. At zero speed, the overload is derated by 50%.

■ L8-18: Software Current Limit Selection

Enables and disables the Software Current Limit (CLA) protection function to prevent main circuit transistor failures caused by high current.

Note: Do not change this setting unless absolutely necessary.

No.	Name	Setting Range	Default
L8-18	Software Current Limit Selection	0, 1	0

Setting 0: Software CLA Disabled

The drive may trip on an oC fault if the load is too heavy or the acceleration is too short.

Setting 1: Software CLA Enabled

When the Software CLA current level is reached, the drive reduces the output voltage to reduce the current. Normal operation continues when the current level drops below the Software CLA level.

■ L8-19: Frequency Reduction Rate during Overheat Pre-Alarm

Specifies the output frequency reduction when L8-03 is set to 4 and an oH alarm is present. Set as a factor of the maximum output frequency.

No.	Name	Setting Range	Default
L8-19	Frequency Reduction Rate During Overheat Pre-Alarm	0.1 to 0.9	0.8

■ L8-27: Overcurrent Detection Gain

Adjusts the overcurrent detection level in OLV/PM, AOLV/PM, or CLV/PM. A setting of 100% is equal to the motor rated current. When the drive rated current is considerably higher than the motor rated current, use this parameter to decrease the overcurrent level and prevent motor demagnetization from high current.

Overcurrent detection uses the lower value between the overcurrent level for the drive and the motor rated current multiplied by L8-27.

No.	Name	Setting Range	Default
L8-27	Overcurrent Detection Gain	0.0 to 400.0% <1>	300.0%

<1> The setting range is 0.0 to 300.0% for models 4A0930 and 4A1200.

■ L8-29: Current Unbalance Detection (LF2)

Enables and disables output current unbalance detection in OLV/PM, AOLV/PM, or CLV/PM. Current unbalance can heat a PM motor and demagnetize the magnets. The current unbalance detection function monitors output current and triggers the LF2 fault to prevent such motor damage.

No.	Name	Setting Range	Default
L8-29	Current Unbalance Detection (LF2)	0 to 3 <1>	1

<1> Settings 2 and 3 are not available in models 4A0930 or 4A1200.

2A0004 to 2A0415, 4A0002 to 4A0630, 5A0003 to 5A0242

Setting 0: Disabled

No current unbalance protection is provided to the motor.

Setting 1: Enabled (Current and Voltage Detection)

Setting 2: Enabled (Current Detection)

The LF2 fault is triggered if an output current imbalance is detected. Drive output shuts off and the motor coasts to stop.

Setting 3: Enabled (Voltage Detection)

4A0930, 4A1200 Setting 0: Disabled

Setting 1: Enabled (Current Detection)

■ L8-32: Cooling Fan Failure Selection

Determines drive operation when a FAn fault occurs.

No.	Name	Setting Range	Default
L8-32	Cooling Fan Failure Selection	0 to 4	1

Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time set in parameter C1-02.

Setting 1: Coast to Stop

The drive output is switched off and the motor coasts to a stop.

Setting 2: Fast Stop

The drive stops the motor using the Fast stop time set in parameter C1-09.

Setting 3: Alarm Only

The operation is continued and a FAn alarm is displayed on the digital operator.

Setting 4: Operation with Reduced Speed

The operation is continued, but the speed is reduced to the level set in parameter L8-19.

Note: "FAn" is detected as an error when Settings 0 or 2 are selected; it is detected as an alarm when Settings 3 or 4 are selected.

■ L8-35: Installation Method Selection

Selects the type of installation for the drive and changes the drive overload (oL2) limits accordingly. *Refer to Temperature Derating on page 571* for details.

Note:

- 1. Initialization does not reset this parameter.
- 2. The value is preset to the appropriate value when the drive is shipped. Change the value only when using Side-by-Side installation or when mounting a standard drive with the heatsink outside the cabinet.

No.	Name	Setting Range	Default
L8-35	Installation Method Selection	0 to 3	<1>

<1> Default setting is determined by drive model.

Setting 2: Model code 2A0004 to 2A0211, 4A0002 to 4A0165, and 5A0003 to 5A0242

Setting 0: Model code 2A0250 to 2A0415 and 4A0208 to 4A1200.

Setting 0: IP00/Open-Chassis Enclosure

For an Open Type enclosure drive installed with at a minimum of 30 mm space to the next drive or a cabinet wall.

Setting 1: Side-by-Side Mounting

For drives mounted according to Yaskawa Side-by-Side specifications (requires 2 mm between drives).

Setting 2: IP20/NEMA Type 1 Enclosure

For drives compliant with IP20/NEMA Type 1 enclosure specifications.

Setting 3: Finless Drive or External Heatsink Installation

For finless drives or a standard drive mounted with the heatsink outside the cabinet or enclosure panel.

■ L8-38: Carrier Frequency Reduction Selection

Selects the operation of the carrier frequency reduction function. Reduces the carrier frequency when the output current exceeds a certain level. This temporarily increases the overload capability (oL2 detection), allowing the drive to run through transient load peaks without tripping.

Note: This function cannot be used in AOLV/PM.

No.	Name	Setting Range	Default
L8-38	Carrier Frequency Reduction Selection	0 to 2	Determined by A1-02, C6-01 and o2-04

Setting 0: Disabled

No carrier frequency reduction at high current.

Setting 1: Enabled for Output Frequencies below 6 Hz

The carrier frequency is reduced at speeds below 6 Hz when the current exceeds 100% of the drive rated current. The drive returns to the normal carrier frequency when the current falls below 88% or the output frequency exceeds 7 Hz.

Setting 2: Enabled for Entire Frequency Range

The carrier frequency is reduced at the following speeds:

- Below 6 Hz when the current exceeds 100% of the drive rated current.
- Above 7 Hz when the current exceeds 112% of the drive rated current.

The drive uses the delay time set in parameter L8-40 and a hysteresis of 12% when switching the carrier frequency back to the set value.

■ L8-40: Carrier Frequency Reduction Off-Delay Time

The following settings are used when the carrier frequency is to be reduced at start:

- Time taken for the reduced carrier frequency to return to the carrier frequency set at C6-02.
- Time taken to return to the set carrier frequency after reducing it by setting L8-38 to 1 or 2.

The carrier frequency reduction function at start is disabled if this value is 0.00 s.

No.	Name	Setting Range	Default
L8-40	Carrier Frequency Reduction Off-Delay Time	0.00 to 2.00 s	Determined by A1-02

■ L8-41: High Current Alarm Selection

Triggers a high current alarm (HCA) when the output current exceeds 150% of the drive rated current.

No.	Name	Setting Range	Default
L8-41	High Current Alarm Selection	0, 1	0

Setting 0: Disabled

No alarm is detected.

Setting 1: Enabled

An alarm is triggered when the output current exceeds 150% of the drive rated current. A digital output set for an alarm (H2- $\Box\Box$ = 10) will close.

■ L8-55: Internal Braking Transistor Protection

Enables or disables protection for the internal braking transistor.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L8-55	Internal Braking Transistor Protection	0, 1	1

Setting 0: Disabled

Disable braking transistor protection when not using the internal braking transistor, including the following instances:

- When using a regen converter such as DC5.
- When using a regen unit such as RC5.
- When using external braking transistor options like CDBR units.
- When using the drive in common DC bus applications and the internal braking unit is not installed.

Enabling L8-55 under such conditions can incorrectly trigger a braking transistor fault (rr).

Setting 1: Enabled

Enable L8-55 when connecting a braking resistor or a braking resistor unit to the drive built-in braking transistor.

Models 2A0004 to 2A0138, 4A0002 to 4A0072, and 5A0003 to 5A0052 come with a built-in braking transistor.

■ L8-78: Power Unit Output Phase Loss Protection

Protects the power unit from phase loss.

Note: This parameter is only available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L8-78	Power Unit Output Phase Loss Protection	0, 1	1

Setting 0: Disabled Setting 1: Enabled

■ L8-93: LSo Detection Time at Low Speed

Sets the amount of time until baseblock is executed after LSo has been detected at low speed.

A setting of 0.0 s disables this parameter.

No.	Name	Setting Range	Default
L8-93	LSo Detection Time at Low Speed	0.0 to 10.0 s	1.0 s

■ L8-94: LSo Detection Level at Low Speed

Determines the detection level of Sto at low speed. Set as a percentage of the maximum frequency (E1-04).

No.	Name	Setting Range	Default
L8-94	LSo Detection Level at Low Speed	0 to 10%	3%

■ L8-95: Average LSo Frequency at Low Speed

Sets the average number of times LSo can occur at low speed.

No.	Name	Setting Range	Default
L8-95	Average LSo Frequency at Low Speed	1 to 50 times	10 times

◆ L9: Drive Protection 2

■ L9-03: Carrier Frequency Reduction Level Selection

Selects start or clear current level for automatic carrier frequency reduction. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
L9-03	Carrier Frequency Reduction Level Selection	0, 1	0

Setting 0: Reduces the Carrier Frequency Based on the Drive Rated Current that Is Not Derated

Setting 1: Reduces the Carrier Frequency Based on the Drive Rated Current that Is Derated by the Carrier Frequency and Temperature with C6-02 Selection

5.9 n: Special Adjustments

These parameters control a variety of specialized adjustments and functions, including Hunting Prevention, AFR Control, High Slip Braking, resistance between motor lines, and PM motor control functions.

n1: Hunting Prevention

Hunting Prevention prevents the drive from hunting as a result of low inertia and operating with light load. Hunting often occurs with a high carrier frequency and an output frequency below 30 Hz.

■ n1-01: Hunting Prevention Selection

Enables or disables the Hunting Prevention function.

Note: This function is available only when using V/f Control. Disable Hunting Prevention when drive response is more important than suppressing motor oscillation. This function may be disabled without problems in applications with high inertia loads or relatively heavy loads.

No.	Name	Setting Range	Default
n1-01	Hunting Prevention Selection	0, 1	1

Setting 0: Disabled

Setting 1: Enabled

■ n1-02: Hunting Prevention Gain Setting

Sets the gain for the Hunting Prevention Function.

No.	Name	Setting Range	Default
n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00

Although this parameter rarely needs to be changed, it may require adjustment in the following situations:

- If the motor vibrates while lightly loaded and n1-01 = 1, increase the gain by 0.1 until vibration ceases.
- If the motor stalls while n1-01 = 1, decrease the gain by 0.1 until the stalling ceases.

■ n1-03: Hunting Prevention Time Constant

Determines the responsiveness of the Hunting Prevention function (affects the primary delay time for Hunting Prevention).

No.	Name	Setting Range	Default
n1-03	Hunting Prevention Time Constant	0 to 500 ms	Determined by o2-04

Although this parameter rarely needs to be changed, it may require adjustment in the following situations:

- Increase this value for applications with a large load inertia. A higher setting leads to slower response, which can result in oscillation at lower frequencies.
- Lower this setting if oscillation occurs at low speed.

■ n1-05: Hunting Prevention Gain while in Reverse

This parameter functions the same as n1-02, except it is used when rotating in reverse. See the explanation for n1-02.

Note: n1-02 is enabled for forward and reverse operation when n1-05 = 0.0 ms.

No.	Name	Setting Range	Default
n1-05	Hunting Prevention Gain while in Reverse	0.00 to 2.50	0.00

◆ n2: Speed Feedback Detection Control (AFR) Tuning

These parameters help achieve speed stability when a load is suddenly applied or removed.

Note: Properly set all motor parameters or perform Auto-Tuning before making changes to the AFR parameters.

■ n2-01: AFR Gain

Sets the internal speed feedback detection control gain in the AFR.

No.	Name	Setting Range	Default
n2-01	AFR Gain	0.00 to 10.00	1.00

Although this parameter rarely needs to be changed, it may require adjustment in the following situations:

- If hunting occurs, increase the setting value in steps of 0.05 while checking the response.
- If response is low, decrease the setting value in steps of 0.05 while checking the response.

■ n2-02, n2-03: AFR Time Constant 1, 2

Parameter n2-02 sets the time constant normally used by AFR.

Parameter n2-03 sets the time constant during Speed Search or regenerative operation.

No.	Name	Setting Range	Default
n2-02	AFR Time Constant 1	0 to 2000 ms	50 ms
n2-03	AFR Time Constant 2	0 to 2000 ms	750 ms

Note: Setting parameter n2-02 higher than n2-03 will trigger an oPE08 error.

Although these parameters rarely need to be changed, they may require adjustment in the following situations:

- If hunting occurs, increase n2-02. If response is low, decrease it.
- Increase n2-03 if overvoltage occurs with high inertia loads at the end of acceleration or with sudden load changes.
- If setting n2-02 to a higher value, increase C4-02 (Torque Compensation Delay Time Constant 1) proportionally.
- If setting n2-03 to a higher value, increase C4-06 (Torque Compensation Delay Time Constant 2) proportionally.

n3: High Slip Braking (HSB) and Overexcitation Braking

■ High Slip Braking (V/f)

HSB works in V/f Control only and decreases the stopping time compared to normal deceleration without using dynamic braking options. HSB reduces the output frequency in large steps to stop the motor and produce a high slip, which dissipates the regenerative energy created from decelerating the load in the motor windings. Due to the increased temperature of the motor windings, do not use HSB to frequently stop the motor. The duty cycle should be around 5% or lower.

Notes on Using High Slip Braking

- The set deceleration time is ignored during HSB. Use Overexcitation Deceleration 1 (L3-04 = 4) to stop the motor within a specified time.
- Braking time varies based on the load inertia and motor characteristics.
- Enabling HSB and KEB Ride-Thru simultaneously will trigger an oPE03 error.
- HSB must be triggered by a digital input set to H1- $\Box\Box$ = 68. After the HSB command is given, the drive will not restart until the motor is completely stopped and the Run command is cycled.
- Use parameters n3-01 through n3-04 to adjust HSB.

■ n3-01: High Slip Braking Deceleration Frequency Width

Sets the step width for frequency reduction during HSB. Increase n3-01 if DC bus overvoltage (ov) occurs during HSB.

No.	Name	Setting Range	Default
n3-01	High Slip Braking Deceleration Frequency Width	1 to 20%	5%

■ n3-02: High Slip Braking Current Limit

Sets the maximum current to be output during an HSB stop as a percentage of motor rated current (E2-01). Reducing the current limit increases the deceleration time. This value must not exceed the drive overload capacity.

- Lower this setting if overvoltage occurs during HSB.
- Lower this setting if motor current is too high during HSB. High current can damage the motor due to overheat.
- The default setting is 150% when the drive is set for Heavy Duty, and 120% when the drive is set for Normal Duty.

No.	Name	Setting Range	Default
n3-02	High Slip Braking Current Limit	100 to 200%	Determined by C6-01 and L8-38

■ n3-03: High Slip Braking Dwell Time at Stop

When the motor reaches a relatively low speed at the end of HSB, the output frequency is kept at the minimum output frequency set to E1-09 for the time set to n3-03. Increase this time if the inertia is very high and the motor coasts after HSB is complete.

No.	Name	Setting Range	Default
n3-03	High Slip Braking Dwell Time at Stop	0.0 to 10.0 s	1.0 s

■ n3-04: High Slip Braking Overload Time

Sets the time required for an HSB overload fault (oL7) to occur when the drive output frequency does not change during an HSB stop due to excessive load inertia or the load rotating the motor. To protect the motor from overheat, the drive trips with an oL7 fault if these conditions last longer than the time set in n3-04.

No.	Name	Setting Range	Default
n3-04	High Slip Braking Overload Time	30 to 1200 s	40 s

■ Overexcitation Deceleration (Induction Motors)

Increases the flux during deceleration and allows shorter deceleration time settings without the use of a braking resistor. Enabled by setting L3-04 to 4 or 5. *Refer to L3-04: Stall Prevention Selection during Deceleration on page 369*.

Notes on Overexcitation Deceleration

- Frequently applying Overexcitation Deceleration raises the motor temperature because regenerative energy is mainly dissipated as heat in the motor. In cases where frequent application is required, make sure the motor temperature does not exceed the maximum allowable value or consider using a braking resistor option in lieu of Overexcitation Deceleration.
- During Overexcitation Deceleration 2, Hunting Prevention in V/f Control and torque limits in OLV Control are disabled.
- Do not use Overexcitation Deceleration in combination with a braking resistor option.
- Overexcitation Deceleration can be used in OLV and CLV, but it lowers the accuracy of Torque Control and braking efficiency. It can be most efficiently used in a V/f Control.
- Overexcitation Deceleration cannot be used with PM motors.

Parameter Adjustments

- Use parameters n3-13 through n3-23 to adjust Overexcitation Deceleration.
- When repetitive or long Overexcitation Deceleration causes motor overheat, lower the overexcitation gain (n3-13) and reduce the overslip suppression current level (n3-21).
- During Overexcitation Deceleration 1 (L3-04 = 4), the drive decelerates at the active deceleration time (C1-02, C1-04, C1-06, or C1-08). Set this time so no overvoltage (ov) fault occurs.
- During Overexcitation Deceleration 2 (L3-04 = 5), the drive decelerates using the active deceleration time while adjusting the deceleration rate to keep the DC bus voltage at the level set to L3-17. The actual stopping time will be longer or shorter than the set deceleration time depending on the motor characteristics and the load inertia. Increase the deceleration time if overvoltage occurs (ov).
- Entering a Run command during Overexcitation Deceleration cancels overexcitation operation and the drive reaccelerates to the specified speed.

■ n3-13: Overexcitation Deceleration Gain

Multiplies a gain to the V/f pattern output value during Overexcitation Deceleration to determine the level of overexcitation. The drive returns to the normal V/f value after the motor has stopped or when it is accelerating to the frequency reference.

No.	Name	Setting Range	Default
n3-13	Overexcitation Deceleration Gain	1.00 to 1.40	1.10

The optimum setting for n3-13 depends on the motor flux saturation characteristics.

- Gradually increase the gain to 1.25 or 1.30 to improve the braking power of Overexcitation Deceleration.
- Lower n3-13 when flux saturation characteristics cause overcurrent. A high setting sometimes causes overcurrent (oC), motor overload (oL1), or drive overload (oL2). Lowering n3-21 can also help remedy these problems.

■ n3-14: High Frequency Injection during Overexcitation Deceleration

Enables High Frequency Injection while Overexcitation Deceleration is executed. Injecting high frequency into the motor increases loss and shortens deceleration time. This function tends to increase audible noise from the motor, and may not be desirable in environments where motor noise is a concern.

No.	Name	Setting Range	Default
n3-14	High Frequency Injection During Overexcitation Deceleration	0, 1	0

Setting 0: Disabled

Setting 1: Enabled

■ n3-21: High Slip Suppression Current Level

If the motor current exceeds the value set to n3-21 during Overexcitation Deceleration due to flux saturation, the drive automatically reduces the overexcitation gain. Parameter n3-21 is set as a percentage of the drive rated current.

Set this parameter to a relatively low value to optimize deceleration. If overcurrent, oL1, or oL2 occur during Overexcitation Deceleration, reduce the high slip suppression current level.

No.	Name	Setting Range	Default
n3-21	High Slip Suppression Current Level	0 to 150%	100%

■ n3-23: Overexcitation Operation Selection

Limits the Overexcitation Deceleration operation selected in parameter L3-04 to forward only or reverse only.

No.	Name	Setting Range	Default
n3-23	Overexcitation Operation Selection	0 to 2	0

Setting 0: Overexcitation Operation as Selected in L3-04 in Forward and Reverse Direction

Setting 1: Overexcitation Operation as Selected in L3-04 in Forward Direction Only

Setting 2: Overexcitation Operation as Selected in L3-04 in Reverse Direction Only

n5: Feed Forward Control

Enabling Feed Forward improves the responsiveness of the drive to speed reference changes in applications where a high speed control proportional gain setting (ASR gain, C5-01, C5-03) would lead to problems with overshoot, undershoot, or oscillation. *Figure 5.111* gives an example of overshoot reduction by Feed Forward. Parameters related to this function and the function principle are illustrated in *Figure 5.112*. Feed Forward can only be used in CLV, CLV/PM, or AOLV/PM (A1-02 = 4, 6, or 7).

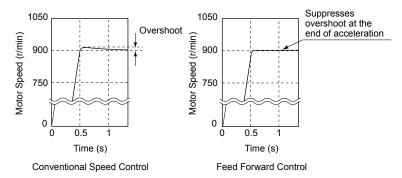


Figure 5.111 Overshoot Suppression by Feed Forward Control

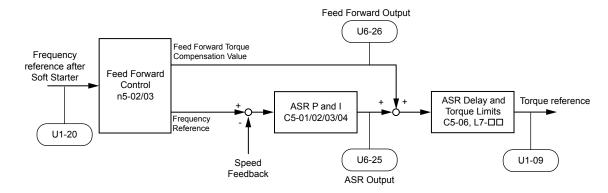


Figure 5.112 Feed Forward Control

Note:

- 1. Feed Forward can only be used in CLV, AOLV/PM, and CLV/PM control modes.
- 2. Prior to using Feed Forward, always perform Auto-Tuning or manually enter the correct motor data. Perform ASR Auto-Tuning to set the speed loop gain (C5-01), or adjust it manually. Fine-tune the other speed control loop parameters (C5-\(\sigma\)) if required.
- 3. If not restricted by the application, use Inertia Auto Tuning (T1-01 = 8) to automatically optimize Feed Forward parameters. If Inertia Auto Tuning cannot be performed, manually set parameters related to Feed Forward.

n5-01: Feed Forward Control Selection

Enables and disables the Feed Forward function.

No.	Name	Setting Range	Default
n5-01	Feed Forward Control Selection	0, 1	0

Setting 0: Disabled

Setting 1: Enabled

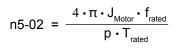
■ n5-02: Motor Acceleration Time

Sets the time required to accelerate the motor from a full stop to the rated speed at the rated torque.

No.	Parameter Name	Setting Range	Default
n5-02	Motor Acceleration Time	0.001 to 10.000 s	Determined by C6-01, E5-01 and o2-04

Set this value automatically with Inertia Auto-Tuning. If Inertia Auto-Tuning cannot be performed, use one of the following methods to determine the setting value for this parameter.

Calculation


The motor acceleration time can be calculated by one of the following formulas:

$$n5-02 = \frac{\pi \cdot J_{Motor} \cdot n_{rated}}{30 \cdot T_{rated}}$$

Where:

- J_{Motor} is the motor inertia in kgm/s².
- n_{rated} is the rated speed of the motor in r/min.
- T_{rated} is the rated torque of the motor in N•m.

or

Where:

- J_{Motor} is the motor inertia in kgm².
- f_{rated} is the rated frequency of the motor in Hz.
- p is the number of motor poles (not pole pairs).
- T_{rated} is the rated torque of the motor in N•m.

Measuring Acceleration Time

Take the following steps when measuring the motor acceleration time:

- 1. Select the control mode; CLV (A1-02 = 3), AOLV/PM (A1-02 = 6), or CLV/PM (A1-02 = 7).
- 2. Decouple motor and load.
- 3. Perform Auto-Tuning or manually enter the correct motor data.
- **4.** Properly set up the speed loop (ASR).
- **5.** Set the acceleration time to zero.
- **6.** Set the forward torque limit in parameter L7-01 to 100%.
- 7. Set the frequency reference equal to the motor rated speed.
- **8.** While monitoring the motor speed in U1-05, start the motor in the forward direction and measure the time it takes to reach the rated speed.
- 9. Reverse the parameter settings above and set the measured time to parameter n5-02.

■ n5-03: Feed Forward Control Gain

Sets the inertia ratio of the load connected to the motor. This value can be set automatically by Inertia Auto-Tuning.

No.	Parameter Name	Setting Range	Default
n5-03	Feed Forward Control Gain	0.00 to 100.00	1.00

Set this value automatically with Inertia Auto-Tuning. If Inertia Auto Tuning cannot be performed, determine the value for parameter n5-03 using the following steps:

- 1. Select the control mode; CLV (A1-02 = 3), AOLV/PM (A1-02 = 6), or CLV/PM (A1-02 = 7).
- 2. Set parameter n5-02 correctly.
- 3. Couple motor and load.
- **4.** Set the acceleration time in C1-01 to 0.
- **5.** Set the torque limits in the L7- \square parameters to a value that will easily be reached during the test ($T_{\text{Lim Test}}$).
- 6. Set the frequency reference equal to a value in the upper speed range of the machine (f_{ref Test}).
- **7.** While monitoring the motor speed in U1-05, start the motor in the forward direction and measure the time it takes to reach the reference speed (t_{accel}) .
- **8.** Reverse the parameter settings above and calculate the set value for parameter n5-03 using the formula below.

$$n5-03 = \frac{t_{accel} \cdot T_{Lim_Test} \cdot f_{rated}}{n5-02 \cdot f_{rof_Test} \cdot 100} - 1$$

Where:

- t_{accel} is the measured acceleration time in s.
- f_{rated} is the rated frequency of the motor in Hz.
- T_{Lim Test} is torque limit setting during the test (%).
- f_{ref Test} is the frequency reference during the test in Hz.

n6: Online Tuning

Online Tuning prevents loss from insufficient torque and diminished speed control accuracy due to fluctuating motor temperature.

■ n6-01: Online Tuning Selection

Selects the type of motor data Online Tuning uses for OLV control.

No.	Name	Setting Range	Default
n6-01	Online Tuning Selection	0 to 2	0

Setting 0: Disabled

Setting 1: Line-to-line Resistance Tuning

This setting enables line-to-line resistance online tuning. This procedure is effective for speed values up to 6 Hz and improves the overload capacity in the low speed range by adjusting the value set for the motor resistance.

Setting 2: Voltage Correction

The drive adjusts the output voltage during run to improve overload tolerance and minimize the effects of high temperatures on speed accuracy.

Note: This setting can only be selected when the Energy Saving function is disabled (68-01=0).

■ n6-05: Online Tuning Gain

Sets the compensation gain for the voltage correction in the Online Tuning function (n6-01 = 2).

Although this parameter rarely needs to be changed, increase the set value in steps of 0.1 if an overload fault occurs during voltage correction

No.	Name	Setting Range	Default
n6-05	Online Tuning Gain	0.1 to 50.0	1.0

◆ n8: PM Motor Control Tuning

These parameters adjust the control performance in the vector control modes for permanent magnet motors.

■ n8-01: Initial Rotor Position Estimation Current

Sets the current used for initial rotor position estimation as a percentage of the motor rated current (E5-03). If the motor nameplate lists an "Si" value, that value should be entered here. There is normally no need to change this parameter from the default value.

Note: This parameter is only available in AOLV/PM or CLV/PM.

No.	Name	Setting Range	Default
n8-01	Initial Rotor Position Estimation Current	0 to 100%	50%

■ n8-02: Pole Attraction Current

Sets the current that is applied to pull the rotor into position after the initial rotor position estimations are complete. The value is set as a percentage of the motor rated current. Increase this setting to increase the starting torque.

Note: This parameter is only available in AOLV/PM or CLV/PM.

No.	Name	Setting Range	Default
n8-02	Pole Attraction Current	0 to 150%	80%

■ n8-11: Induction Voltage Estimation Gain 2

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
n8-11	Induction Voltage Estimation Gain 2	0.0 to 1000.0	Determined by n8-72 <1>

<1> When n8-72 is set to 0, the default setting is 50.0 and when n8-72 is set to 1, the default setting is 150.0. Refer to n8-14: Polarity Compensation Gain 3 on page 395 for a list of monitors.

n8-14: Polarity Compensation Gain 3

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
n8-14	Polarity Compensation Gain 3	0.000 to 10.000	1.000

n8-15: Polarity Compensation Gain 4

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
n8-15	Polarity Compensation Gain 4	0.000 to 10.000	0.500

n8-21: Motor Ke Gain

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

This parameter is not available in models 4A0930 and 4A1200. Note:

No.	Name	Setting Range	Default
n8-21	Motor Ke Gain	0.80 to 1.00	0.90

n8-35: Initial Rotor Position Detection Selection

Selects how the rotor position is detected at start.

Note:

- 1. In CLV/PM, the drive performs a magnetic pole search the first time it starts the motor. After that, rotor position is calculated from the PG encoder signal and saved until the drive is switched off. Parameter n8-35 determines how this initial pole search operates.
- High Frequency Injection and pulse injection for rotor position detection (n8-35 = 1 or 2) can be used with IPM motors only. When using an SPM motor, select the pull in method to find the initial position of the rotor (n8-35=0).
- 3. This parameter is only available in AOLV/PM or CLV/PM.

No.	Name	Setting Range	Default
n8-35	Initial Rotor Position Detection Selection	0 to 2	1

Setting 0: Pull In

Starts the rotor using pull-in current.

Setting 1: High Frequency Injection

High frequency is injected to detect the rotor position. Some noise may be generated from the motor at start.

Setting 2: Pulse Injection

A pulse signal is injected into the motor to detect the rotor position.

n8-36: High Frequency Injection Level

Sets the frequency level used for High Frequency Injection. Enabled when n8-57 = 1. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
n8-36	High Frequency Injection Level	200 to 1000 Hz	500 Hz

n8-37: High Frequency Injection Amplitude

Sets the amplitude for High Frequency Injection as a percentage of the voltage. Enabled when n8-57 = 1. There is normally no need to change this parameter from the default value.

This parameter is not available in models 4A0930 and 4A1200. Note:

No.	Name	Setting Range	Default
n8-37	High Frequency Injection Amplitude	0.0 to 50.0%	20.0%

■ n8-39: Low Pass Filter Cutoff Frequency for High Frequency Injection

Sets a cutoff frequency of a low pass filter for high frequency injection. Enabled when n8-57 = 1. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
n8-39	Low Pass Filter Cutoff Frequency for High Frequency Injection	0 to 1000 Hz	50 Hz

■ n8-45: Speed Feedback Detection Control Gain (for PM Motors)

Sets the gain for internal speed feedback detection control. Although this parameter rarely needs to be changed, adjustment may be necessary under the following conditions:

- Increase this setting if motor oscillation or hunting occurs.
- Decrease this setting in increments of 0.05 to decrease drive responsiveness.

Note: This parameter is only available in OLV/PM.

No.	Name	Setting Range	Default
n8-45	Speed Feedback Detection Control Gain (for PM Motors)	0.00 to 10.00	0.80

■ n8-47: Pull-In Current Compensation Time Constant (for PM Motors)

Sets the time constant for pull-in current to match the actual current.

Although this setting rarely needs to be changed, adjustment may be necessary under the following conditions:

- Increase this setting when it takes too long for the reference value of the pull-in current to match the target value.
- Decrease this setting if motor oscillation occurs.

Note: This parameter is only available in OLV/PM.

No.	Name	Setting Range	Default
n8-47	Pull-In Current Compensation Time Constant (for PM Motors)	0.0 to 100.0 s	5.0 s

■ n8-48: Pull-In Current (for PM Motors)

Sets the d-Axis current during no-load operation at a constant speed. Set as a percentage of the motor rated current (E5-03).

- Increase this setting when hunting occurs or the motor speed is unstable while running at a constant speed.
- Slightly reduce this value if there is too much current when driving a light load at a constant speed.

Note: This parameter is only available in OLV/PM.

No.	Name	Setting Range	Default
n8-48	Pull-In Current (for PM Motors)	20 to 200%	30%

■ n8-49: d-Axis Current for High Efficiency Control (for PM Motors)

Sets the d-Axis current reference when running with high load at constant speed. When using an IPM motor, this parameter uses the reluctance torque to increase the efficiency and reduce energy consumption. Set this parameter to 0 when using an SPM motor.

Although this setting rarely needs to be changed, adjustment may be necessary under the following conditions:

- Lower the setting if motor operation is unstable when driving heavy loads.
- If motor parameters (E5-□□) have been changed, this value will be reset to 0 and will require readjustment.

 Note: This parameter is only available in OLV/PM.

No.	Name	Setting Range	Default
n8-49	d Axis Current for High Efficiency Control (for PM Motors)	-200.0 to 0.0%	Determined by E5-01

■ n8-51: Acceleration/Deceleration Pull-In Current (for PM Motors)

Sets the pull-in current during acceleration and deceleration as a percentage of the motor rated current (E5-03).

Adjustment may be necessary under the following conditions:

• Increase this setting when a large amount of starting torque is required.

• Lower this setting if there is excessive current during acceleration.

Note: This parameter is only available in OLV/PM.

No.	Name	Setting Range	Default
n8-51	Acceleration/Deceleration Pull-In Current (for PM Motors)	0 to 200%	50%

■ n8-54: Voltage Error Compensation Time Constant

Sets the time constant for voltage error compensation.

Adjustment may be necessary under the following conditions:

- Adjust the value when hunting occurs at low speed.
- Increase the value in steps of 0.1 when hunting occurs with sudden load changes. Set n8-51 to 0 to disable the compensation if increasing n8-54 does not help.
- Increase the value when oscillations occur at start.

Note: This parameter is only available in OLV/PM.

No.	Name	Setting Range	Default
n8-54	Voltage Error Compensation Time Constant	0.00 to 10.00	1.00

■ n8-55: Load Inertia

Sets the ratio between motor inertia and the inertia of the connected machinery. If this value is set too low, the motor may not start very smoothly and trigger an STo (Pull-Out Detection) fault.

Increase this setting for large inertia loads or to improve speed control response. A high setting with low inertia load may cause oscillation.

Note: This parameter is only available in OLV/PM.

No		Name	Setting Range	Default
n8-5	55	Load Inertia	0 to 3	0

Setting 0: Below 1:10

The inertia ratio between the motor and the load is lower than 1:10.

Setting 1: Between 1:10 and 1:30

The inertia ratio between the motor and the load is between 1:10 and 1:30. Set n8-55 to 1 if an STo fault occurs as a result of impact load or sudden acceleration/deceleration when n8-55 = 0.

Setting 2: Between 1:30 and 1:50

The inertia ratio between the motor and the load is between 1:30 and 1:50. Set n8-55 to 2 if an STo fault occurs as a result of impact load or sudden acceleration/deceleration when n8-55 = 1.

Setting 3: Beyond 1:50

The inertia ratio between the motor and the load is higher than 1:50. Set n8-55 to 3 if an STo fault occurs as a result of impact load or sudden acceleration/deceleration when n8-55 = 2.

■ n8-57: High Frequency Injection

Injects a high frequency into the motor to detect motor speed.

Note: This parameter is only available in AOLV/PM.

No.	Name	Setting Range	Default
n8-57	High Frequency Injection	0, 1	0

Setting 0: Disabled

Disable n8-57 with SPM motors. The speed control range will be limited to approximately 1:20.

Setting 1: Enabled

Enable n8-57 with IPM motors. This allows precise speed detection in a speed control range of approximately 1:100.

Note: 1. This function generates some audible noise in the motor up to a certain speed.

2. Set E1-09 to 0.0 when using zero speed control.

■ n8-62: Output Voltage Limit (for PM Motors)

Sets the output voltage limit to prevent voltage saturation. Do not set this value higher than the actual input voltage.

Note: This parameter is only available in OLV/PM, AOLV/PM, and CLV/PM.

No.	Name	Setting Range	Default
n8-62	Output Voltage Limit (for PM Motors)	0.0 to 230.0 Vac <1>	200 Vac <1>

<1> Values shown are specific to 200 V class drives. Double value for 400 V class drives.

■ n8-65: Speed Feedback Detection Control Gain during ov Suppression

Sets the gain for internal speed feedback detection control when overvoltage suppression is active. Although this setting rarely needs to be changed, adjustment may be necessary under the following conditions:

- Increase this setting if motor oscillation or hunting occurs when ov suppression is active.
- Decrease this setting in increments of 0.05 to decrease the drive responsiveness during ov suppression.

Note: This parameter is only available in AOLV/PM.

No.	Name	Setting Range	Default
n8-65	Speed Feedback Detection Control Gain during ov Suppression	0.00 to 10.00	1.50

■ n8-69: Speed Calculation Gain

Sets the proportional gain for Phase Locked Loop (PLL) control of an extended observer.

There is normally no need to change this parameter from the default value.

Note: This parameter is valid in drive software versions PRG: 1015 and later.

No.	Name	Setting Range	Default
n8-69	Speed Calculation Gain	0.00 to 20.00	1.00

■ n8-72: Speed Estimation Method Selection

Sets the method of the speed estimation. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
n8-72	Speed Estimation Method Selection	0, 1	1

Setting 0: Conventional Method

Setting 1: A1000 Method

n8-84: Initial Polarity Estimation Timeout Current

Sets the current to determine polarity for the initial polarity calculation as a percentage of the motor rated current.

Set the value in % unit (E5-03 = 100%)

Note: 1. This parameter is only available in AOLV/PM and CLV/PM.

2. If an "Si" value is listed on a Yaskawa motor nameplate, set n8-84 to "Si" value x 2.

No.	Name	Setting Range	Default
n8-84	Initial Polarity Estimation Timeout Current	0 to 150%	100%

Judging Polarity and Motor Pole Position

If operating in AOLV/PM (A1-02 = 6) or CLV/PM (A1-02 = 7), the drive determines motor polarity by performing initial polarity estimation when it starts the motor (this is done only the first time the motor is started when using CLV/PM).

The drive may begin operating in the wrong direction if it determines motor polarity incorrectly as the opposite direction of the Run command.

Monitor U6-57 displays the deviation from the integrated current, making it possible to see if initial polarity estimation has successfully determined the motor polarity.

5.10 o: Operator Related Settings

These parameters control the various functions, features, and display of the digital operator.

◆ o1: Digital Operator Display Selection

These parameters determine the data display on the digital operator.

■ o1-01: Drive Mode Unit Monitor Selection

When o1-02 is set to 5, any U monitors can be displayed. This parameter will select the monitors. Pressing the up arrow key will display the following data: frequency reference \rightarrow rotational direction \rightarrow output frequency \rightarrow output current \rightarrow o1-01 selection.

Parameter o1-01 selects the content of the last monitor in this sequence. This is done by entering the " $1\square\square$ " part of " $1\square\square$ ". Certain monitors are not available in some control modes. There is no effect like this on an LCD operator.

No.	Name	Setting Range	Default
01-01	Drive Mode Unit Monitor Selection	104 to 813 U1-04 (Control Mode) to U8-13 (DWEZ Custom Monitor 3) <1>	106 (U1-06)

<1> U2-\(\sigma\) and U3-\(\sigma\) parameters cannot be selected.

■ o1-02: User Monitor Selection after Power Up

Selects which monitor parameter is displayed upon power up. *Refer to U: Monitor Parameters on page 406* for a list of monitors.

No.	Name	Setting Range	Default
01-02	User Monitor Selection after Power Up	1 to 5	1

Setting 1: Frequency Reference (U1-01)

Setting 2: Motor Direction

Setting 3: Output Frequency (U1-02)

Setting 4: Output Current (U1-03)

Setting 5: User-selected Monitor (Set by o1-01)

■ o1-03: Digital Operator Display Selection

Sets the units used to display the frequency reference and output frequency. Set o1-03 to 3 for user-set units before setting parameters o1-10 and o1-11.

No.	Name	Setting Range	Default
01-03	Digital Operator Display Selection	0 to 3	Determined by A1-02

Setting 0: 0.01 Hz Units

Setting 1: 0.01% Units (100% = Max. Output Frequency)

Setting 2: r/min Units (Calculated by the Max. Output Frequency and the No. of Motor Poles)

Setting 3: User-set Units (Use o1-10, o1-11)

Set the value used for the maximum frequency reference to o1-10. Set the placement of the decimal point in this number to o1-11.

For example, to have the maximum output frequency displayed as "100.00", set o1-10 = 1000 and o1-11 = 2 (i.e., 1000 with 2 decimal points).

Note: 1. Parameter o1-03 allows the programmer to change the units used in the following parameters and monitors: U1-01: frequency reference

5.10 o: Operator Related Settings

U1-02: output frequency

U1-05: motor speed

U1-16: output frequency after softstarter (accel/decel ramp generator) d1-01 to d1-17: frequency references

2. Setting o1-03 to 2 requires entering the number of motor poles to E2-04, E4-04, and E5-04.

■ o1-04: V/f Pattern Display Unit

Determines the units used for the frequency reference when setting parameters that create the V/f pattern: E1-04, E1-06, E1-09, E1-11, and E2-04. For motor 2, this includes parameters E3-04, E3-06, E3-07, E3-09, and E3-11. Enabled only in vector control modes (CLV, AOLV/PM, CLV/PM).

No.	Name	Setting Range	Default
01-04	V/f Pattern Display Unit	0, 1	0

Setting 0: Hertz

Setting 1: r/min

Note: For motor 2, o1-04 can only be set to 0 for Hertz.

o1-05: LCD Contrast Control

Sets the brightness of the LCD operator. The lower the setting, the brighter the LCD contrast. The higher the setting, the darker the LCD contrast.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
o1-05	LCD Contrast Control	0 to 5	3

■ o1-10: User-Set Display Units Maximum Value

Determines the display value that is equal to the maximum output frequency.

No.	Name	Setting Range	Default
o1-10	User-Set Display Units Maximum Value	1 to 60000	Determined by o1-03

o1-11: User-Set Display Units Decimal Display

Determines how many decimal points should be used to set and display the frequency reference.

No.	Name	Setting Range	Default
o1-11	User-Set Display Units Decimal Display	0 to 3	Determined by o1-03

Setting 0: No Decimal Point

Setting 1: One Decimal Point Setting 2: Two Decimal Points **Setting 3: Three Decimal Points**

o2: Digital Operator Keypad Functions

These parameters determine the functions assigned to the operator keys.

■ o2-01: LO/RE (LOCAL/REMOTE) Key Function Selection

Determines whether the LO/RE key on the digital operator will be enabled for switching between LOCAL and REMOTE.

No.	Name	Setting Range	Default
o2-01	LO/RE Key Function Selection	0, 1	1

Setting 0: Disabled

The LO/RE key is disabled.

Setting 1: Enabled

The LO/RE switches between LOCAL and REMOTE operation. Switching is possible during stop only. When LOCAL is selected, the LED indicator on the LO/RE key will light up.

WARNING! Sudden Movement Hazard. The drive may start unexpectedly if the Run command is already applied when switching from LOCAL mode to REMOTE mode when b1-07 = 1, resulting in death or serious injury. Check all mechanical or electrical connections thoroughly before making any setting changes to o2-01 and b1-07. **Table 5.44** lists the setting combinations for o2-01 and b1-07.

Table 5.44 LO/RE Key and b1-07

o2-01	b1-07	Switch from LOCAL to REMOTE	Switch from REMOTE to LOCAL
0	0	Not possible	Not possible
0	1	Not possible	Not possible
	0	Will not run until a new Run command is entered.	Run not possible
1	1	If a Run command is entered, the drive will start running as soon as the LO/RE key is pushed to change from LOCAL to REMOTE.	

■ o2-02: STOP Key Function Selection

Determines if the STOP key on the digital operator will stop drive operation when the drive is controlled from a remote source (i.e., not from digital operator).

No.	Name	Setting Range	Default
02-02	STOP Key Function Selection	0, 1	1

Setting 0: Disabled

Setting 1: Enabled

The STOP key will terminate drive operation even if the Run command source is not assigned to the digital operator. Cycle the Run command to restart the drive if the drive has been stopped by pressing the STOP key.

■ o2-03: User Parameter Default Value

After completely setting up drive parameters, save the values as user-set defaults with parameter o2-03. After saving the values, parameter A1-03 (Initialize Parameters) will offer the choice of "1110: User Initialize". Selecting 1110 resets all parameters to the user-set default values. *Refer to A1-03: Initialize Parameters on page 225* for details on drive initialization.

No.	Name	Setting Range	Default
02-03	User Parameter Default Value	0 to 2	0

Setting 0: No Change (Awaiting Command)

Setting 1: Set User Initialize Values

The current parameter settings are saved as user-set default for a later User Initialization. Setting o2-03 to 1 and pressing the ENTER key saves the values and returns the display to 0.

Setting 2: Clear User Initialize Values

All user-set defaults for "User Initialize" are cleared. Setting o2-03 to 2 and pressing the ENTER key erases the values and returns the display to 0.

■ o2-04: Drive Model Selection

Set this parameter when replacing the control board or the terminal board. *Refer to Defaults by Drive Model and Duty Rating ND/HD on page 677* for information on drive model selection.

NOTICE: Drive performance will suffer and protective functions will not operate properly if the correct drive capacity is not set to 02-04.

No.	Name	Setting Range	Default
02-04	Drive Model Selection	-	Determined by drive capacity

Note: Change o2-04 setting only when necessary.

■ o2-05: Frequency Reference Setting Method Selection

Determines if the ENTER key must be pressed after changing the frequency reference using the digital operator while in the Drive Mode.

No.	Name	Setting Range	Default
02-05	Frequency Reference Setting Method Selection	0, 1	0

Setting 0: ENTER Key Required

The ENTER key must be pressed every time the frequency reference is changed using the digital operator for the drive to accept the change.

Setting 1: ENTER Key Not Required

The output frequency changes immediately when the reference is changed by the up or down arrow keys on the digital operator. The ENTER key does not need to be pressed. The frequency reference (Fref) is saved to memory after remaining unchanged for 5 seconds. The operator display flashes when settings can be made for the frequency reference.

■ o2-06: Operation Selection when Digital Operator is Disconnected

Determines whether the drive will stop when the digital operator is removed in LOCAL mode or when b1-02 or b1-16 is set to 0. When the operator is reconnected, the display will indicate that it was disconnected.

No.	Name	Setting Range	Default
o2-06	Digital Operator Disconnection Operation	0, 1	1

Setting 0: Continue Operation

The operation continues.

Setting 1: Trigger a Fault

The operation stops and triggers an oPr fault. The motor coasts to stop.

■ o2-07: Motor Direction at Power Up when Using Operator

Determines the direction the motor will rotate after the drive is powered up and the Run command is given from the digital operator.

Note: This parameter is effective only when the Run command is set to be given from the digital operator (b1-02, b1-16 = 0).

No.	Name	Setting Range	Default
o2-07	Motor Direction at Power Up when Using Operator	0, 1	0

Setting 0: Forward

Setting 1: Reverse

■ o2-19: Selection of Parameter Write during Uv

Selects whether parameter settings can be changed during a DC bus undervoltage condition. To be used with 24 V Power Supply option (PS-A10L, PS-A10H) revision B or later.

Note:

- 1. This parameter is not available in models 4A0930 and 4A1200.
- 2. Enabling this function may trigger a CPF06 fault when used with a 24 V Power Supply option revision earlier than B, as the parameter changes might not occur correctly.

No.	Name	Setting Range	Default
o2-19	Selection of Parameter Write during Uv	0, 1	0

Setting 0: Disabled

Setting 1: Enabled

• o3: Copy Function

These parameters control the Copy function of the digital operator. The Copy function stores parameter settings into the memory of the digital operator to facilitate the transfer of those settings to other drives that are the same model, capacity, and same control mode setting. *Refer to Copy Function Related Displays on page 462* for a description of errors and displays.

■ o3-01: Copy Function Selection

Instructs the drive to Read, Write, or Verify parameter settings.

No.	Name	Setting Range	Default
o3-01	Copy Function Selection	0 to 3	0

Setting 0: Copy Select (No Function)

Setting 1: INV --> OP READ

Copies all parameters from the drive to the digital operator.

Note: Set o3-02 to 1 to unlock copy protection.

Setting 2: OP --> INV WRITE

Copies all parameters from the digital operator to the drive.

Setting 3: OP<-->INV VERIFY

Compares the parameters in the drive with the parameter settings saved on the digital operator for matches.

■ o3-02: Copy Allowed Selection

Allows and restricts the use of the Copy function.

No.	Name	Setting Range	Default
03-02	Copy Allowed Selection	0, 1	0

Setting 0: Disabled Setting 1: Enabled

o4: Maintenance Monitor Settings

■ o4-01: Cumulative Operation Time Setting

Sets the cumulative operation time of the drive. The user can also manually set this parameter to begin keeping track of operation time from some desired value. Total operation time can be viewed in monitor U4-01.

Note: The value in o4-01 is set in 10 h units. For example, a setting of 30 will set the cumulative operation time counter to 300 h. 300 h will also be displayed in monitor U4-01.

No.	Name	Setting Range	Default
04-01	Cumulative Operation Time Setting	0 to 9999	0

■ o4-02: Cumulative Operation Time Selection

Selects the conditions for how the drive keeps track of its total operation time. This time log can be viewed in monitor U4-01.

No.	Name	Setting Range	Default
04-02	Cumulative Operation Time Selection	0, 1	0

Setting 0: Power On Time

The drive logs the time it is connected to a power supply, regardless of whether the motor is running.

Setting 1: Run Time

The drive logs the time that the output is active including when the Run command is active (even if the motor is not rotating) and when there is voltage output.

■ o4-03: Cooling Fan Operation Time Setting

Sets the value for how long the cooling fan has been operating. This value can be viewed in monitor U4-03. Parameter o4-03 also sets the base value used for the cooling fan maintenance, which is displayed in U4-04. Reset this parameter to 0 after replacing the cooling fan.

Note:

- 1. The value in o4-03 increases after every 10 hours of use. A setting of 30 will set the cooling fan operation time counter to 300 h. "300" will be displayed in monitor U4-03.
- 2. The cooling fan may require maintenance at an earlier date in harsher environments.

No.	Name	Setting Range	Default
04-03	Cooling Fan Operation Time Setting	0 to 9999	0

■ o4-05: Capacitor Maintenance Setting

Sets value of the maintenance monitor for the DC bus capacitors displayed in U4-05 as a percentage of the total expected performance life. Reset this value to 0 after replacing the DC bus capacitors.

Note: The actual maintenance time will depend on the environment where the drive is used.

No.	Name	Setting Range	Default
04-05	Capacitor Maintenance Setting	0 to 150%	0%

■ o4-07: DC Bus Pre-Charge Relay Maintenance Setting

Sets the value of the softcharge bypass relay maintenance time displayed in U4-06 as a percentage of the total expected performance life. Reset this value to 0 after replacing the bypass relay.

Note: The actual maintenance time will depend on the environment where the drive is used.

No.	Name	Setting Range	Default
o4-07	DC Bus Pre-charge Relay Maintenance Setting	0 to 150%	0%

■ o4-09: IGBT Maintenance Setting

Sets the value of the IGBT maintenance time displayed in U4-07 as a percentage of the total expected performance life. Reset this value to 0 after replacing the IGBTs.

Note: The actual maintenance time will depend on the environment where the drive is used.

No.	Name	Setting Range	Default
04-09	IGBT Maintenance Setting	0 to 150%	0%

■ o4-11: U2, U3 Initialization

Resets the fault trace and fault history monitors ($U2-\Box\Box$ and $U3-\Box\Box$). Initializing the drive using A1-03 does not reset these monitors.

No.	Name	Setting Range	Default
o4-11	U2, U3 Initialization	0, 1	0

Setting 0: No Action

The drive keeps the previously saved record concerning fault trace and fault history.

Setting 1: Reset Fault Data

Resets the data for the U2- $\square\square$ and U3- $\square\square$ monitors. Setting o4-11 to 1 and pressing the ENTER key erases fault data and returns the display to 0.

■ o4-12: kWh Monitor Initialization

Manually resets kWh monitors U4-10 and U4-11. Initializing the drive or cycling the power will not reset these monitors.

No.	Name	Setting Range	Default
o4-12	kWh Monitor Initialization	0, 1	0

Setting 0: No Action

The kWh data are maintained.

Setting 1: Reset kWh Data

Resets the kWh counter. The monitors U4-10 and U4-11 will display "0" after they are initialized. Setting o4-12 to 1 and pressing the ENTER erases kWh data and returns the display to 0.

• 04-13: Number of Run Commands Counter Initialization

Resets the Run command counter displayed in U4-02. Initializing the drive or cycling the power does not reset this monitor.

No.	Name	Setting Range	Default
04-13	Number of Run Commands Counter Initialization	0, 1	0

Setting 0: No Action

The Run command data are kept.

Setting 1: Number of Run Commands Counter

Resets the Run command counter. The monitor U4-02 will show 0. Setting o4-13 to 1 and pressing the ENTER key erases the counter value and returns the display to 0.

q: DriveWorksEZ Parameters

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

■ q1-01 to q6-07: Reserved for Use by DriveWorksEZ

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

r: DriveWorksEZ Connection Parameters

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

■ r1-01 to r1-40: DriveWorksEZ Connection Parameters

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

◆ T: Motor Tuning

Auto-Tuning automatically sets and tunes parameters required for optimal motor performance.

Refer to Auto-Tuning on page 201 for details on Auto-Tuning parameters.

5.11 U: Monitor Parameters

Monitor parameters let the user view various aspects of drive performance using the digital operator display. Some monitors can be output from terminals FM and AM by assigning the specific monitor parameter number ($U\Box - \Box\Box$) to H4-01 and H4-04. *Refer to H4-01, H4-04: Multi-Function Analog Output Terminal FM, AM Monitor Selection on page 347* for details on assigning functions to an analog output.

U1: Operation Status Monitors

Status monitors display drive status data such as output frequency and output current. *Refer to U1: Operation Status Monitors on page 661* for a complete list of U1- $\Box\Box$ monitors and descriptions.

U2: Fault Trace

Use these monitor parameters to view the status of various drive aspects when a fault occurs.

This information is helpful for determining the cause of a fault. *Refer to U2: Fault Trace on page 663* for a complete list of U2- $\square\square$ monitors and descriptions.

U2-□□ monitors are not reset when the drive is initialized. *Refer to 04-11: U2, U3 Initialization on page 404* for instructions on how to reset these monitor values.

Note: Fault histories are not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, or Uv3 occur.

U3: Fault History

These parameters display faults that have occurred during operation as well as the drive operation time when those faults occurred. *Refer to U3: Fault History on page 665* for a complete list of U3- $\square\square$ monitors and descriptions.

U3-□□ monitors are not reset when the drive is initialized. *Refer to 04-11: U2, U3 Initialization on page 404* for instructions on how to reset these monitor values.

Note: Fault histories are not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, or Uv3 occur.

U4: Maintenance Monitors

Maintenance monitors show:

- Runtime data of the drive and cooling fans and number of Run commands issued
- · Maintenance data and replacement information for various drive components
- kWh data
- Highest peak current that has occurred and output frequency at the time the peak current occurred
- · Motor overload status information
- Detailed information about the present Run command and frequency reference source selection

Refer to U4: Maintenance Monitors on page 665 for a complete list of U4-□□ monitors and descriptions.

♦ U5: PID Monitors

These monitors display various aspects of PID control. *Refer to PID Block Diagram on page 251* for details on how these monitors display PID data.

Refer to U5: PID Monitors on page 668 for a complete list of U5- $\Box\Box$ monitors and descriptions.

U6: Operation Status Monitors

Control monitors show:

- Reference data for the output voltage and vector control
- Data on PM motor rotor synchronization, forward phase compensation, and flux positioning
- Pulse data from the PG motor encoder
- Pulse data for Zero Servo control
- · ASR and Feed Forward control monitors

Refer to *Figure 5.37* and *Figure 5.38* on page *270* for details and an illustration showing where monitors are located in the ASR block.

- The offset value added to the frequency reference by the frequency offset function. *Refer to Setting 44, 45, 46: Offset Frequency 1, 2, 3 on page 328*.
- The bias value added to the frequency reference by the Up/Down 2 function (see *Setting 75, 76: Up 2/Down 2 Function*) *Refer to U6: Operation Status Monitors on page 668* for a complete list of U6-□□ monitors and descriptions.

U8: DriveWorksEZ Monitors

These monitors are reserved for use with DriveWorksEZ.

A complete description of the U8- \square monitors can be found in the DriveWorksEZ instruction manual.

5.11 U: Monitor Parameters

This Page Intentionally Blank

Troubleshooting

This chapter provides descriptions of the drive faults, alarms, errors, related displays, and guidance for troubleshooting. This chapter can also serve as a reference guide for tuning the drive during a trial run.

6.1	SECTION SAFETY	410
6.2	MOTOR PERFORMANCE FINE-TUNING	412
6.3	DRIVE ALARMS, FAULTS, AND ERRORS	418
6.4	FAULT DETECTION	423
6.5	ALARM DETECTION	443
6.6	OPERATOR PROGRAMMING ERRORS	452
6.7	AUTO-TUNING FAULT DETECTION	457
6.8	COPY FUNCTION RELATED DISPLAYS	462
6.9	DIAGNOSING AND RESETTING FAULTS	464
6.10	TROUBLESHOOTING WITHOUT FAULT DISPLAY	466

6.1 Section Safety

A WARNING

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may illustrate drives without covers or safety shields to display details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

Do not touch terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

After blowing a fuse or tripping a GFCI, do not attempt to restart the drive or operate peripheral devices until five minutes pass and CHARGE lamp is OFF.

Failure to comply could result in death, serious injury, and damage to the drive.

Check wiring and peripheral device ratings to identify the cause of trips.

Contact your supplier if the cause cannot be identified.

Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection and servicing must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

Do not perform work on the drive while wearing loose clothing, jewelry, or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing and wear eye protection before beginning work on the drive.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Fire Hazard

Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming drive input power before applying power.

Troubleshooting

A WARNING

Do not use improper combustible materials.

Failure to comply could result in death or serious injury by fire.

Attach the drive to metal or other noncombustible material.

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

Do not allow unqualified personnel to use the product.

Failure to comply could result in damage to the drive or braking circuit.

Carefully review instruction manual TOBPC72060000 when connecting a dynamic braking option to the drive.

Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for modification of the product made by the user.

Check all the wiring after installing the drive and connecting other devices to ensure that all connections are correct.

Failure to comply could result in damage to the drive.

6.2 Motor Performance Fine-Tuning

This section offers helpful information for counteracting oscillation, hunting, and other problems that occur while performing a trial run. Refer to the section below that corresponds to the motor control method used.

Note: This section describes commonly edited parameters that may be set incorrectly. Consult Yaskawa for more information on detailed settings and for fine-tuning the drive.

Fine-Tuning V/f Control and V/f Control with PG

Table 6.1 Parameters for Fine-Tuning Performance in V/f and V/f w/PG

Table 6.1 Parameters for rine-runing Performance in V/I and V/I W/PG				
Problem	Parameter No.	Corrective Action	Default	Suggested Setting
Motor hunting and oscillation at speeds between 10 and 40 Hz	Hunting Prevention Gain (n1-02)	 Reduce the setting if insufficient motor torque relative to the size of the load causes hunting. Increase the setting when motor hunting and oscillation occur with a light load. Reduce the setting if hunting occurs when using a motor with a relatively low inductance, such as a high-frequency motor or a motor with a larger frame size. 	1.00	0.10 to 2.00
Motor noise Motor hunting and oscillation at speeds up to 40 Hz	Carrier Frequency Selection (C6-02)	 Increase the carrier frequency If the motor noise is too loud. Lower the carrier frequency when motor hunting and oscillation occur at speeds up to 40 Hz. The default setting for the carrier frequency depends on the drive capacity (o2-04) and the duty selection (C6-01). 	1 (2 kHz)	1 to max. setting
Poor torque or speed responseMotor hunting and oscillation	Torque Compensation Primary Delay Time (C4-02)	 Reduce the setting if motor torque and speed response are too slow. Increase the setting if motor hunting and oscillation occur. 	200 ms	100 to 1000 ms
Poor motor torque at speeds below 10 Hz Motor hunting and oscillation	Torque Compensation Gain (C4-01)	 Increase the setting if motor torque is insufficient at speeds below 10 Hz. Reduce the setting if motor hunting and oscillation with a relatively light load. 	1.00	0.50 to 1.50
Poor motor torque at low speedsMotor instability at motor start	Mid Output Voltage A (E1-08) Minimum Output Voltage (E1-10)	 Increase the setting if motor torque is insufficient at speeds below 10 Hz. Reduce the setting If motor instability occurs at motor start. 	Depends on o2-04, Drive Model Selection	Default setting ±5 V
Poor speed precision (V/f control)	Slip Compensation Gain (C3-01)	Set the motor-rated current (E2-01), motor-rated slip (E2-02), and motor no-load current (E2-03), then adjust the slip compensation gain (C3-01).	0.0 (no slip compen- sation)	0.5 to 1.5
Poor speed precision (V/f control with PG)	ASR Proportional Gain 1 (C5-01) ASR Integral Time 1 (C5-02)	Adjust the ASR proportional gain 1 (C5-01) and the ASR integral time 1 (C5-02).	C5-01: 0.20 C5-02: 0.200 s	Proportional gain = 0.10 to 1.00 Integral time = 0.100 to 2.000 s

<1> ASR in V/f Control with PG only controls the output frequency, and does not allow the same high gain settings as CLV control.

<2> Refer to C5: Automatic Speed Regulator (ASR) on page 270 for details on ASR.

◆ Fine-Tuning Open Loop Vector Control

Table 6.2 Parameters for Fine-Tuning Performance in OLV

Problem	Parameter No.	Corrective Action	Default	Suggested Setting
Poor motor torque and speed response Motor hunting and oscillation at speeds between 10 and 40 Hz	AFR Gain (n2-01)	 Gradually reduce the setting in 0.05 increments if motor torque and speed response are too slow. Gradually increase the setting in 0.05 increments if motor hunting and oscillation occur. 	1.00	0.50 to 2.00
Poor motor torque and speed response Motor hunting and oscillation at speeds between 10 and 40 Hz	AFR Time Constant 1 (n2-02)	 Gradually reduce the setting in 10 ms increments and check the performance to improve motor torque speed response. Gradually increase the setting by 50 ms increments and check the performance if motor hunting and oscillation occur as a result of load inertia. Note: Ensure that n2-02 ≤ n2-03. When changing n2-02, set C4-02 (Torque Compensation Primary Delay Time Constant 1) accordingly. 	30 IIIS	50 to 2000 ms
Overvoltage trips when accelerating,	AFR Time Constant 2 (n2-03)	 Gradually increase the setting in 50 ms increments if overvoltage occurs. Gradually reduce the setting in 10 ms increments if response is slow. Note: Ensure that n2-02 ≤ n2-03. When making adjustments to n2-03, increase the value of C4-06 (Torque Compensation Primary Delay Time 2) proportionally. 	750 ms	750 to 2000 ms
decelerating, or during sudden speed or load changes	Torque Compensation Primary Delay Time Constant 2 (C4-06)	 Gradually increase the setting in 10 ms increments and check the performance if overvoltage trips occur. Gradually reduce the setting in 2 ms increments and check the performance if response is slow. Note: Ensure that C4-02 ≤ C4-06. When changing C4-06 (Torque Compensation Primary Delay Time Constant 2), increase the value of n2-03 proportionally. 	150 ms	150 to 750 ms
Poor motor torque and speed response Motor hunting and oscillation	Torque Compensation Primary Delay Time Constant 1 (C4-02)	 Gradually reduce the setting in 2 ms increments and check the performance to improve motor torque speed response. Gradually increase the setting in 10 ms increments if motor hunting and oscillation occur. Note: Ensure that C4-02 ≤ C4-06. When making adjustments to C4-02, increase the Speed Feedback Detection Control (AFR) Time Constant 1 (n2-02) proportionally. 	20 ms	20 to 100 ms
Poor speed response and stability	Slip Compensation Primary Delay Time Constant (C3-02)	 Gradually reduce the setting in 10 ms increments if response is slow. Gradually increase the setting in 10 ms increments if speed is unstable. 	200 ms	100 to 500 ms
Poor speed precision	Slip Compensation Gain (C3-01)	 Gradually increase the setting in 0.1 ms increments if speed is too slow. Gradually reduce the setting in 0.1 ms increments if speed is too fast. 	1.0	0.5 to 1.5
Poor speed precision during regenerative operation	Slip Compensation Selection During Regeneration (C3-04)	Enable slip compensation during regeneration by setting parameter $C3-04 = 1$.	0	1
Motor noise Motor hunting and oscillation occur at speeds below 10 Hz	Carrier Frequency Selection (C6-02)	Increase the carrier frequency if there is too much motor noise. Reduce the carrier frequency if motor hunting and oscillation occur at low speeds. Note: The default setting for the carrier frequency depends on the drive capacity (o2-04) and Duty Selection (C6-01).	1 (2 kHz)	0 to max. setting
Poor motor torque at low speeds Poor speed response Motor instability at start	Mid Output Voltage A (E1-08) Minimum Output Voltage (E1-10)	 Increase the setting if motor torque and speed response are too slow. Reduce the setting if the motor exhibits excessive instability at start-up. Note: When working with a relatively light load, increasing this value too much can cause overtorque. 	Depends on o2-04, Drive Model Selection	Default setting ±2 V

When using OLV, leave the torque compensation gain (C4-01) at its default setting of 1.00.

◆ Fine-Tuning Closed Loop Vector Control

Table 6.3 Parameters for Fine-Tuning the Performance in CLV

Problem	Parameter No.	Corrective Action	Default	Suggested Setting
Poor torque or speed response Motor hunting and oscillation	ASR Proportional Gain 1 (C5-01) ASR Proportional Gain 2 (C5-03)	 Gradually increase the ASR gain setting in increments of 5 if motor torque and speed response are too slow. Reduce the setting if motor hunting and oscillation occur. Only adjust parameter C5-03 when C5-05 > 0. Perform ASR Auto-Tuning if possible. 	20.00	10.00 to 50.00
Poor torque or speed response Motor hunting and oscillation	ASR Integral Time 1 (C5-02) ASR Integral Time 2 (C5-04)	 Reduce the setting if motor torque and speed response are too slow. Increase the setting if motor hunting and oscillation occur. Only adjust parameter C5-04 when C5-05 > 0. 	0.500 s	0.300 to 1.000 s
Difficulty maintaining the ASR proportional gain or the integral time at the low or high end of the speed range	ASR Gain Switching Frequency (C5-07) <1>	Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.	0.0 Hz	0.0 to max output frequency
Motor hunting and oscillation	ASR Primary Delay Time Constant (C5-06)	 Gradually reduce the setting in 0.01 s increments if motor torque and speed response are too slow. Increase the setting if the load is less rigid and subject to oscillation. 	0.004 s	0.004 to 0.020 s
Motor noise Control motor hunting and oscillation occur at speeds below 3 Hz	Carrier Frequency Selection (C6-02)	Increase the carrier frequency if there is too much motor noise. Reduce the carrier frequency if motor hunting and oscillation occur at low speeds. Note: The default setting for the carrier frequency depends on the drive capacity (o2-04) and Drive Duty Selection (C6-01).	1	2.0 kHz to max. setting
Overshoot or undershoot when the speed changes with high inertia load	Feed Forward Control (n5-01) Inertia Tuning (T1-01 = 8)	Set parameter n5-01 to 1 to Enable Feed Forward then perform Inertia Tuning. Manually set parameters C5-17, C5-18, and n5-03 if Inertia Tuning is not possible.	0	1

<1> Refer to C5: Automatic Speed Regulator (ASR) on page 270 for details on ASR.

♦

Fine-Tuning Open Loop Vector Control for PM Motors

Table 6.4 Parameters for Fine-Tuning Performance in OLV/PM

Problem	Parameter No.	Corrective Action	Default	Suggested Setting
Undesirable motor performance	Motor parameters (E1-□□, E5-□□)	 Check the settings for base and maximum frequency in the E1-□□ parameters. Check E5-□□ parameters and set motor data correctly. Do not enter line-to-line data where single-phase data is required, and vice versa. Perform Auto-Tuning. 	-	-
	Load Inertia Ratio (n8-55)	Adjust parameter n8-55 to meet the load inertia ratio of the machine.	0	Close to the actual load inertia ratio
Poor motor torque and speed response	Speed Feedback Detection Gain (for PM Motors) (n8-45)	Increase the speed feedback detection gain (n8-45).	0.8	Increase in increments of 0.05
	Torque Compensation (C4-01)	Enable torque compensation. Note: Setting this value too high can cause overcompensation and motor oscillation.	0	1
	Pull-In Current during Accel/Decel (for PM Motors) (n8-51)	Increase the pull-in current in n8-51	50%	Increase in steps of 5%
Oscillation at start or the motor stalls	DC Injection Braking Current (b2-02), DC Injection Time at Start (b2-03)	Use DC Injection Braking at start to align the rotor. This may cause a short reverse rotation at start.	b2-02 = 50% b2-03 = 0.0 s	b2-03 = 0.5 s Increase b2-02 if needed
	Load Inertia Ratio (n8-55)	Increase the load inertia ratio. Note: Setting this value too high can cause overcompensation and motor oscillation.	0	Close to the actual load inertia ratio
Stalling or oscillation occur when load is	Pull-In Current Compensation Time Constant (for PM Motors) (n8-47)	Reduce n8-47 if hunting occurs during constant speed.	5.0 s	Reduce in increments of 0.2 s
applied during constant speed	Pull-In Current (for PM Motors) (n8-48)	Increase the pull-in current in n8-48.	30%	Increase in increments of 5%
	Load Inertia Ratio (n8-55)	Increase the load inertia ratio.	0	Close to the actual load inertia ratio
Hunting or oscillation occur	Speed feedback Detection Gain (for PM Motors) (n8-47)	Reduce the speed feedback detection gain in n8-45.	0.8	Increase in increments 0.05
STo fault trips when the load is not excessively high	Induced Voltage Constant (for PM Motors) (E5-09 or E5-24)	 Check and adjust the induced voltage constant. Check the motor nameplate and the data sheet or contact the motor manufacturer. 	Depends on drive capacity and motor code	Refer to the motor data sheet or the nameplate.
Stalling or STo occurs at high speed as the output voltage becomes saturated	Output Voltage Limit (for PM Motors) (n8-62)	Set the value of the input voltage to parameter n8-62.	200 Vac (200 V class) 400 Vac (400 V class)	Set equal to input voltage

◆ Fine-Tuning Advanced Open Loop Vector Control for PM Motors

Table 6.5 Parameters for Fine-Tuning Performance in AOLV/PM

Table die Falametere in Fine Falamig Ferrenmanee in Acety, in				
Problem	Parameter No.	Corrective Action	Default	Suggested Setting
Poor torque or speed responseMotor hunting and	ASR Proportional Gain 1 (C5-01) ASR Proportional Gain 2	 Gradually increase the setting in increments of 5 if motor torque and speed response are too slow. Reduce the setting if motor hunting and oscillation occur. 	10.00	5.00 to 30.00
oscillation	(C5-03)	• Only adjust parameter C5-03 when C5-05 > 0.		
Poor torque or speed responseMotor hunting and	ASR Integral Time 1 (C5-02) ASR Integral Time 2	 Reduce the setting if motor torque and speed response are too slow. Increase the setting if motor hunting and oscillation occur. 	0.500 s	0.300 to 1.000 s <1>
oscillation	(C5-04)	• Only adjust parameter C5-04 when C5-05 > 0.		
Difficulty maintaining the ASR proportional gain or the integral time at the low or high end of the speed range		Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.	0.0%	0.0 to Max r/min
Motor hunting and oscillation	ASR Primary Delay Time Constant (C5-06)	Increase the setting if the load is less rigid and subject to oscillation.	0.010 s	0.016 to 0.035 s <1>
Motor stalling makes normal operation impossible	Motor parameters (E1-□□, E5-□□)	Check the motor parameter settings.	-	-

<1> Optimal settings will differ between no-load and loaded operation.

Fine-Tuning Closed Loop Vector Control for PM Motors

Table 6.6 Parameters for Fine-Tuning Performance in CLV/PM

Table 6.6 Tarameters for time Turning Ferrormanes in SEV/TW				
Problem	Parameter No.	Corrective Action	Default	Suggested Setting
Poor torque or speed responseMotor hunting and oscillation	ASR Proportional Gain 1 (C5-01) ASR Proportional Gain 2 (C5-03)	 Gradually increase the setting in increments of 5 if motor torque and speed response are too slow. Reduce the setting if motor hunting and oscillation occur. Perform ASR Gain Auto-Tuning if possible 	20.00	10.00 to 50.00 <1>
Poor torque or speed response Motor hunting and oscillation	ASR Integral Time 1 (C5-02) ASR Integral Time 2 (C5-04)	 Reduce the setting if torque and speed response are too slow. Increase the setting if motor hunting and oscillation occur. 	0.500 s	0.300 to 1.000 s <1>
Difficulty maintaining the ASR proportional gain or the integral time at the low or high end of the speed range	ASR Gain Switching Frequency (C5-07)	Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.	0.0%	0.0 to Max r/min
Motor hunting and oscillation	ASR Primary Delay Time Constant (C5-06)	Increase the setting if the load is less rigid and subject to oscillation.	0.016 s	0.004 to 0.020 s <1>
Motor stall makes normal operation impossible	Motor parameters (E1- □□, E5-□□)	Check the motor parameter settings.	-	-
Overshoot or undershoot at speed changes with high inertia load	Feed Forward Control (n5-01) Inertia Auto-Tuning (T2-01 = 8)	Set parameter n5-01 to 1 to Enable Feed Forward then perform Inertia Tuning. Manually set parameters C5-17, C5-18, and n5-03 if Inertia Tuning is not possible.	0	1

<1> Optimal settings will differ between no-load and loaded operation.

◆ Parameters to Minimize Motor Hunting and Oscillation

In addition to the parameters discussed on pages 412 through 416, parameters in Table 6.7 indirectly affect motor hunting and oscillation.

Table 6.7 Parameters that Affect Control Performance in Applications

Name (Parameter No.)	Application
Dwell Function (b6-01 through b6-04)	Prevents motor speed loss by maintaining the output frequency when working with heavy loads or when there is powerful backlash on the machine side.
Droop Function (b7-01, b7-02)	Balances the load between two motors driving the same load when A1-02 is set to 3 or 7.
Accel/Decel Time (C1-01 through C1-11)	Adjusting accel and decel times will affect the torque presented to the motor during acceleration or deceleration.
S-Curve Characteristics (C2-01 through C2-04)	Prevents shock at the beginning and end of acceleration and deceleration.
Jump Frequency (d3-01 through d3-04)	Skips over the resonant frequencies of connected machinery.
Analog Filter Time Constant (H3-13)	Prevents fluctuation in the analog input signal due to noise.
Stall Prevention	Prevents motor speed loss and overvoltage when the load is too heavy or during sudden acceleration/ deceleration.
(L3-01 through L3-06, L3-11)	Adjustment is not normally necessary because Stall Prevention is enabled as a default. Set L3-04 to 0 to disable Stall Prevention during deceleration when using a braking resistor.
Tongue Limite	Sets the maximum torque for OLV Control.
Torque Limits (L7-01 through L7-04, L7-06, L7-07)	• Ensure that the drive capacity is greater than the motor capacity when increasing this setting. Motor speed loss may occur with heavy loads.
Feed Forward Control (n5-01 through n5-03)	Increases response for acceleration/deceleration and reduces overshooting when there is low machine rigidity and ASR gain cannot be increased. Set the inertia ratio between the load and motor and the acceleration time of the motor running alone.

6.3 Drive Alarms, Faults, and Errors

Types of Alarms, Faults, and Errors

Check the digital operator for information about possible faults if the drive or motor fails to operate. *Refer to Using the Digital Operator on page 181*.

If problems occur that are not covered in this manual, contact the nearest Yaskawa representative with the following information:

- Drive model
- Software version
- · Date of purchase
- Description of the problem

Table 6.8 contains descriptions of the various types of alarms, faults, and errors that may occur while operating the drive.

Table 6.8 Types of Alarms, Faults, and Errors

Table 6.8 Types of Alarms, Faults, and Errors				
Туре	Drive Response			
Faults	 When the drive detects a fault: The digital operator displays text indicating the specific fault and the ALM indicator LED remains lit until the fault is reset. The fault interrupts drive output and the motor coasts to a stop. Some faults allow the user to select the stopping method when the fault occurs. Fault output terminals MA-MC will close, and MB-MC will open. The drive will remain inoperable until the fault is cleared. <i>Refer to Fault Reset Methods on page 465</i>. 			
Minor Faults and Alarms	 When the drive detects an alarm or a minor fault: The digital operator displays text indicating the specific alarm or minor fault, and the ALM indicator LED flashes. The drive continues running the motor, although some alarms allow the user to select a stopping method when the alarm occurs. A multi-function contact output set to be tripped by a minor fault (H2- □□ = 10) closes. If the output is set to be tripped by an alarm, the contact will not close. The digital operator displays text indicating a specific alarm and the ALM indicator LED flashes. Remove the cause of the problem to reset a minor fault or alarm. 			
Operation Errors	An operation error occurs when parameter settings conflict or do not match hardware settings (such as with an option card). When the drive detects an operation error: • The digital operator displays text indicating the specific error. • Multi-function contact outputs do not operate. The drive will not operate the motor until the error has been reset. Correct the settings that caused the operation error to clear the error.			
Tuning Errors	Tuning errors occur while performing Auto-Tuning. When the drive detects a tuning error: • The digital operator displays text indicating the specific error. • Multi-function contact outputs do not operate. • Motor coasts to stop. Remove the cause of the error and repeat the Auto-Tuning process.			
Copy Function Errors	Copy Function Errors occur when using the digital operator or the USB Copy Unit to copy, read, or verify parameter settings. • The digital operator displays text indicating the specific error. • Multi-function contact outputs do not operate. Pressing any key on the digital operator will clear the fault. Investigate the cause of the problem (such as model incompatibility) and try again.			

◆ Alarm and Error Displays

■ Faults

Table 6.9 gives an overview of possible fault codes. Conditions such as overvoltages can trip faults and alarms. It is important to distinguish between faults and alarms to determine the proper corrective actions.

When the drive detects a fault, the ALM indicator LED lights, the fault code appears on the digital operator, and the fault contact MA-MB-MC triggers. An alarm is present if the ALM LED blinks and the fault code on the digital operator flashes. *Refer to Minor Faults and Alarms on page 421* for a list of alarm codes.

Table 6.9 Fault Displays

Digital Op Displ	erator ay	Name	Page
bol	boL	Braking Transistor Overload Fault	423
<i>6U5</i>	bUS	Option Communication Error	423
EΕ	CE	MEMOBUS/Modbus Communication Error	423
[F	CF	Control Fault	423
[oF	CoF	Current Offset Fault	424
	CPF11 to CPF14	Control Circuit Error	424
< <i>l></i>	CPF16 to CPF19	Control Circuit Error	424
CPF02	CPF02	A/D Conversion Error	424
CPF03	CPF03	Control Board Connection Error	424
[PF06 <1>	CPF06	EEPROM Memory Data Error	424
[PF07, [PF08	CPF07, CPF08	Terminal Board Connection Error	425
[PF	CPF11	RAM Fault	425
CPF 12	CPF12	FLASH Memory Fault	425
EPF 13	CPF13	Watchdog Circuit Exception	425
[PF IY	CPF14	Control Circuit Fault	425
CPF 16	CPF16	Clock Fault	425
[PF 17	CPF17	Timing Fault	425
[PF 18	CPF18	Control Circuit Fault	425
CPF 19	CPF19	Control Circuit Fault	425
[PF20, [PF2 <2>	CPF20, CPF21	Control Circuit Error	426
CPF22	CPF22	Hybrid IC Error	426
[PF23	CPF23	Control Board Connection Error	426
[PF24	CPF24	Drive Unit Signal Fault	426
CPF25	CPF25	Terminal Board Not Connected	426
<i>EPF26</i> to <i>EPF35</i> , <i>EPF40</i> to <i>EPF45</i> <3>	CPF26 to CPF35, CPF40 to CPF45	Control Circuit Error	426
dEυ	dEv	Speed Deviation (for Control Mode with PG and OLV/PM without PG)	426
du l	dv1	Z Pulse Fault	427
du∂	dv2	Z Pulse Noise Fault Detection	427
du3	dv3	Inversion Detection	427
du4	dv4	Inversion Prevention Detection	427
du 7	dv7	Initial Polarity Estimation Timeout	427

Digital Op Displa	erator ay	Name	Page
dbJFL	dWFL	DriveWorksEZ Fault	428
dUJF I	dWF1	EEPROM Memory DriveWorksEZ Data Error	428
E 5	E5	MECHATROLINK Watchdog Timer Error	428
EF0	EF0	Option Card External Fault	428
EF I to EF8	EF1 to EF8	External Fault (input terminal S1 to S8)	428
Егг	Err	EEPROM Write Error	429
FAn	FAn	Internal Fan Fault	429
FbH	FbH	Excessive PID Feedback	429
FbL	FbL	PID Feedback Loss	429
5F	GF	Ground Fault	<i>430</i>
LF	LF	Output Phase Loss	430
LF2	LF2	Current Imbalance	<i>430</i>
[F] <3>	LF3	Power Unit Output Phase Loss 3	430
L50 <5>	LSo	LSo Fault	431
n5E	nSE	Node Setup Error	430
оΣ	oC	Overcurrent	431
oFA00 <6>	oFA00	Option Card Connection Error at Option Port CN5-A	432
oFA0 I	oFA01	Option Card Fault at Option Port CN5-A	432
oFA03 to oFA06	oFA03 to oFA06	Option Card Error Occurred at Option Port CN5-A	432
oFA 10, oFA 1 1	oFA10, oFA11	Option Card Error (CN5-A)	432
oFA 12 to oFA 17	oFA12 to oFA17	Option Card Connection Error (CN5-A)	432
oFA30 to oFA43	oFA30 to oFA43	Comm Option Card Connection Error (CN5-A)	432
oFb00 <6>	oFb00	Option Card Fault at Option Port CN5-B	433
oFb0 !	oFb01	Option Card Fault at Option Port CN5-B	433
oF602	oFb02	Option Card Fault at Option Port CN5-B	433
oFb03, oFb11	oFb03, oFb11	Option card error occurred at Option Port CN5-B	433
oFb 12 to oFb 17	oFb12 to oFb17	Option card error occurred at Option Port CN5-B	433

Digital Operator Display		Name	Page
oF[00 <6>	oFC00	Option Card Connection Error at Option Port CN5-C	433
oFCO I	oFC01	Option Card Fault at Option Port CN5-C	433
oFC02	oFC02	Option Card Fault at Option Port CN5-C	434
oFE03, oFE11	oFC03, oFC11	Option Card Error Occurred at Option Port CN5-C	434
oF[2 to oF[7	oFC12 to oFC17	Option Card Error Occurred at Option Port CN5-C	434
oFE50 to oFE55	oFC50 to oFC55	Option Card Error Occurred at Option Port CN5-C	434
οH	οН	Heatsink Overheat	434
oH I	oH1	Overheat 1 (Heatsink Overheat)	434
оН3	оН3	Motor Overheat Alarm (PTC input)	435
o H Y	оН4	Motor Overheat Fault (PTC input)	435
oH5 <3>	оН5	Motor Overheat (NTC Input)	435
oL I	oL1	Motor Overload	435
oL2	oL2	Drive Overload	436
oL3	oL3	Overtorque Detection 1	436
oL4	oL4	Overtorque Detection 2	436
oL5	oL5	Mechanical Weakening Detection 1	437
oL7	oL7	High Slip Braking oL	437
oPr	oPr	External Digital Operator Connection Fault	437
o S	oS	Overspeed	437
Oυ	ov	Overvoltage	437
PF	PF	Input Phase Loss	438

Digital Op Displa	perator ay	Name	Page
PG0	PGo	PG Disconnect (for Control Mode with PG)	439
PG ₀ H	PGoH	PG Hardware Fault (when using PG-X3)	439
r.F	rF	Braking Resistor Fault	439
r-H	rH	Braking Resistor Overheat	439
	rr	Dynamic Braking Transistor	439
50	SC	Output Short Circuit or IGBT Fault	439
5Er	SEr	Too Many Speed Search Restarts	440
5f o	STo	Pull-Out Detection	440
5 <i>uE</i>	SvE	Zero Servo Fault	440
ΓH ₀ <3>	ТНо	Thermistor Disconnect	440
UL 3	UL3	Undertorque Detection 1	441
ULY	UL4	Undertorque Detection 2	441
UL S	UL5	Mechanical Weakening Detection 2	441
Unb[<3>	UnbC	Current Unbalance	441
∐u <3> <6>	Uv1	DC Bus Undervoltage	441
\u2 <6>	Uv2	Control Power Supply Voltage Fault	442
Uu∃ <6>	Uv3	Undervoltage 3 (Soft-Charge Bypass Circuit Fault)	442
∷υЧ <3>	Uv4	Gate Drive Board Undervoltage	442
uoF	voF	Output Voltage Detection Fault	442

Oisplayed as [PF00] when occurring at drive power up. When one of the faults occurs after successfully starting the drive, the display will show [PF01]

Oisplayed as £PF20 when occurring at drive power up. When one of the faults occurs after successfully starting the drive, the display will show £PF21.

<3> Detected in models 4A0930 and 4A1200.

<4> Available in drive software versions PRG: 1018 and later.

<5> This function prevents continuous operation in reverse when using high frequency injection (n8-57 = 1) in AOLV/PM (A1-02 = 6) with a motor for which no motor code has been entered (it does not only prevent reverse operation). Set L8-93, L8-94, and L8-95 to low values within range of erroneous detection to quickly detect undesirable reverse operation.

<6> Fault histories are not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, or Uv3 occur.

■ Minor Faults and Alarms

Refer to *Table 6.10* for an overview of possible alarm codes. Conditions such as overvoltages can trip faults and alarms. It is important to distinguish between faults and alarms to determine the proper corrective actions.

When the drive detects an alarm, the ALM indicator LED blinks and the alarm code display flashes. Most alarms trigger a digital output programmed for alarm output (H2- $\Box\Box$ = 10). A fault (not an alarm) is present if the ALM LED lights without blinking. *Refer to Faults on page 419* for information on fault codes.

Table 6.10 Minor Fault and Alarm Displays

Digital C Disp	perator play	Name	Minor Fault Output (H2-□□ = 10)	Page
AE-	AEr	Station Address Setting Error (CC-Link, CANopen, MECHATROLINK)	YES	443
66	bb	Baseblock	No output <2>	443
bol	boL	Braking Transistor Overload Fault	YES	443
<i>6U5</i>	bUS	Option Card Communications Error	YES	443
ERLL	CALL	Serial Communication Transmission Error	YES	444
<i>EE</i>	CE	MEMOBUS/Modbus Communication Error	YES	444
[-51	CrST	Cannot Reset	YES	444
£ 9£	СуС	MECHATROLINK Comm. Cycle Setting Error	YES	444
dEu	dEv	Excessive Speed Deviation (for Control Mode with PG)	YES	444
dnE	dnE	Drive Disabled	YES	445
46JAL	dWAL	DriveWorksEZ Fault	YES	428
ES	E5	MECHATROLINK Watchdog Timer Error	YES	428
EF	EF	Forward/Reverse Run Command Input Error	YES	445
EF0	EF0	Option Card External Fault	YES	445
EF I to EFB	EF1 to EF8	External Fault (input terminal S1 to S8)	YES	445
FAn	FAn	Internal Fan Fault	YES	428
FbH	FbH	Excessive PID Feedback	YES	446
FbL	FbL	PID Feedback Loss	YES	446
H66	Hbb	Safe Disable Signal Input <4>	YES	446
HbbF	HbbF	Safe Disable Signal Input <4>	YES	446
HER	HCA	Current Alarm	YES	446
LF-1	LT-1	Cooling Fan Maintenance Time	No output <1>	447
LF-2	LT-2	Capacitor Maintenance Time	No output <1>	447

Digital Operator Display		Name	Minor Fault Output (H2-□□ = 10)	Page
LF-3	LT-3	Soft Charge Bypass Relay Maintenance Time	No output <1>	447
LT-4	LT-4	IGBT Maintenance Time (50%)	No output <1>	447
οН	οН	Heatsink Overheat	YES	447
oH∂	оН2	Drive Overheat Warning	YES	448
оН3	оН3	Motor Overheat	YES	448
σΗ <u>ς</u> <3>	оН5	Motor Overheat	YES	448
oL3	oL3	Overtorque 1	YES	448
oL4	oL4	Overtorque 2	YES	448
oL5	oL5	Mechanical Weakening Detection 1	YES	449
o5	oS	Overspeed	YES	449
Oυ	ov	DC Bus Overvoltage	YES	449
PR55	PASS	MEMOBUS/Modbus Test Mode Complete	No output	449
250	PGo	PG Disconnect (for Control Mode with PG)	YES	449
PGoH	PGoH	PG Hardware Fault (when using PG-X3)	YES	450
rUn	rUn	Motor Switch during Run	YES	450
5 <i>E</i>	SE	MEMOBUS/Modbus Test Mode Fault	YES	450
ΓH ₀ <3>	ТНо	Thermistor Disconnect	YES	450
r-PE	TrPC	IGBT Maintenance Time (90%)	YES	450
UL 3	UL3	Undertorque Detection 1	YES	450
UL 4	UL4	Undertorque Detection 2	YES	450
UL5	UL5	Mechanical Weakening Detection 2	YES	441
Uu	Uv	Undervoltage	YES	451
uoF	voF	Output Voltage Detection Fault	YES	451

<1> Output when H2- $\square\square$ = 2F.

Saseblock alarm "bb" will not activate a digital output programmed for minor fault $H2-0\Box = 10$. Set $H2-0\Box = 8$ or 1B to activate a digital output for "bb".

<3> Detected in models 4A0930 and 4A1200.

<4> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

■ Operation Errors

Table 6.11 Operation Error Displays

Digital Op Displ	erator ay	Name	Page
oPE0 I	oPE01	Drive Capacity Setting Fault	452
oPE02	oPE02	Parameter Setting Range Error	452
oPE03	oPE03	Multi-Function Input Selection Error	452
oPE04	oPE04	Initialization Required	453
oPE05	oPE05	Initialization Required	453
oPE06	oPE06	Control Method Selection Error	453
oPE07	oPE07	Multi-Function Analog Input Selection Error	454
oPE08	oPE08	Parameter Selection Error	454
oPE09	oPE09	PID Control Selection Fault	454

Digital Operator Display		Name	Page
oPE 10	oPE10	V/f Data Setting Error	455
oPE 11	oPE11	Carrier Frequency Setting Error	455
oPE 13	oPE13	Pulse Monitor Selection Error	455
oPE 15	oPE15	Torque Control Setting Error	455
oPE 16	oPE16	Energy Saving Constants Error	455
oPE 18	oPE18	Online Tuning Parameter Setting Error	455
02390	oPE20 <1>	PG-F3 Setting Error	456

■ Auto-Tuning Errors

Table 6.12 Auto-Tuning Error Displays

Digital Operator Display		Name	Page
End I	End1	Excessive V/f Setting	457
End2	End2	Motor Iron-Core Saturation Coefficient	457
End3	End3	Rated Current Setting Alarm	457
End4	End4	Adjusted Slip Calculation Error	457
End5	End5	Resistance Tuning Error	457
End6	End6	Leakage Inductance Alarm	457
End7	End7	No-Load Current Alarm	458
Er-01	Er-01	Motor Data Error	458
Er-02	Er-02	Minor Fault	458
Er-03	Er-03	STOP Button Input	458
Er-04	Er-04	Line-to-Line Resistance Error	458
Er-05	Er-05	No-Load Current Error	458
Er-08	Er-08	Rated Slip Error	459
Er-09	Er-09	Acceleration Error	459

Digital Operator Display		Name	Page
Er-10	Er-10	Motor Direction Error	459
Er-11	Er-11	Motor Speed Error	459
Er-12	Er-12	Current Detection Error	459
Er-13	Er-13	Leakage Inductance Error	460
Er-14	Er-14	Motor Speed Error 2	460
Er-15	Er-15	Torque Saturation Error	460
Er- 18	Er-16	Inertia ID Error	460
Er-17	Er-17	Reverse Prohibited Error	460
Er-18	Er-18	Induction Voltage Error	460
Er-19	Er-19	PM Inductance Error	460
Er-20	Er-20	Stator Resistance Error	460
Er-21	Er-21	Z Pulse Correction Error	461
Er-25	Er-25 <1>	High Frequency Injection Parameter Tuning Error	461

■ Errors and Displays When Using the Copy Function

Table 6.13 Copy Errors

Digital Operator Display		Name	Page
[oPY	СоРу	Writing Parameter Settings (flashing)	462
EPE-	CPEr	Control Mode Mismatch	462
СРУЕ	СРуЕ	Error Writing Data	462
£58r	CSEr	Copy Unit Error	462
dFP5	dFPS	Drive Model Mismatch	462
End	End	Task Complete	462
ıFEr	iFEr	Communication Error	462
ndAf	ndAT	Model, Voltage Class, Capacity Mismatch	463

Digital Operator Display		Name	Page
rdEr	rdEr	Error Reading Data	463
r E R d	rEAd	Reading Parameter Settings (Flashing)	463
uREr	vAEr	Voltage Class, Capacity Mismatch	463
uFYE	vFyE	Parameter settings in the drive and those saved to the copy function are not the same	463
urFY	vrFy	Comparing Parameter Settings (Flashing)	463

<1> Available in drive software versions PRG: 1018 and later.

<1> Available in drive software versions PRG: 1018 and later.

6.4 Fault Detection

◆ Fault Displays, Causes, and Possible Solutions

Faults are detected for drive protection, and cause the drive to stop while toggling the form-C output associated with terminals MA-MB-MC. Remove the cause of the fault and manually clear the fault before attempting to run the drive again.

Table 6.14 Detailed Fault Displays, Causes, and Possible Solutions

Digital Operator Display		Fault Name
boL	boL	Braking Transistor Overload Fault
	DOL	The braking transistor reached its overload level.
Cause		Possible Solution
The wrong braking resistor is installed		Select the correct braking resistor.

Digital Operator Display		Fault Name
		Option Communication Error
bU5	bUS	The connection was lost after establishing initial communication.
		Only detected when the run command frequency reference is assigned to an option card.
Cau	se	Possible Solution
No signal was received	from the PLC	Check for faulty wiring.
Faulty communications	wiring or an existing	Correct the wiring.
short circuit		Check for disconnected cables and short circuits and repair as needed.
		Check the various options available to minimize the effects of noise.
		Counteract noise in the control circuit, main circuit, and ground wiring.
Communication data err	ror occurred due to	Ensure that other equipment such as switches or relays do not cause noise. Use surge absorbers if necessary.
noise		• Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side.
		• Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive power supply input.
The option card is damaged		Replace the option card if there are no problems with the wiring and the error continues to occur.
The option card is not p	roperly connected to	• The connector pins on the option card do not line up properly with the connector pins on the drive.
the drive	1 ,	Reinstall the option card.

Digital Operator Display		Fault Name	
CE	CE.	MEMOBUS/Modbus Communication Error	
	CE	Control data was not received for the CE detection time set to H5-09.	
Cau	se	Possible Solution	
P. M. C.		Check for faulty wiring.	
Faulty communications wiring or an existing short circuit		Correct the wiring.	
		Check for disconnected cables and short circuits and repair as needed.	
		Check the various options available to minimize the effects of noise.	
		Counteract noise in the control circuit, main circuit, and ground wiring.	
Communication data error occurred due to noise		 Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. 	
		 Ensure that other equipment such as switches or relays do not cause noise. Use surge suppressors if required. 	
		Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive power supply input.	

Digital Operator Display		Fault Name
		Control Fault
[F	CF	The torque limit was reached continuously for three seconds or longer while ramping to stop in OLV Control.
Cause		Possible Solution
Motor parameters are set improperly		Check the motor parameter settings and repeat Auto-Tuning.
Torque limit is too low		Set the torque limit to the most appropriate setting (L7-01 through L7-04).

6.4 Fault Detectio		
Load inertia is too big		 Adjust the deceleration time (C1-02, C1-04, C1-06, C1-08). Set the frequency to the minimum value and interrupt the Run command when the drive finishes decelerating.
Digital Opera	tor Display	Fault Name
		Current Offset Fault
EoF	CoF	Drive starts operation while the current-detection circuit failure, or the induced voltage remains in the motor (coasting and after rapid deceleration).
Cau	se	Possible Solution
The drive performed a current offset adjustment while the motor was rotating		 The set value exceeds the allowable setting range while the drive automatically adjusts the current offset. This happens when attempting to restart a PM motor that is coasting to stop. Set b3-01 to 1 to enable Speed Search at Start. Perform Speed Search 1 or 2 (H1-□□ = 61 or 62) via one of the external terminals. Note: Speed Searches 1 and 2 are the same when using OLV/PM.
Hardware problem		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Digital Opera	tor Display	Fault Name
[PF00 or [PF0	CPF11 to CPF14 CPF16 to CPF19	Control Circuit Error
Cau	se	Possible Solution
There is a self-diagnosticircuit	c error in the control	 Cycle power to the drive. If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Connector on the operat	or is damaged	Replace the operator.
Digital Opera	tor Display	Fault Name
		A/D Conversion Error
[<i>CPF02</i>	CPF02	An A/D conversion error or control circuit error occurred.
Cau	se	Possible Solution
Control circuit is damag	ged	 Cycle power to the drive. If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Digital Opera	tor Display	Fault Name
		Control Board Connection Error
CPF03	CPF03	Connection error between the control board and the drive
Cau	se	Possible Solution
There is a connection error		• Turn off the power and check the connection between the control board and the drive.
I	ror	• If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
	ror	 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise.
	тог	 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring.
Drive fails to operate pro		 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring. Use only recommended cables or other shielded line. Ground the shield on the controller side or the
Drive fails to operate prosignal interference		 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring. Use only recommended cables or other shielded line. Ground the shield on the controller side or the
Drive fails to operate prosignal interference		 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring. Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. Ensure that other equipment such as switches or relays do not cause noise. Use surge suppressors if
Drive fails to operate prosignal interference	operly due to electrical	 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring. Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. Ensure that other equipment such as switches or relays do not cause noise. Use surge suppressors if required. Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive
Digital Opera	operly due to electrical	 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring. Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. Ensure that other equipment such as switches or relays do not cause noise. Use surge suppressors if required. Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive power supply input.
signal interference	operly due to electrical	 representative for instructions on replacing the control board. Check the various options available to minimize the effects of noise. Counteract noise in the control circuit, main circuit, and ground wiring. Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. Ensure that other equipment such as switches or relays do not cause noise. Use surge suppressors if required. Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive power supply input.

Digital Operator Display		Fault Name
CPF06	CPF06	EEPROM Memory Data Error
		Error in the data saved to EEPROM
Cause		Possible Solution
There is an error in EEPROM control circuit		Turn off the power and check the connection between the control board and the drive.
		• If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
The power supply was switched off while parameters were being saved to the drive		Reinitialize the drive (A1-03 = 2220, 3330).

Digital Operat	tor Display	Fault Name
EPFO7	CPF07	
CPF08	CPF08	Terminal Board Connection Error
Caus		Possible Solution
		Turn off the power and reconnect the terminal board.
There is a faulty connect terminal board and the co	ontrol board	• If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Digital Operat	tor Display	Fault Name
EPF I I	CPF11	RAM Fault
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Digital Operat	tor Display	Fault Name
CPF 12	CPF12	FLASH Memory Fault
[,,,,[CFF12	Problem with the ROM (FLASH memory)
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Digital Operat	tor Display	Fault Name
		Watchdog Circuit Exception
CPF 13	CPF13	Self-diagnostics problem.
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Digital Operat	tor Display	Fault Name
	• •	Control Circuit Fault
[PF 14	CPF14	CPU error (CPU operates incorrectly due to interference, etc.)
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Digital Operat	tor Display	Fault Name
		Clock Fault
[EPF 16	CPF16	Standard clock error.
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Digital Operat	ton Dionless	Fault Name
Digital Operat	tor Display	Timing Fault Timing Fault
[PF 17	CPF17	A timing error occurred during an internal process.
Caus		Possible Solution
Hardware is damaged.		Replace the drive.
	t Di I	*
Digital Operat	tor Display	Control Circuit Fault
CPF 18	CPF18	CPU error. Non-Maskable Interrupt (An unusual interrupt was triggered by interference, etc.)
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Digital Operat	tor Display	Fault Name
		Control Circuit Fault
[PF 19	CPF19	CPU error (Manual reset due to interference, etc.)
Caus	se	Possible Solution
Hardware is damaged.		Replace the drive.
Hardware is damaged.		

Digital Opera	tor Display	Fault Name
[PF20 or [PF2]	CPF20 or CPF21	Control Circuit Error
Cause		Possible Solution
Cause		Cycle power to the drive.
Hardware is damaged		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Digital Opera	tor Display	Fault Name
CPF22	CPF22	Hybrid IC Failure
Cau	se	Possible Solution
Hybrid IC failure on the	power board	 Cycle power to the drive. If the problem continues, replace the power board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the power board.
Digital Opera	tor Display	Fault Name
		Control Board Connection Error
[CPF23	CPF23	Connection error between the control board and the drive
Cau	se	Possible Solution
Cau	~~	Turn off the power and check the connection between the control board and the drive.
Hardware is damaged		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Digital Opera	tor Display	Fault Name
CPF24	CPF24	Drive Unit Signal Fault
2.7.2.		The drive capacity cannot be detected correctly (drive capacity is checked when the drive is powered up).
Cau	se	Possible Solution
Hardware is damaged		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
		representative for morrows on replacing the control court.
Digital Opera	tor Display	Fault Name
	tor Display CPF25	
Digital Opera	CPF25	Fault Name
Digital Opera	CPF25	Fault Name Terminal Board Not Connected
Digital Opera	CPF25 se onnected correctly	Fault Name Terminal Board Not Connected Possible Solution
Digital Opera	CPF25 se onnected correctly	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive.
Digital Opera [PF25] Cau Terminal board is not co	CPF25 se connected correctly ttor Display	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name
Digital Opera [PF25] Cau Terminal board is not co Digital Opera [PF26] to [PF35]	cPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error
Digital Opera [PF25] Cau Terminal board is not co Digital Opera [PF26 to [PF35] [PF40 to [PF45]	cPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error
Digital Opera [PF25] Cau Terminal board is not co Digital Opera [PF26 to [PF35] [PF40 to [PF45] Cau	CPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa
Digital Opera [PF25] Cau Terminal board is not co Digital Opera [PF25 to [PF35] [PF40] to [PF45] Cau Hardware is damaged	CPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Digital Opera [PF25] Cau Terminal board is not co Digital Opera [PF25 to [PF35] [PF40] to [PF45] Cau Hardware is damaged	CPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name
Digital Opera [PF25] Cau Terminal board is not co Digital Opera [PF25 to [PF35] [PF40 to [PF45] Cau Hardware is damaged	CPF25 se connected correctly tor Display CPF26 to CPF35 CPF40 to CPF45 se tor Display dEv	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for
Digital Opera EPF25 Cau Terminal board is not co Digital Opera EPF26 to EPF35 EPF40 to EPF45 Cau Hardware is damaged Digital Opera	CPF25 se connected correctly tor Display CPF26 to CPF35 CPF40 to CPF45 se tor Display dEv	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time set to F1-11.
Digital Opera EPF25 Cau Terminal board is not co Digital Opera EPF26 to EPF35 EPF40 to EPF45 Cau Hardware is damaged Digital Opera	CPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se ttor Display dEv	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time set to F1-11. Possible Solution Reduce the load.
Digital Opera EPF25 Cau Terminal board is not co Digital Opera EPF26 to EPF35 EPF40 to EPF45 Cau Hardware is damaged Digital Opera dEu Cau Load is too heavy Acceleration and deceler	CPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se ttor Display dEv	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time set to F1-11. Possible Solution Reduce the load.
Digital Opera EPF25 Cau Terminal board is not co Digital Opera EPF26 to EPF35 EPF40 to EPF45 Cau Hardware is damaged Digital Opera dEu Cau Load is too heavy Acceleration and deceleration	CPF25 se connected correctly tor Display CPF26 to CPF35 CPF40 to CPF45 se tor Display dEv se	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time set to F1-11. Possible Solution Reduce the load. Increase the acceleration and deceleration times (C1-01 through C1-08).
Digital Opera EPF25 Cau Terminal board is not co Digital Opera EPF26 to EPF35 EPF40 to EPF45 Cau Hardware is damaged Digital Opera ### ### ############################	cPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se ttor Display dEv se ration times are set too ppropriately k scaling when using	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time set to F1-11. Possible Solution Reduce the load. Increase the acceleration and deceleration times (C1-01 through C1-08). Check the machine. Check the settings of parameters F1-10 and F1-11. Set H6-02 to the same value as the speed feedback signal frequency when the motor runs at maximum speed. Adjust the speed feedback signal using parameters H6-03 through H6-05. Make sure the speed feedback signal frequency does not exceed the maximum input frequency of
Digital Opera EPF25 Cau Terminal board is not co Digital Opera EPF26 to EPF35 EPF40 to EPF45 Cau Hardware is damaged Digital Opera dEu Cau Load is too heavy Acceleration and deceler short The load is locked up Parameters are not set ay Incorrect speed feedback terminal RP as speed feedback	CPF25 se connected correctly ttor Display CPF26 to CPF35 CPF40 to CPF45 se ctor Display dEv se ration times are set too ppropriately k scaling when using edback input in V/f	Fault Name Terminal Board Not Connected Possible Solution Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. Fault Name Control Circuit Error CPU error Possible Solution If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. Fault Name Speed Deviation (for Control Mode with PG and OLV/PM without PG) The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time set to F1-11. Possible Solution Reduce the load. Increase the acceleration and deceleration times (C1-01 through C1-08). Check the machine. Check the settings of parameters F1-10 and F1-11. Set H6-02 to the same value as the speed feedback signal frequency when the motor runs at maximum speed. Adjust the speed feedback signal using parameters H6-03 through H6-05.

Digital Operator Display		Fault Name
ا ر	dυ l dv1	Z Pulse Fault (CLV/PM control mode only)
001		The motor turned one full rotation without the Z Pulse being detected.
Cause		Possible Solution
PG encoder is disconnected, improperly wired, or the PG option card or PG encoder are damaged		 Make sure the PG encoder is properly connected and all shielded lines are properly grounded. If the problem continues after cycling power, replace the PG option card or the PG encoder.

Digital Operator Display		Fault Name
du2	dv2	Z Pulse Noise Fault Detection (CLV/PM control mode only)
		The Z Pulse is out of phase by more than 5 degrees for 10 consecutive revolutions.
Cause		Possible Solution
Noise interference along the PG cable		Separate the PG cable lines from the source of the noise.
PG cable is not wired properly		Rewire the PG encoder and properly ground all shielded lines.
PG option card or the PG encoder are damaged		If the problem continues after cycling power, replace the PG option card or the PG encoder.

Digital Operator Display		Fault Name
du∃ dv3		Inversion Detection (CLV/PM control mode only)
	dv3	The torque reference and acceleration are in opposite directions and the speed reference and actual motor speed differ by more than 30% for the number of times set to F1-18.
Cau	se	Possible Solution
The Z Pulse offset is not set properly to E5-11		Set the value for $\Delta\theta$ to E5-11 as specified on the motor nameplate. Replacing the PG encoder or changing the application to rotate the motor in reverse requires readjustment of the Z-pulse offset. (T2-01 = 3)
An external force on the	e load side caused the	Make sure the motor is rotating in the proper direction.
motor to move		• Identify and fix any problems on the load side causing the motor to rotate in the opposite direction.
Noise interference along the PG cable affecting the A or B pulse		
PG encoder is disconnected, improperly wired, or the PG option card or PG encoder are damaged		Properly rewire the PG encoder and connect all lines including shielded line.
Rotational direction for the PG encoder set to F1-05 is the opposite of the motor line order		Properly connect the motor lines for each phase (U, V, W).

Digital Operator Display		Fault Name
		Inversion Prevention Detection (CLV/PM control mode only)
duY	dv4	Pulses indicate that the motor is rotating in the opposite direction of the speed reference. Set the number of pulses to trigger inverse detection to F1-19.
		Note: Set F1-19 to 0 to disable inverse detection in applications where the motor may rotate in the opposite direction of the speed reference.
Cau	se	Possible Solution
		• Set the value for $\Delta\theta$ to E5-11 as specified on the motor nameplate.
The Z Pulse offset is not set properly to E5-11		• If the problem continues after cycling power, replace the PG option card or the PG encoder. Replacing the PG encoder or changing the application to rotate the motor in reverse requires readjustment of the Z-pulse offset. (T2-01 = 3)
Electrical signal interference along the PG		Make sure the motor is rotating in the proper direction.
cable affecting the A or B pulse		• Identify and fix any problems on the load side causing the motor to rotate in the opposite direction.
PG encoder is disconnected, improperly wired, or the PG option card or PG encoder are damaged		 Rewire the PG encoder and properly connect all lines including shielded line. If the problem continues after cycling power, replace the PG option card or the PG encoder.

Digital Operator Display		Fault Name
du 7 <1>	dv7	Initial Polarity Estimation Timeout
Cau	se	Possible Solution

Disconnection in the motor coil winding	Measure the motor line-to-line resistance and replace the motor if the motor coil winding is open.
	• Check for loose terminals. Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 155</i> for details.
Loose output terminals	• Ensure that monitor U6-57 displays a value greater than 819 during the initial test runs for the application to prevent the drive from incorrectly determining motor polarity. If U6-57 shows a value less than 819, increase the polarity judge current level set in parameter n8-84.

<1> Available in drive software versions PRG: 1015 and later.

Digital Operator Display		Fault Name
abu8L	dWAL	- DriveWorksEZ Fault
ժեմԲԼ	dWFL	Direworksez rauit
Cause		Possible Solution
Fault output by DriveWorksEZ		Correct the cause of the fault.

Digital Operator Display		Fault Name
dbJF I	dWF1	EEPROM Memory DriveWorksEZ Data Error
00011		There is an error in the DriveWorksEZ program saved to EEPROM.
Cause		Possible Solution
Problem with EEPROM data.		Reinitialize the drive (A1-03 = 2220, 3330) and download the DriveWorksEZ program again.
There is an error in the EEPROM control circuit.		Turn the power off and check the connection between the control board and the drive. If the problem continues, replace either the control board or the entire drive and then download the DriveWorksEZ program. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

Digital Operator Display		Fault Name
<i>E5</i>	E5	MECHATROLINK Watchdog Timer Error
		The watchdog timed out.
Cause		Possible Solution
Data has not been received from the PLC		Execute DISCONNECT or ALM_CLR, then issue a CONNECT command or SYNC_SET command and proceed to phase 3. Refer to the SI-T3 Option Technical Manual for more details on troubleshooting.

Digital Operator Display		Fault Name
EF0	EF0	Option Card External Fault
Liu		An external fault condition is present.
Cause		Possible Solution
An external fault was received from the PLC		Remove the cause of the external fault.
and F6-03 is set to a value other than 3.		Remove the external fault input from the PLC.
Problem with the PLC program		Check the PLC program and correct problems.

Digital Operator Display		Fault Name
EF 1	EF1	External Fault (input terminal S1)
L' '	EFI	External fault at multi-function input terminal S1.
EF2	EF2	External Fault (input terminal S2)
C F C	EF2	External fault at multi-function input terminal S2.
EF3	EF3	External Fault (input terminal S3)
(7)	EF3	External fault at multi-function input terminal S3.
EFY	EF4	External Fault (input terminal S4)
677		External fault at multi-function input terminal S4.
<i>EF5</i>	EF5	External Fault (input terminal S5)
(7)		External fault at multi-function input terminal S5.
EF 6	EF6	External Fault (input terminal S6)
cro		External fault at multi-function input terminal S6.
EF7	PP7	External Fault (input terminal S7)
כריו	EF7	External fault at multi-function input terminal S7.
EF8	EF8	External Fault (input terminal S8)
cro		External fault at multi-function input terminal S8.

Cause	Possible Solution
An external device tripped an alarm function	Remove the cause of the external fault and reset the fault.
Wiring is incorrect	• Properly connect the signal lines to the terminals assigned for external fault detection (H1-□□ = 20 to 2B).
	Reconnect the signal line.
Multi-function contact input setting is	• Check for unused terminals set for H1-□□ = 20 to 2B (External Fault).
incorrect	Change the terminal settings.

Digital Operator Display		Fault Name
		EEPROM Write Error
Err	Err	Data cannot be written to the EEPROM
Cau	se	Possible Solution
		Press "ENTER" on the digital operator.
Noise has corrupted data	a while writing to the	Correct the parameter setting.
EEPROM	a willie writing to the	Cycle power to the drive.
		• If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Hardware problem		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.

Digital Operator Display		Fault Name
E R o	FAn	Internal Fan Fault
1 1111		Fan or magnetic contactor failure
Cau	se	Possible Solution
		Cycle power to the drive.
		Check for fan operation.
Internal cooling fan has malfunctioned		• Verify the cumulative operation time of the fan with monitor U4-03, and verify the cumulative operation time of the fan maintenance timer with U4-04.
		• If the cooling fan has exceeded its expected performance life or is damaged in any other way, follow the replacement instructions in the <i>Peripheral Devices & Options</i> chapter.
Fault detected in the internal cooling fan or magnetic contactor to the power supply.		Cycle power to the drive.
		• If the fault continues to occur, replace the power board/gate drive board or the entire drive.
		Contact Yaskawa or a Yaskawa representative for instructions on replacing the power board/gate drive board.

Digital Operator Display		Fault Name
FbH	FbH	Excessive PID Feedback
		PID feedback input is greater than the level set to b5-36 for longer than the time set to b5-37. Set b5-12 to 2 or 5 to enable fault detection.
Cause		Possible Solution
Parameters are set inappropriately		Check b5-36 and b5-37 settings.
Incorrect PID feedback wiring		Correct the wiring.
There is a problem with the feedback sensor		Check the sensor on the control side.
		Replace the sensor if damaged.

Digital Operator Display		Fault Name
F&L	FbL	PID Feedback Loss
		PID feedback loss detection is programmed to trigger a fault ($b5-12 = 2$ or 5) and the PID feedback level is below the detection level set to $b5-13$ for longer than the time set to $b5-14$.
Cause		Possible Solution
Parameters are set inappropriately		Check b5-13 and b5-14 settings.
Incorrect PID feedback wiring		Correct the wiring.
There is a problem with the feedback sensor		Check the sensor on the control side.
		Replace the sensor if damaged.

Digital Operator Display		Fault Name
		Ground Fault
ŬF.	GF	• A current short to ground exceeded 50% of rated current on the output side of the drive.
		Setting L8-09 to 1 enables ground fault detection.
Cau	se	Possible Solution
Motor insulation is dam	agad	Check the insulation resistance of the motor.
Wiotor misuration is dam	ageu	Replace the motor.
		Check the motor cable.
A damaged motor cable	is creating a short	Remove the short circuit and reapply power to the drive
circuit	-	Check the resistance between the cable and the ground terminal ⊕.
		Replace the cable.
Excessive leakage current at the drive output		Reduce the carrier frequency.
Excessive leakage curre	at the drive output	Reduce the amount of stray capacitance.
The drive performed a current offset adjustment while the motor was rotating		• The set value exceeds the allowable setting range while the drive automatically adjusts the current offset. This generally only happens when attempting to restart a PM motor that is coasting to stop.
		Set b3-01 to 1 to enable Speed Search at Start.
		• Perform Speed Search 1 or 2 (H1- $\square\square$ = 61 or 62) via one of the external terminals.
		Note: Speed Searches 1 and 2 are the same when using OLV/PM.
Hardware problem		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.

Digital Operator Display		Fault Name
	LF	Output Phase Loss
LF		Phase loss on the output side of the drive.
		Setting L8-07 to 1 or 2 enables Phase Loss Detection.
Cau	se	Possible Solution
The output cable is disc	onnactad	Check for wiring errors and properly connect the output cable.
The output cable is disc	omiected	Correct the wiring.
The motor winding is da	umagad	Check the resistance between motor lines.
The motor winding is do	imageu	Replace the motor if the winding is damaged.
The output terminal is loose		• Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 155</i> for details.
The rated current of the motor being used is less than 5% of the drive rated current		Check the drive and motor capacities.
An output transistor is damaged		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
A single-phase motor is being used		The drive cannot operate a single phase motor.

Digital Operator Display		Fault Name
LF2	LF2	Output Current Imbalance
LIL		One or more of the phases in the output current are lost.
Cau	se	Possible Solution
Phase loss has occurred	on the output side of	Check for faulty wiring or poor connections on the output side of the drive.
the drive		Correct the wiring.
Terminal wires are loose on the output side of the drive		Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 155</i> for details.
The output circuit is damaged		If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.
Motor impedance or motor phases are uneven		Measure the line-to-line resistance for each motor phase. Ensure all values match.
		Replace the motor.

Digital Operator Display		Fault Name
LF3 <1>	LF3	Power Unit Output Phase Loss 3
		Phase loss occurred on the output side
		Setting L8-78 to 1 enables Power Unit Output Phase Loss Protection
Cause		Possible Solution

The gate drive board in the power unit is damaged.	Cycle the power supply. <i>Refer to Diagnosing and Resetting Faults on page 464</i> for details. If the fault continues to occur, replace the gate drive board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the gate drive board.
Cable to the current detection circuit in the power unit is damaged or not connected properly.	Check for incorrect wiring and correct any wiring mistakes.
Cable between the output rector and the power unit is loose or not connected.	Contact Yaskawa or your nearest sales representative for instructions.

<1> Detected in models 4A0930 and 4A1200.

Digital Operator Display		Fault Name
L 5 o	I.G.	LSo Fault
<1>	LSo	Pull-out has been detected at low speed.
Cau	se	Possible Solution
		• Enter the correct motor code for the PM motor being used into E5-01.
The incorrect motor code has been entered.		• For special-purpose motors, enter the correct data to all E5 parameters according to the test report provided for the motor.
Th. 1 1:. 4 1		Reduce the load.
The load is too heavy.		Replace the drive with a larger model.
The drive incorrectly detected the position of the motor poles.		Make sure some external force is not rotating the motor at start.
		• Enable Speed Search Selection at start. (b3-01 = 1).
		• If the value displayed in U6-57 is lower than 819, then set the polarity judge current (n8-84) higher than the default value.
Values set to parameters L8-93, L8-94, and L8-95 are incorrect		• Increase the value set to L8-93.
		• Increase the value set to L8-94.
20 70 are mediteet.		• Increase the value set to L8-95.

<1> This function prevents continuous operation in reverse when using high frequency injection (n8-57 = 1) in AOLV/PM (A1-02 = 6) with a motor for which no motor code has been entered (it does not only prevent reverse operation). Set L8-93, L8-94, and L8-95 to low values within range of erroneous detection to quickly detect undesirable reverse operation.

Digital Operator Display		Fault Name
n5E	nSE	Node Setup Error
		A terminal assigned to the node setup function closed during run.
Cause		Possible Solution
The node setup terminal closed during run.		Stop the drive when using the node setup function.
A Run command was issued while the node setup function was active.		

Digital Operator Display		Fault Name
oΣ	оС	Overcurrent
00		Drive sensors detected an output current greater than the specified overcurrent level.
Cau	se	Possible Solution
The motor has been damaged due to overheating or the motor insulation is damaged		 Check the insulation resistance. Replace the motor.
One of the motor cables has shorted out or there is a grounding problem		 Check the motor cables. Remove the short circuit and reapply power to the drive. Check the resistance between the motor cables and the ground terminal . Replace damaged cables.
The drive is damaged		Check the drive output side short circuit for a broken output transistor B1 and U/T1, V/T2, W/T3 and U/T1, V/T2, W/T3 Contact your Yaskawa representative or nearest Yaskawa sales office.
The load is too heavy		 Measure the current flowing into the motor. Replace the drive with a larger capacity drive if the current value exceeds the rated current. Determine if there is sudden fluctuation in the current level. Reduce the load to avoid sudden changes in the current level or switch to a larger drive.

	Calculate the torque needed during acceleration relative to the load inertia and the specified acceleration time. If it is not possible to set the proper amount of torque, make the following changes:
The acceleration or deceleration times are too short	• Increase the acceleration time (C1-01, C1-03, C1-05, C1-07)
Short	• Increase the S-curve characteristics (C2-01 through C2-04)
	Increase the capacity of the drive.
The drive is attempting to operate a specialized	Check the motor capacity.
motor or a motor larger than the maximum size allowed	• Ensure that the rated capacity of the drive is greater than or equal to the capacity rating found on the motor nameplate.
Magnetic contactor (MC) on the output side of the drive has turned on or off	Set up the operation sequence so the MC does not trip while the drive is outputting current.
	Check the ratios between the voltage and frequency.
V/f setting is not operating as expected	• Set parameters E1-04 through E1-10 appropriately (E3-04 through E3-10 for motor 2).
	Lower the voltage if it is too high relative to the frequency.
	Check the amount of torque compensation.
Excessive torque compensation	• Reduce the torque compensation gain (C4-01) until there is no speed loss and less current.
	Review the possible solutions provided for handling electrical signal interference.
Drive fails to operate properly due to electrical signal interference	• Review the section on handling noise interference on page 471 and check the control circuit lines, main circuit lines, and ground wiring.
0 10 11	Check if the fault occurs simultaneously with overexcitation function operation.
Overexcitation gain is set too high	• Consider motor flux saturation and reduce the value of n3-13 (Overexcitation Deceleration Gain).
D	Set b3-01 to 1 to enable Speed Search at Start.
Run command was applied while motor was coasting	• Program the Speed Search command input through one of the multi-function contact input terminals (H1-□□ = 61 or 62).
The wrong motor code has been entered for	• Enter the correct motor code to E5-01.
OLV/PM (Yaskawa motors only) or the motor data are wrong	• Set E5-01 to FFFF if using a non-Yaskawa PM motor. Set the correct motor data to the E5-□□ parameters or perform Auto-Tuning.
The overcurrent level has exceeded the value set to L8-27 (PM control modes)	Correct the value set to overcurrent detection gain (L8-27).
	Check the control mode.
The motor control method and motor do not match	• For IM motors, set A1-02 to 0, 1, 2, or 3.
inacon	• For PM motors, set A1-02 to 5, 6, or 7.
The rated output current of the drive is too small	Use a larger drive.

Digital Operator Display		Fault Name
oFR00	oFA00	Option Card Connection Error at Option Port CN5-A
		Option compatibility error
Cause		Possible Solution
The option card installed into port CN5-A is incompatible with the drive		Check if the drive supports the option card to be installed. Contact Yaskawa for assistance.
A PG option card is connected to option port CN5-A		PG option cards are supported by option ports CN5-B and CN5-C only. Connect the PG option card to the correct option port.

Digital Operator Display		Fault Name
oFAO I	oFA01	Option Card Fault at Option Port CN5-A
		Option not properly connected
Cau	se	Possible Solution
The option card connection to port CN5-A is		Turn off the power and reconnect the option card.
		• Check if the option card is properly plugged into the option port. Make sure the card is fixed properly.
		• If the option is not a communication option card, try to use the card in a different option port. If the option card works properly in a different option port, CN5-A is damaged, and the drive requires replacement. If the error persists (oFb01 or oFC01 occur), replace the option card.

Digital Operator Display		Fault Name
oFR03 to oFR06	oFA03 to oFA06	Ontion Card Error Occurred at Ontion Part CNS A
oFR 10, oFR 1 1	oFA10, oFA11	Option Card Error Occurred at Option Port CN5-A
oFR 12 to oFR 17	oFA12 to oFA17	Option Card Connection Error (CN5-A)
oFA30 to oFA43	oFA30 to oFA43	Communication Option Card Connection Error (CN5-A)

Cause	Possible Solution
	 Cycle power to the drive. If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.

Digital Opera	tor Display	Fault Name
oF600	0Fb00	Option Card Fault at Option Port CN5-B
		Option compatibility error
Cau	se	Possible Solution
The option card installed incompatible with the distance of the compatible with th	d into port CN5-B is rive	Make sure the drive supports the option card to be installed. Contact Yaskawa for assistance.
A communication option card has been installed in option port CN5-B		Communication option cards are only supported by option port CN5-A. It is not possible to install more than one communication option.

Digital Operator Display		Fault Name
oFb0 I	oFb01	Option Card Fault at Option Port CN5-B
		Option not properly connected
Cau	se	Possible Solution
The option card connection to port CN5-B is faulty		Turn off the power and reconnect the option card.
		• Check if the option card is properly plugged into the option port. Make sure the card is fixed properly.
		• Try to use the card in a different option port (in case of a PG option, use port CN5-C). If the option card works properly in a different option port, CN5-B is damaged, and the drive requires replacement. If the error persists (oFA01 or oFC01 occur), replace the option card.

Digital Opera	tor Display	Fault Name
oF602	l oFb02	Option Card Fault at Option Port CN5-B
		Same type of option card is currently connected
Cau	se	Possible Solution
An option card of the sa installed in option port		Except for PG options, only one of each option card type can only be installed simultaneously. Make sure only one type of option card is connected.
An input option card is already installed in option port CN5-A		Install a communication option, a digital input option, or an analog input option. More than one of the same type of card cannot be installed simultaneously.

Digital Opera	tor Display	Fault Name
oFb03 to oFb / /	oFb03 to oFb11	Option card error occurred at Option Port CN5-B
ofb 12 to ofb 17	oFb12 to oFb17	Option card error occurred at Option Port CN3-B
Cause		Possible Solution
Option card or hardward		 Cycle power to the drive. If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.

Digital Operator Display		Fault Name
oFC00	oFC00	Option Card Connection Error at Option Port CN5-C
		Option compatibility error
Cau	se	Possible Solution
The option card installed incompatible with the di	d into port CN5-C is rive	Confirm that the drive supports the option card to be installed. Contact Yaskawa for assistance.
A communication option card has been installed in option port CN5-C		Communication option cards are only supported by option port CN5-A. It is not possible to install more than one communication option.

Digital Opera	ntor Display	Fault Name
oF[0]	oFC01	Option Card Fault at Option Port CN5-C
		Option not properly connected
Cau	se	Possible Solution

6.4 Fault Detectio	n	
The option card connection to port CN5-C is		• Turn the power off and reconnect the option card.
		• Check if the option card is properly plugged into the option port. Make sure the card is fixed properly.
faulty.	•	• Try to use the card in a different option port (in case of a PG option, use port CN5-B). If the option card works properly in a different option port, CN5-C is damaged, and the drive requires replacement.
		If the error persists (oFA01 or oFb01 occur), replace the option card.
Digital Opera	ator Dienlay	Fault Name
	loi Display	Option Card Fault at Option Port CN5-C
oFC02	oFC02	Same type of option card is currently connected
Cau	ıse	Possible Solution
An option card of the sa	ame type is already	Except for PG options, only one of each option card type can only be installed simultaneously. Make sure
installed in option port	CN5-A or CN5-B.	only one type of option card is connected.
An input option card is option port CN5-A or C	already installed in CN5-B.	Install a communication option, a digital input option, or an analog input option. More than one of the same type of card cannot be installed simultaneously.
Three PG option boards	s are installed.	A maximum of two PG option boards can be used simultaneously. Remove the PG option board installed into option port CN5-A.
D: " 10	1 D' 1	
Digital Opera		Fault Name
oFE 12 to oFE 17	oFC03 to oFC11	Option Card Error Occurred at Option Port CN5-C
Cau	oFC12 to oFC17	Possible Solution
Cau	130	Cycle power to the drive.
Option card or hardwar	e is damaged	• If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa
	-	representative for instructions on replacing the control board.
Digital Opera	ator Display	Fault Name
ο F C 50 to ο F C 55	oFC50 to oFC55	Option Card Error Occurred at Option Port CN5-C
Cau	ise	Possible Solution
Option card or hardwar	e is damaged	Refer to the option manual for details.
Digital Opera	ator Display	Fault Name
		Heatsink Overheat
οΗ	оН	The heatsink temperature exceeded the overheat pre-alarm level set to L8-02. The default value for L8-02 is determined by drive capacity (o2-04).
Cau	ise	Possible Solution
		Check the temperature surrounding the drive. Verify temperature is within drive specifications.
Surrounding temperatur	re is too high	• Improve the air circulation within the enclosure panel.
Surrounding temperatur	o is too ingi	• Install a fan or air conditioner to cool the surrounding area.
		Remove anything near the drive that might be producing excessive heat.
		Measure the output current.
Load is too heavy		• Decrease the load.
		• Lower the carrier frequency (C6-02).
Internal cooling fan is s	topped	• Replace the cooling fan. Refer to Cooling Fan Replacement: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032 on page 487.
		• After replacing the cooling fan, set parameter o4-03 to 0 to reset the cooling fan maintenance.
Digital Opera	ator Display	Fault Name
		Overheat 1 (Heatsink Overheat)
o# !	oH1	The heatsink temperature exceeded the drive overheat level. Overheat level is determined by drive capacity (o2-04).
Cau	ise	Possible Solution
		Check the temperature surrounding the drive.
Surrounding temperatur	re is too high	• Improve the air circulation within the enclosure panel.
Surrounding temperature is too high		• Install a fan or air conditioner to cool the surrounding area.

• Remove anything near the drive that might be producing excessive heat.

• Measure the output current.

• Reduce the load.

• Lower the carrier frequency (C6-02).

Load is too heavy

Digital Opera	tor Display	Fault Name
		Motor Overheat Alarm (PTC Input)
₀H3	оН3	• The motor overheat signal to analog input terminal A1, A2, or A3 exceeded the alarm detection level.
		• Detection requires setting multi-function analog inputs H3-02, H3-10, or H3-06 to E.
Cau	se	Possible Solution
		Check the size of the load, the accel/decel times, and the cycle times.
		Decrease the load.
		• Increase the acceleration and deceleration times (C1-01 through C1-08).
		• Adjust the preset V/f pattern (E1-04 through E1-10) by reducing E1-08 and E1-10.
Motor has overheated		• Do not set E1-08 and E1-10 too low. This reduces load tolerance at low speeds.
		Check the motor rated current.
		• Enter the motor rated current to parameter E2-01 as indicated on the motor nameplate.
		Ensure the motor cooling system is operating normally.
		Repair or replace the motor cooling system.

Digital Opera	tor Display	Fault Name
		Motor Overheat Fault (PTC Input)
oH4	oH4	• The motor overheat signal to analog input terminal A1, A2, or A3 exceeded the fault detection level.
		• Detection requires setting multi-function analog inputs H3-02, H3-10, or H3-06 to E.
Cau	se	Possible Solution
		Check the size of the load, the accel/decel times, and the cycle times.
		Decrease the load.
		• Increase the acceleration and deceleration times (C1-01 through C1-08).
		• Adjust the preset V/f pattern (E1-04 through E1-10) by reducing E1-08 and E1-10.
Motor has overheated		• Do not set E1-08 and E1-10 too low. This reduces load tolerance at low speeds.
		Check the motor rated current.
		• Enter the motor rated current to parameter E2-01 as indicated on the motor nameplate.
		Ensure the motor cooling system is operating normally.
		Repair or replace the motor cooling system.

Digital Operator Display		Fault Name
oH5	oH5	Motor Overheat (NTC Input)
<1>	0113	The motor temperature exceeded the level set to L1-16 (or L1-18 for motor 2)
Cau	se	Possible Solution
Motor has overheated		Reduce the load.
		Check the ambient temperature.

Digital Opera	tor Display	Fault Name
ot I	. T. 1	Motor Overload
00.7	oL1	The electronic motor overload protection tripped
Cau	se	Possible Solution
		Reduce the load.
Load is too heavy		Note: Reset oL1 when the U4-16 value falls below 100.0%. U4-16 value must be less than 100.0% before oL1 can be reset.
Cycle times are too short during acceleration and deceleration		Increase the acceleration and deceleration times (C1-01 through C1-08).
		Reduce the load.
A general-purpose moto	r is driven below the	Increase the speed.
rated speed with a high load		• If the motor is supposed to operate at low speeds, either increase the motor capacity or use a motor specifically designed to operate in the desired speed range.
The output voltage is too high		• Adjust the user-set V/f pattern (E1-04 through E1-10) by reducing E1-08 and E1-10.
		• Do not set E1-08 and E1-10 too low. This reduces load tolerance at low speeds.
The wrong motor rated current is set to E2-01		Check the motor-rated current.
		• Enter the motor rated current to parameter E2-01 as indicated on the motor nameplate.

The base frequency is set incorrectly	 Check the rated frequency indicated on the motor nameplate. Enter the rated frequency to E1-06 (Base Frequency).
Multiple motors are running off the same drive	Set L1-01 to 0 to disable the motor protection function and then install a thermal relay to each motor.
The electrical thermal protection characteristics and motor overload characteristics do not match	 Check the motor characteristics. Correct the type of motor protection that has been selected (L1-01). Install an external thermal relay.
The electrical thermal relay is operating at the wrong level	 Check the current rating listed on the motor nameplate. Check the value set for the motor rated current (E2-01).
Motor overheated by overexcitation operation	 Overexcitation increases the motor loss and the motor temperature. Excessive duration of overexcitation may cause motor damage. Prevent excessive overexcitation operation or apply proper cooling to the motor. Reduce the excitation deceleration gain (n3-13).
Parameters related to Speed Search are set incorrectly	 Set L3-04 (Stall Prevention during Deceleration) to a value other than 4. Check values set to Speed Search related parameters. Adjust the Speed Search current and Speed Search deceleration times (b3-02 and b3-03 respectively). After Auto-Tuning, set b3-24 to 1 to enable Speed Estimation Speed Search.
Output current fluctuation due to power supply loss	Check the power supply for phase loss.

Digital Operator Display		Fault Name
αί ∂ οL2	Drive Overload	
ULL	0L2	The thermal sensor of the drive triggered overload protection.
Cau	se	Possible Solution
Load is too heavy		Reduce the load.
Acceleration or decelera	ation time is too short	Increase the settings for the acceleration and deceleration times (C1-01 through C1-08).
The output voltage is to	a high	Adjust the preset V/f pattern (E1-04 through E1-10) by reducing E1-08 and E1-10.
The output voltage is to	o iligii	Do not lower E1-08 and E1-10 excessively. This reduces load tolerance at low speeds.
Drive capacity is too sm	all	Replace the drive with a larger model.
0		Reduce the load when operating at low speeds.
Overload occurred when speeds	operating at low	Replace the drive with a model that is one frame size larger.
Speeds		• Lower the carrier frequency (C6-02).
Excessive torque compensation		Reduce the torque compensation gain in parameter C4-01 until there is no speed loss but less current.
		Check the settings for all Speed Search related parameters.
Parameters related to Speed Search are sincorrectly	beed Search are set	• Adjust the current used during Speed Search (b3-03) and the Speed Search deceleration time (b3-02).
		After Auto-Tuning, set b3-24 to 1 to enable Speed Estimation Speed Search.
Output current fluctuation due to input phase loss		Check the power supply for phase loss.

Digital Operator Display		Fault Name
		Overtorque Detection 1
oL3	oL3	The current has exceeded the value set for torque detection (L6-02) for longer than the allowable time (L6-03).
Cau	se	Possible Solution
Parameter settings are not appropriate for the load		Check L6-02 and L6-03 settings.
Fault on the machine side (e.g., machine is locked up)		Check the status of the load. Remove the cause of the fault.

Digital Operator Display		Fault Name
		Overtorque Detection 2
064	oL4	The current has exceeded the value set for Overtorque Detection 2 (L6-05) for longer than the allowable time (L6-06).
Caus	se	Possible Solution
Parameter settings are not appropriate for the load		Check the settings of parameters L6-05 and L6-06.

Digital Operator Display		Fault Name
oL5	oL5	Mechanical Weakening Detection 1
ULJ	OL3	Overtorque occurred, matching the conditions specified in L6-08.
Cause		Possible Solution
Overtorque triggered mechanical weakening detection level set to L6-08		Identify the cause of mechanical weakening.

Digital Operator Display		Fault Name
oL 7	oL7	High Slip Braking oL
00.7		The output frequency stayed constant for longer than the time set to n3-04 during High Slip Braking.
Cau	se	Possible Solution
Excessive load inertia		 Reduce deceleration times in parameters C1-02, C1-04, C1-06, and C1-08 for applications that do not use High Slip Braking.
Motor is driven by the load		
Something on the load side is restricting deceleration		Use a braking resistor to shorten deceleration time.
The overload time during High Slip Braking is too short		Increase parameter n3-04 (High-slip Braking Overload Time).
		• Install a thermal relay and increase the setting of n3-04 to maximum value.

Digital Opera	tor Display	Fault Name
		External Digital Operator Connection Fault
		The external operator has been disconnected from the drive.
oPr	oPr	Note: An oPr fault will occur when all of the following conditions are true:
		• Output is interrupted when the operator is disconnected ($o2-06 = 1$).
		• The Run command is assigned to the operator (b1-02 = 0 and LOCAL has been selected).
Cause		Possible Solution
External operator is not properly connected to the drive		Check the connection between the operator and the drive.
		Replace the cable if damaged.
		• Turn off the drive input power and disconnect the operator. Reconnect the operator and reapply drive input power.

Digital Operator Display		Fault Name
o5	- C	Overspeed
UJ	oS	The motor speed feedback exceeded the F1-08 setting.
Cau	se	Possible Solution
Overshoot is occurring		• Reduce the C5-01, Speed Control Proportional Gain 1, setting and increase the C5-02, Speed Control Integral Time 1, setting.
		If using Closed Loop Vector mode, enable Feed Forward and perform Inertia Auto-Tuning.
Incorrect speed feedback scaling if terminal RP is used as speed feedback input in V/f control		• Set H6-02 to the value of the speed feedback signal frequency when the motor runs at the maximum speed.
		• Adjust the input signal using parameters H6-03 through H6-05.
Incorrect number of PG pulses has been set		Check and correct parameter F1-01.
Inappropriate parameter settings		Check the setting for the overspeed detection level and the overspeed detection time (F1-08 and F1-09).

Digital Opera	tor Display	Fault Name
		Overvoltage
		Voltage in the DC bus has exceeded the overvoltage detection level.
Oυ	ov	For 200 V class drives: approximately 410 V
		• For 400 V class drives: approximately 820 V (740 V when E1-01 is less than 400)
		For 600 V class drives: approximately 1040 V
Cau	se	Possible Solution
		• Increase the deceleration time (C1-02, C1-04, C1-06, C1-08).
Deceleration time is too short and regenerative energy is flowing from the motor into the drive		Install a dynamic braking resistor or a dynamic braking resistor unit.
		• Set L3-04 to 1 to enable stall prevention during deceleration. Stall Prevention is enabled as the default setting.

Fast acceleration time causes the motor to overshoot the speed reference	Check if sudden drive acceleration triggers an overvoltage alarm.
	Increase the acceleration time.
	Use longer S-curve acceleration and deceleration times.
	• Enable the Overvoltage Suppression function (L3-11 = 1).
	Lengthen the S-curve at acceleration end.
Excessive braking load	The braking torque was too high, causing regenerative energy to charge the DC bus. Reduce the braking torque, use a dynamic braking option, or lengthen decel time.
Common and an in a form the dains in man	Install a DC link choke.
Surge voltage entering from the drive input power	Note: Voltage surge can result from a thyristor convertor and phase advancing capacitor using the same input power supply.
Ground fault in the output circuit causes the	Check the motor wiring for ground faults.
DC bus capacitor to overcharge	Correct grounding shorts and reapply power.
	Check the settings for Speed Search-related parameters.
Improper parameters related to Speed Search	• Enable Speed Search restart function (b3-19 greater than or equal to 1, up to 10).
(including Speed Search after a momentary	• Adjust the current level during Speed Search and the deceleration time (b3-02 and b3-03 respectively).
power loss and after a fault restart)	• Perform Stationary Auto-Tuning for line-to-line resistance and then set b3-14 to 1 to enable Speed Estimation Speed Search.
Dei sian dan an alkan inda bish	Check the voltage.
Drive input power voltage is too high	Lower drive input power voltage within the limits listed in the specifications.
The braking transistor or braking resistor are	Check braking transistor and braking resistor wiring for errors.
wired incorrectly	Properly rewire the braking resistor device.
PG cable is disconnected	Reconnect the cable.
PG cable wiring is wrong	Correct the wiring.
Electrical signal interference along the PG encoder wiring	Separate the wiring from the source of the electrical signal interference. Often, the source is the output lines from the drive.
	Review the list of possible solutions provided for controlling electrical signal interference.
Drive fails to operate properly due to electrical signal interference	• Review the section on handling electrical signal interference on page 471 and check the control circuit lines, main circuit lines, and ground wiring.
Load inertia is set incorrectly	Check the load inertia settings when using KEB, overvoltage suppression, or Stall Prevention during deceleration.
	Adjust the load inertia ratio in L3-25 to better match the load.
Braking function is being used in OLV/PM	Connect a braking resistor.
	Adjust the parameters that control hunting.
	• Set the gain for Hunting Prevention (n1-02).
Motor hunting occurs	• Adjust the AFR time constant (n2-02 and n2-03).
	• Adjust the speed feedback detection suppression gain for PM motors (n8-45) and the time constant for pull-in current (n8-47).

Digital Opera	tor Display	Fault Name
		Input Phase Loss
PF	PF	Drive input power has an open phase or has a large imbalance of voltage between phases. Detected when L8-05 is set 1 (enabled).
Cau	se	Possible Solution
There is phase loss in th	e drive input power	 Check for wiring errors in the main circuit drive input power. Correct the wiring.
There is loose wiring in the drive input power terminals		 Ensure the terminals are tightened properly. Apply the tightening torque as specified in this manual. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 155</i> for details.
There is excessive fluctuation in the drive input power voltage		 Check the voltage from the drive input power. Review the possible solutions for stabilizing the drive input power.
There is poor balance between voltage phases		Stabilize drive input power or disable phase loss detection.
The main circuit capacitors are worn		 Check the maintenance time for the capacitors (U4-05). Replace the main capacitor(s) if U4-05 is greater than 90%. For instructions on replacing the capacitor(s), contact Yaskawa or a Yaskawa representative.
		Check for problems with the drive input power. If drive input power appears normal but the alarm continues to occur, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.

Digital Operator Display		Fault Name
PG0	l PGo l	PG Disconnect (for any control modes using a PG option card)
, , , ,		No PG pulses are received for longer than the time set to F1-14.
Cause		Possible Solution
PG cable is disconnected		Reconnect the cable.
PG cable wiring is wrong		Correct the wiring.
PG has no power		Check the power line to the PG encoder.
PG encoder brake is clamped shut		Ensure the motor brake releases properly.

Digital Operator Display		Fault Name
0C_U	Pirak PGoH	PG Hardware Fault (detected when using a PG-X3 option card)
ruon		PG cable is not connected properly.
Cause		Possible Solution
PG cable is disconnected		Reconnect the cable and check the setting of F1-20.

Digital Operator Display		Fault Name
r.F	rF	Braking Resistor Fault
		The resistance of the braking resistor is too low.
Cause		Possible Solution
The proper braking resistor option has not been installed		Select a braking resistor option that it fits the drive braking transistor specification.
A regenerative converter, regenerative unit, or braking unit is being used and the $\oplus 1$ or $\oplus 3$ terminal is connected to \ominus terminal		Set L8-55 to 0 to disable the braking transistor protection selection.

Digital Operator Display		Fault Name
r H	rH	Braking Resistor Overheat
		Braking resistor protection was triggered. Fault detection is enabled when L8-01 = 1 (disabled as a default).
Cau	se	Possible Solution
		Check the load, deceleration time, and speed.
Deceleration time is too		Reduce the load inertia.
regenerative energy is f	lowing back into the	• Increase the deceleration times (C1-01 to C1-08).
		• Replace the dynamic braking option with a larger device that can handle the power that is discharged.
The duty cycle is too high		Check the duty cycle. Maximum of 3% duty cycle is available when L8-01 = 1.
Excessive braking inertia		Recalculate braking load and braking power. Reduce the braking load by adjusting braking resistor settings.
The braking operation duty cycle is too high		Check the braking operation duty cycle. Braking resistor protection for ERF-type braking resistors (L8-01 = 1) allows a braking duty cycle of maximum 3%.
The proper braking resistor has not been		Check the specifications and conditions for the braking resistor device.
installed		Select the optimal braking resistor.

Note:

The magnitude of the braking load trips the braking resistor overheat alarm, NOT the surface temperature. Using the braking resistor more frequently than its rating permits will trip the alarm even when the braking resistor surface is not very hot.

Digital Operator Display		Fault Name
rr		Dynamic Braking Transistor
	rr	The built-in dynamic braking transistor failed.
Cause		Possible Solution
The braking transistor is damaged		Cycle power to the drive and check for reoccurrence of the fault.
The control circuit is damaged		• Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.

Digital Operator Display		Fault Name
5.0	gC.	Output Short Circuit or IGBT Fault
<1>	SC	Short circuit or ground fault is detected.
Cause		Possible Solution

The drive is damaged	Check the drive output side short circuit for a broken output transistor B1 and U/T1, V/T2, W/T3 and U/T1, V/T2, W/T3 Contact your Yaskawa representative or nearest Yaskawa sales office.
Motor has been damaged from overheat or the motor insulation has been weakened.	Check the motor insulation resistance and replace the motor if continuity is detected.
The cable is damaged and is coming into contact with something causing a short circuit.	Check the motor power cable and repair any short circuits.
Hardware fault.	A short circuit or grounding fault on the drive output side has damaged the output transistors. Make sure drive output is not shorted as follows: $B1 \leftarrow \rightarrow U$, V , $W \leftarrow \leftarrow \rightarrow U$, V , W The above short circuit will damage the output transistors. Contact your Yaskawa representative or sales offices for assistance.

<1> Available in drive software versions PRG: 1015 and later.

Digital Operator Display		Fault Name
58-	SEr	Too Many Speed Search Restarts
JL'		The number of Speed Search restarts exceeded the value set to b3-19.
Cau	se	Possible Solution
		Reduce the detection compensation gain during Speed Search (b3-10).
Parameters related to Sp	eed Search are set to	• Increase the current level when attempting Speed Search (b3-17).
the wrong values		• Increase the detection time during Speed Search (b3-18).
		Repeat Auto-Tuning.
The motor is coasting in the opposite direction of the Run command		Set b3-14 to 1 to enable Bi-Directional Speed Search.

Digital Operator Display		Fault Name
Sr _o	STo	Pull-Out Detection
Ji U		Motor pull out or step out has occurred. Motor has exceeded its pull-out torque.
Cau	se	Possible Solution
The wrong motor gode is	a sat (Vaslzavia motors	• Enter the correct motor code for the PM being used into E5-01.
The wrong motor code is set (Yaskawa motors only)		• For special-purpose motors, enter the correct data to all E5 parameters according to the test report provided for the motor.
Load is too heavy		Increase the load inertia for PM motor (n8-55).
		• Increase the pull-in current during accel/decel (n8-51).
Load is too neavy		Reduce the load.
		Increase the motor or drive capacity.
Load inertia is too heavy		Increase the load inertia for PM motor (n8-55).
Acceleration and deceleration times are too		• Increase the acceleration and deceleration times (C1-01 through C1-08).
short		Increase the S-curve acceleration and deceleration times (C2-01).
Speed response is too slow		Increase the load inertia for PM motor (n8-55).

Digital Operator Display		Fault Name
5uE	SvE	Zero Servo Fault
		Position deviation during zero servo.
Cause		Possible Solution
Torque limit is set too low		Set the torque limit to an appropriate value using parameters L7-01 to L7-04.
Excessive load torque		Reduce the amount of load torque.
Electrical signal interference along PG encoder wiring		Check the PG signal for electrical signal interference.

Digital Operator Display		Fault Name
ГН _о THo	Thermistor Disconnect	
<1>	1110	The thermistor that detects motor temperature has become disconnected.
Cause		Possible Solution
The motor thermistor is not connected properly.		Check the thermistor wiring.

Digital Operator Display		Fault Name
UL 3	UL3	Undertorque Detection 1
		The current has fallen below the minimum value set for torque detection (L6-02) for longer than the allowable time (L6-03).
Cause		Possible Solution
Parameter settings are not appropriate for the load		Check the settings of parameters L6-02 and L6-03.
There is a fault on the machine side		Check the load for any problems.

Digital Operator Display		Fault Name
ULY	UL4	Undertorque Detection 2
		The current has fallen below the minimum value set for torque detection (L6-05) for longer than the allowable time (L6-06).
Cause		Possible Solution
Parameter settings are not appropriate for the load		Check L6-05 and L6-06 settings
There is a fault on the machine side		Check the load for any problems.

Digital Operator Display		Fault Name
UL5 UL5		Mechanical Weakening Detection 2
UL J	ULS	The operation conditions matched the conditions set to L6-08.
Cause		Possible Solution
Undertorque was detected and matched the conditions for mechanical loss detection set to L6-08		Check the load side for any problems.

Digital Operator Display		Fault Name
Unb[UnbC	Current Unbalance
<1>	Unde	Current flow has become unbalanced.
Cause		Possible Solution
The internal current sensor has detected a current unbalance situation.		Check wiring
		Check for damaged transistors.
		Check for short circuits or grounding problems on the connected motor.

Digital Operator Display		Fault Name
		DC Bus Undervoltage
		One of the following conditions occurred while the drive was running:
		Voltage in the DC bus fell below the undervoltage detection level (L2-05).
Uo I	Uv1	For 200 V class drives: approximately 190 V
		• For 400 V class drives: approximately 380 V (350 V when E1-01 is less than 400)
		For 600 V class drives: approximately 475 V
		The fault is output only if L2-01 is set to 0 or 1 and the DC bus voltage has fallen below the level set to L2-05 for longer than the time set to L2-02.
Cau	se	Possible Solution
Input power phase loss		The main circuit drive input power is wired incorrectly.
		Correct the wiring.
One of the drive input no	ower wiring terminals	Ensure there are no loose terminals.
One of the drive input power wiring terminals is loose		• Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 155</i> for details.
There is a problem with the voltage from the drive input power		Check the voltage.
		Correct the voltage to be within the range listed in drive input power specifications.
		• If there is no problem with the power supply to the main circuit, check for problems with the main circuit magnetic contactor.
The power has been interrupted		Correct the drive input power.

The main circuit capacitors are worn	 Check the maintenance time for the capacitors (U4-05). Replace either the control board or the entire drive if U4-05 exceeds 90%. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.
The relay or contactor on the soft-charge bypass relay is damaged	 Cycle power to the drive and see if the fault reoccurs. Check monitor U4-06 for the performance life of the soft-charge bypass relay. Replace either the control board or the entire drive if U4-06 exceeds 90%. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.

Digital Operator Display		Fault Name
Uu2	Uv2	Control Power Supply Voltage Fault
UUL	0.002	Voltage is too low for the control drive input power.
Cau	se	Possible Solution
In drive models 2A0004 to 2A0056 or 4A0002 to 4A0031, L2-02 was changed from its default value without installing a Momentary Power Loss Ride-Thru unit		Correct the setting to L2-02 or install an optional Momentary Power Loss Ride-Thru unit.
Control power supply wiring is damaged		Cycle power to the drive. Check if the fault reoccurs.
		• If the problem continues, replace the control board, the entire drive, or the control power supply. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.
Internal circuitry is damaged		Cycle power to the drive. Check if the fault reoccurs.
		• If the problem continues, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.

Digital Operator Display		Fault Name
Uu 3	Uv3	Undervoltage 3 (Soft-Charge Bypass Relay Fault)
003	0.03	The soft-charge bypass relay failed.
Cause		Possible Solution
		Cycle power to the drive and see if the fault reoccurs.
		Check monitor U4-06 for the performance life of the soft-charge bypass relay.
		• Replace either the control board or the entire drive if U4-06 exceeds 90%. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.

Digital Operator Display		Fault Name
Uu Y	Uv4	Gate Drive Board Undervoltage
<1>	074	Voltage drop in the gate drive board circuit
Cau	se	Possible Solution
Not enough power is being supplied to the gate drive board.		
		• If the problem continues, replace either the gate drive board or the entire drive. For instructions on replacing the gate drive board, contact Yaskawa or a Yaskawa representative.

Digital Operator Display		Fault Name
uoF	voF	Output Voltage Detection Fault
001	VOF	Problem detected with the voltage on the output side of the drive.
Cause		Possible Solution
Hardware is damaged. Internal drive module MC / FAN overheat protection circuit board is due to abnormal ambient operating power.		 Lower ambient temperature. Replace the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.

6.5 Alarm Detection

◆ Alarm Codes, Causes, and Possible Solutions

Alarms are drive protection functions that do not necessarily cause the drive to stop. After removing the cause of an alarm, the drive will return to the same status is was before the alarm occurred.

When an alarm has been triggered, the ALM light on the digital operator display blinks and the alarm code display flashes. If a multi-function output is set for an alarm ($H2-\Box\Box=10$), that output terminal will be triggered.

Note:

If a multi-function output is set to close when an alarm occurs (H2- $\Box\Box$ = 10), it will also close when maintenance periods are reached, triggering alarms LT-1 through LT-4 (triggered only if H2- $\Box\Box$ = 2F).

Table 6.15 Alarm Codes, Causes, and Possible Solutions

Digital Operator Display		Minor Fault Name
8Er	AEr	Station Address Setting Error (CC-Link, CANopen, MECHATROLINK)
1161	AEI	Option card node address is outside of the acceptable setting range.
Cause		Possible Solutions
Station number is set outside the possible		• Set parameter F6-10 to the proper value when using a CC-Link option.
setting range.		• Set parameter F6-35 to the proper value when using a CANopen option.

Digital Operator Display			Minor Fault Name
66	bb	Baseblock	
UU		Drive outpu	t interrupted as indicated by an external baseblock signal.
Cause			Possible Solutions
External baseblock signal was entered via one of the multi-function input terminals (S1 to S8).		Check exter	nal sequence and baseblock signal input timing.
		Note:	Baseblock alarm "bb" will not activate a digital output programmed for minor fault $H2-0\square = 10$. Set $H2-0\square = 8$ or $1B$ to activate a digital output for "bb".

Digital Operator Display		Minor Fault Name
h - ! h - I		Braking Transistor Overload Fault
601	boL	The braking transistor in the drive has been overloaded.
Cause		Possible Solutions
The proper braking resistor has not been installed.		Select the proper braking resistor.

Digital Operator Display		Minor Fault Name
		Option Communication Error
<i>6U5</i>	bUS	The connection was lost after initial communication was established.
		Assign a Run command frequency reference to the option.
Caus	e	Possible Solutions
Comment in the land		Check for faulty wiring.
Connection is broken o stopped communicating		Correct the wiring.
stopped communicating	>•	Check for disconnected cables and short circuits. Repair as needed.
Option is damaged.		If there are no problems with the wiring and the fault continues to occur, replace the option.
The option is not properly connected to the		• The connector pins on the option are not properly lined up with the connector pins on the drive.
drive.		Reinstall the option.
		Check options available to minimize the effects of noise.
		Take steps to counteract noise in the control circuit wiring, main circuit lines and ground wiring.
		Try to reduce noise on the controller side.
A data error occurred due to noise.		Use surge absorbers on magnetic contactors or other equipment causing the disturbance.
		• Use recommended cables or some other type of shielded line. Ground the shield to the controller side or on the input power side.
		• Separate the wiring for communication devices from the drive input power lines. Install an EMC noise filter to the drive input power.

Digital Operator Display		Minor Fault Name
CALL	CALL	Serial Communication Transmission Error
ניוננ	CALL	Communication has not yet been established.
Caus	e	Possible Solutions
Communications wiring	g is faulty, there is a	Check for wiring errors.
Communications wiring short circuit, or someth	ing is not connected	Correct the wiring.
properly.		Check for disconnected cables and short circuits. Repair as needed.
Programming error on the master side.		Check communications at start-up and correct programming errors.
		Perform a self-diagnostics check.
Communications circuitry is damaged.		• If the problem continues, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.
Termination resistor setting is incorrect.		Install a termination resistor at both ends of a communication line. Set the internal termination resistor switch correctly on slave drives. Place DIP switch S2 to the ON position.

Digital Operator Display		Minor Fault Name
£E CE	MEMOBUS/Modbus Communication Error	
	CE	Control data was not received correctly for two seconds.
Caus	se	Possible Solutions
		Check options available to minimize the effects of noise.
		Take steps to counteract noise in the control circuit wiring, main circuit lines, and ground wiring.
		Reduce noise on the controller side.
A data error occurred o	lue to noise.	• Use surge absorbers for the magnetic contactors or other components that may be causing the disturbance.
		• Use only recommended shielded line. Ground the shield on the controller side or on the drive input power side.
		• Separate all wiring for communication devices from drive input power lines. Install an EMC noise filter to the drive input power supply.
Communication protoc	al is incompatible	Check the H5 parameter settings and the protocol setting in the controller.
Communication protoc	of is incompatible.	Ensure settings are compatible.
The CE detection time	(H5-09) is set	Check the PLC.
shorter than the time re	equired for a	Change the software settings in the PLC.
communication cycle t	o take place.	Set a longer CE detection time using parameter H5-09.
Incompatible PLC software settings or		Check the PLC.
there is a hardware pro		Remove the cause of the error on the controller side.
Communications cable	is disconnected or	Check the connector to make sure the cable has a signal.
damaged.		Replace the communications cable.

Digital Operator Display		Minor Fault Name
[-5[CrST	Cannot Reset
Cause		Possible Solutions
Fault reset was being executed when a Run command was entered.		 Ensure that a Run command cannot be entered from the external terminals or option during fault reset. Turn off the Run command.

Digital Operator Display		Minor Fault Name
6.36	СуС	MECHATROLINK Comm. Cycle Setting Error
		Comm. Cycle Setting Error was detected.
Cause		Possible Solutions
The controller is using a comm. cycle beyond the allowable setting range for the MECHATROLINK option.		Set the comm. cycle for the upper controller within the allowable setting range for the MECHATROLINK option.

Digital Operator Display		Minor Fault Name
dEu	dEv	Speed Deviation (when using a PG option card and OLV/PM without PG)
		The deviation between the speed reference and speed feedback is greater than the setting in F1-10 for longer than the time in F1-11.
Cause		Possible Solutions
Load is too heavy		Reduce the load.

Acceleration and deceleration times are set too short.	Increase the acceleration and deceleration times (C1-01 through C1-08).
The load is locked up.	Check the machine.
Parameter settings are inappropriate.	Check the settings of parameters F1-10 and F1-11
Incorrect speed feedback scaling when using terminal RP as speed feedback input in V/f Control.	 Set H6-02 to value of the speed feedback signal frequency when the motor runs at the maximum speed. Adjust the speed feedback signal using parameters H6-03 through H6-05. Make sure the speed feedback signal frequency does not exceed the maximum input frequency of terminal RP.
The motor brake engaged.	Ensure the brake releases properly.

Digital Operator Display		Minor Fault Name
dnE	dnE	Drive Disabled
Cause		Possible Solutions
"Drive Enable" is set to a multi-function contact input (H1- $\square\square$ = 6A) and that signal was switched off.		Check the operation sequence.

Digital Operator Display		Minor Fault Name
EF	EF	Forward/Reverse Run Command Input Error
		Both forward run and reverse run closed simultaneously for longer than 0.5 s.
Cause		Possible Solutions
		Check the forward and reverse command sequence and correct the problem.
Sequence error		Note: When minor fault EF detected, motor ramps to stop.

Digital Operator Display		Minor Fault Name
EF0	EF0	Option Card External Fault
Cro		An external fault condition is present.
Cause		Possible Solutions
An external fault was received from the PLC with F6-03 set to 3, which allows the drive to continue running after an external fault occurs.		
There is a problem with the PLC program.		Check the PLC program and correct problems.

Digital Operator Display		Minor Fault Name
EF I	EF1	External Fault (Input Terminal S1)
		External fault at multi-function input terminal S1.
EF2	EF2	External fault (input terminal S2)
	EF2	External fault at multi-function input terminal S2.
EF3	EF3	External fault (input terminal S3)
	EF3	External fault at multi-function input terminal S3.
EFY	EF4	External fault (input terminal S4)
[EF4	External fault at multi-function input terminal S4.
EF5	EF5	External fault (input terminal S5)
		External fault at multi-function input terminal S5.
EF 5	EE(External fault (input terminal S6)
L	EF6	External fault at multi-function input terminal S6.
<i>EF7</i>	EF7	External fault (input terminal S7)
		External fault at multi-function input terminal S7.
EF8	EF8	External fault (input terminal S8)
cro	EF8	External fault at multi-function input terminal S8.
Cause		Possible Solutions
An external device has tripped an alarm function.		Remove the cause of the external fault and reset the multi-function input value.

Wiring is incorrect.	 Ensure the signal lines have been connected properly to the terminals assigned for external fault detection (H1-□□ = 2C to 2F). Reconnect the signal line.
Multi-function contact inputs are set	• Check if the unused terminals have been set for H1- $\square\square$ = 2C to 2F (External Fault).
incorrectly.	Change the terminal settings.

Digital Operator Display		Minor Fault Name
FbH	FbH	Excessive PID Feedback
		The PID feedback input is higher than the level set to b5-36 for longer than the time set to b5-37, and b5-12 is set to 1 or 4.
Cause		Possible Solutions
Parameter settings for b5-36 and b5-37 are incorrect.		Check parameters b5-36 and b5-37.
PID feedback wiring is faulty.		Correct the wiring.
Feedback sensor has malfunctioned.		Check the sensor and replace it if damaged.
Feedback input circuit is damaged.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

Digital Operator Display		Minor Fault Name
FbL	FbL	PID Feedback Loss
, 00		The PID feedback input is lower than the level set to b5-13 for longer than the time set to b5-14.
Cause		Possible Solutions
Parameter settings for b5-13 and b5-14 are incorrect.		Check parameters b5-13 and b5-14.
PID feedback wiring is faulty.		Correct the wiring.
Feedback sensor has malfunctioned.		Check the sensor and replace it if damaged.
Feedback input circuit is damaged.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

Digital Operator Display		Minor Fault Name
H65	Hbb	Safe Disable Signal Input <1>
1100		Both Safe Disable Input channels are open.
Cause		Possible Solutions
Both Safe Disable Inputs H1 and H2 are open.		Check signal status at the input terminals H1 and H2.
		Check the Sink/Source Selection for the digital inputs.
		• If the Safe Disable function is not utilized, determine if terminals H1-HC, and H2-HC are linked.
Internally, both Safe Disable channels are broken.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

<1> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Digital Operator Display		Minor Fault Name
HhhE	HbbF	Safe Disable Signal Input <1>
11001		One Safe Disable channel is open while the other channel is closed.
Cause		Possible Solutions
The signals to the Safe Disable inputs are wrong or the wiring is incorrect.		Check signal status at the input terminals H1 and H2. If the Safe Disable function is not utilized, terminals H1-HC, and H2-HC must be linked.
One of the Safe Disable channels is faulty.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

<1> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Digital Operator Display		Minor Fault Name
HER	l HCA	Current Alarm
		Drive current exceeded overcurrent warning level (150% of the rated current).
Cause		Possible Solutions
Load is too heavy.		Reduce the load for applications with repetitive operations (i.e., stops and starts), or replace the drive.

Acceleration and deceleration times are too short.	 Calculate the torque required during acceleration and for the inertia moment. If the torque level is not right for the load, take the following steps: Increase the acceleration and deceleration times (C1-01 through C1-08). Increase the capacity of the drive.
A special-purpose motor is being used, or the drive is attempting to run a motor greater than the maximum allowable capacity.	 Check the motor capacity. Use a motor appropriate for the drive. Ensure the motor is within the allowable capacity range.
The current level increased due to Speed Search after a momentary power loss or while attempting to perform a fault restart.	The alarm will only appear briefly. There is no need to take action to prevent the alarm from occurring in such instances.

Digital Operator Display		Minor Fault Name	
		Cooling Fan Maintenance Time	
15-1	LT-1	The cooling fan has reached its expected maintenance period and may need to be replaced.	
		Note: An alarm output (H2- $\square\square$ = 10) will only be triggered if both (H2- $\square\square$ = 2F and H2- $\square\square$ = 10) are set.	
Cause		Possible Solutions	
The cooling fan has reached 90% of its expected performance life.		Replace the cooling fan and set o4-03 to 0 to reset the Maintenance Monitor.	

Digital Operator Display		Minor Fault Name
LF-2	LT-2	Capacitor Maintenance Time
		The main circuit and control circuit capacitors are nearing the end of their expected performance life.
		Note: An alarm output (H2- $\square\square$ = 10) will only be triggered if H2- $\square\square$ = 2F.
Cause		Possible Solutions
The main circuit and control circuit capacitors have reached 90% of their expected performance lives.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

Digital Operator Display		Minor Fault Name
		Soft Charge Bypass Relay Maintenance Time
LT-3	LT-3	The DC bus soft charge relay is nearing the end of its expected performance life.
		Note: An alarm output (H2- $\square\square$ = 10) will only be triggered if H2- $\square\square$ = 2F.
Cause		Possible Solutions
The DC bus soft charge relay has reached 90% of expected performance life.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

Digital Operator Display		Minor Fault Name
		IGBT Maintenance Time (50%)
L	LT-4	IGBTs have reached 50% of their expected performance life.
		Note: An alarm output (H2- $\square\square$ = 10) will only be triggered if H2- $\square\square$ = 2F.
Cause		Possible Solutions
IGBTs have reached 50% of their expected performance life.		Check the load, carrier frequency, and output frequency.

Digital Operator Display		Minor Fault Name
οΗ	оН	Heatsink Overheat
		The temperature of the heatsink exceeded the overheat pre-alarm level set to L8-02 (90-100 °C). Default value for L8-02 is determined by drive capacity (o2-04).
Cause		Possible Solutions
Surrounding temperature is too high		Check the surrounding temperature.
		Improve the air circulation within the enclosure panel.
		Install a fan or air conditioner to cool surrounding area.
		Remove anything near drive that may cause extra heat.

Internal cooling fan has stopped.	 Replace the cooling fan. Refer to Cooling Fan Replacement: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032 on page 487. After replacing the drive, set parameter o4-03 to 0 to reset the cooling fan operation time.
	• Provide proper installation space around the drive as indicated in the manual. <i>Refer to Installation Orientation and Spacing on page 54</i> for details.
Airflow around the drive is restricted.	• Allow for the proper space and ensure that there is sufficient circulation around the control panel.
	Check for dust or other foreign materials clogging the cooling fan.
	Clear debris caught in the fan that restricts air circulation.

Digital Operator Display		Minor Fault Name
oH2	оН2	Drive Overheat Warning
		"Drive Overheat Warning" was input to a multi-function input terminal, S1 through S8 (H1-□□= B).
Cause		Possible Solutions
An external device triggered an overheat warning in the drive.		Search for the device that tripped the overheat warning. Remove the cause of the problem.

Digital Operator Display		Minor Fault Name
	Motor Overheat	
oH3	οН3 оН3	The motor overheat signal entered to a multi-function analog input terminal exceeded the alarm level (H3-02, H3-06 or H3-10 = E).
Caus	se	Possible Solutions
Motor thermostat wiring is faulty (PTC input).		Repair the PTC input wiring.
There is a fault on the	machine side (e.g.,	Check the status of the machine.
the machine is locked t	ıp).	Remove the cause of the fault.
		Check the load size, accel/decel times, and cycle times.
		Decrease the load.
		• Increase accel and decel times (C1-01 to C1-08).
Motor has overheated.		• Adjust the preset V/f pattern (E1-04 through E1-10). This involves reducing E1-08 and E1-10.
		Note: Refrain from lowering E1-08 and E1-10 excessively to prevent a reduction in load tolerance at low speeds.
		Check the motor-rated current.
		• Enter motor-rated current on motor nameplate (E2-01).
		Ensure the motor cooling system is operating normally.
		Repair or replace the motor cooling system.

Digital Operator Display		Minor Fault Name
oHS <1>	оН5	Motor Overheat (NTC Input)
		The motor temperature exceeded the level set to L1-16 (or L1-18 for motor 2)
Cause		Possible Solutions
Motor has overheated.		Reduce the load.
		Check the ambient temperature.

Digital Operator Display		Minor Fault Name
oL3	oL3	Overtorque 1
		Drive output current (or torque in OLV, CLV, AOLV/PM, and CLV/PM) was greater than L6-02 for longer than the time set to L6-03.
Cause		Possible Solutions
Inappropriate parameter settings.		Check parameters L6-02 and L6-03.
There is a fault on the machine side (e.g., the machine is locked up).		Check the status of the machine. Remove the cause of the fault.

Digital Operator Display		Minor Fault Name
		Overtorque 2
oLY		Drive output current (or torque in OLV, CLV, AOLV/PM, CLV/PM) was greater than L6-05 for longer than the time set to L6-06.

Cause	Possible Solutions
Parameter settings are not appropriate.	Check parameters L6-05 and L6-06.
There is a fault on the machine side (e.g., the machine is locked up).	 Check the status of the machine being used. Remove the cause of the fault.

Digital Operator Display		Minor Fault Name
oL5	0L5	Mechanical Weakening Detection 1
		Overtorque occurred, matching the conditions specified in L6-08.
Cause		Possible Solutions
Overtorque occurred, triggering the mechanical weakening level set to L6-08.		Check for the cause of mechanical weakening.

Digital Operator Display		Minor Fault Name
o5	oS	Overspeed
0.0		The motor speed feedback exceeded the F1-08 setting.
Cause		Possible Solutions
Overshoot is occurring.		• Increase the settings for C5-01 (Speed Control Proportional Gain 1) and reduce C5-02 (Speed Control Integral Time 1).
		If using a Closed Loop Vector mode enable Feed Forward Control and perform Inertia Auto-Tuning.
Incorrect speed feedback scaling if terminal RP is used as speed feedback input in V/f control		 Set H6-02 to value of the speed feedback signal frequency when the motor runs at the maximum speed. Adjust the input signal using parameters H6-03 through H6-05.
Incorrect PG pulse number has been set		Check and correct parameter F1-01.
Inappropriate parameter settings.		Check the setting for the overspeed detection level and the overspeed detection time (F1-08 and F1-09).

Digital Operator Display		Minor Fault Name
		DC Bus Overvoltage
		The DC bus voltage exceeded the trip point.
Oυ	ov	• For 200 V class drives: approximately 410 V
		• For 400 V class drives: approximately 820 V (740 V when E1-01 is less than 400)
		For 600 V class drives: approximately 1040 V
Caus	se	Possible Solutions
Surge voltage present i	n the drive input	Install a DC link choke or an AC reactor.
power.	ii tile tirve iliput	Voltage surge can result from a thyristor convertor and a phase advancing capacitor operating on the same drive input power system.
The motor is short-circ	uited.	Check the motor power cable, relay terminals and motor terminal box for short circuits.
Ground current has overcharged the main circuit capacitors via the drive input power.		Correct grounding shorts and turn the power back on.
		Review possible solutions for handling electrical signal interference.
Electrical signal interfe	erence causes the	Review section on handling electrical signal interference and check control circuit lines, main circuit lines and ground wiring.
drive to operate incorrectly.		• If the magnetic contactor is identified as a source of electrical signal interference, install a surge protector to the MC coil.
		Set number of fault restarts (L5-01) to a value other than 0.
PG cable is disconnected.		Reconnect the cable.
PG cable wiring is wrong.		Correct the wiring.
Electrical signal interference along PG encoder wiring.		Separate PG wiring from the source of the interference (often output wiring from the drive).

Digital Operator Display		Minor Fault Name
PASS PASS		MEMOBUS/Modbus Comm. Test Mode Complete
Cause		Possible Solutions
MEMOBUS/Modbus test has finished normally.		This verifies that the test was successful.

Digital Operator Display		Minor Fault Name
PGo	PGo	PG Disconnect (for Control Mode with PG)
		Detected when no PG pulses are received for a time longer than setting in F1-14.

Cause	Possible Solutions
PG cable is disconnected.	Reconnect the cable.
PG cable wiring is wrong.	Correct the wiring.
PG encoder does not have enough power.	Make sure the correct power supply is properly connected to the PG encoder.
Brake is holding the PG.	Ensure the brake releases properly

Digital Operator Display		Minor Fault Name
РБоН	l PGoH	PG Hardware Fault (detected when using a PG-X3 option card)
		PG cable has become disconnected.
Cause		Possible Solutions
PG cable is disconnected.		Reconnect the cable and check the setting of F1-20.

Digital Operator Display		Minor Fault Name
rUn rUn		Motor Switch during Run
run	TOII	A command to switch motors was entered during run.
Cause		Possible Solutions
A motor switch command was entered during run.		Change the operation pattern so that the motor switch command is entered while the drive is stopped.

Digital Operator Display		Minor Fault Name	
		MEMOBUS/Modbus Communication Test Mode Error	
5 <i>E</i>	SE	Note:	This alarm will not trigger a multi-function output terminal that is set for alarm output $(H2-\Box\Box=10)$.
Cause			Possible Solutions
A digital input set to 67H (MEMOBUS/ Modbus test) was closed while the drive was running.		Stop the dri	ve and run the test again.

Digital Operator Display		Minor Fault Name
ΓΗο	ТНо	Thermistor Disconnect
<1>	1110	The thermistor used to detect motor temperature has become disconnected.
Cause		Possible Solutions
The motor thermistor is not connected properly.		Check the thermistor wiring.

Digital Operator Display		Minor Fault Name
r-er	TrPC	IGBT Maintenance Time (90%)
1 7 7 1		IGBTs have reached 90% of their expected performance life.
Cause		Possible Solutions
IGBTs have reached 90% of their expected performance life.		Replace the drive.

Digital Operator Display		Minor Fault Name	
_		Undertorque Detection 1	
UL3	UL3	Drive output current (or torque in OLV, CLV, AOLV/PM, and CLV/PM) less than L6-02 for longer than L6-03 time.	
Cause		Possible Solutions	
Inappropriate parameter settings.		Check parameters L6-02 and L6-03.	
Load has dropped or decreased significantly.		Check for broken parts in the transmission system.	

Digital Operator Display		Minor Fault Name
		Undertorque Detection 2
UL 4	UL4	Drive output current (or torque in OLV, CLV, AOLV/PM, and CLV/PM) less than L6-05 for longer than L6-06 time.
Cause		Possible Solutions

Inappropriate parameter settings.	Check parameters L6-05 and L6-06.	
The load has dropped or decreased significantly.	Check for broken parts in the transmission system.	

Digital Operator Display		Minor Fault Name	
		Undervoltage	
		One of the following conditions was true when the drive was stopped and a Run command was entered:	
Шп	Uv	DC bus voltage dropped below the level specified in L2-05.	
		Contactor to suppress inrush current in the drive was opened.	
		• Low voltage in the control drive input power. This alarm outputs only if L2-01 is not 0 and DC bus voltage is under L2-05.	
Caus	se	Possible Solutions	
Phase loss in the drive	input power.	Check for wiring errors in the main circuit drive input power. Correct the wiring.	
Lagaryining in the dri	va innut navvan	Ensure the terminals have been properly tightened.	
Loose wiring in the dri terminals.	ve input power	• Apply the tightening torque to the terminals as specified. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 155</i> .	
There is a problem with the drive input		Check the voltage.	
power voltage.		• Lower the voltage of the drive input power so that it is within the limits listed in the specifications.	
Drive internal circuitry is worn.		Check the maintenance time for the capacitors (U4-05).	
		• Replace either the control board or the entire drive if U4-05 exceeds 90%. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.	
The drive input power		Check for an alarm when the magnetic contactor, line breaker, and leakage breaker are closed.	
small and voltage drops when the power is switched on.		Check the capacity of the drive input power transformer.	
Air inside the drive is t	oo hot.	Check the temperature inside the drive.	
The CHARGE light is broken or disconnected.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.	

Digital Operator Display		Minor Fault Name
uoF	voF	Output Voltage Detection Fault
007		There is a problem with the output voltage.
Cause		Possible Solutions
Hardware is damaged.		Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

6.6 Operator Programming Errors

Operator Programming Error Codes, Causes, and Possible Solutions

An Operator Programming Error (oPE) occurs when a contradictory parameter is set or an individual parameter is set to an inappropriate value.

The drive will not operate until the parameter or parameters causing the problem are set correctly. An oPE, however, does not trigger an alarm or fault output. If an oPE occurs, investigate the cause and refer to *Table 6.16* for the appropriate action. When an oPE appears on the operator display, press the ENTER button to view U1-18 and see which parameter is causing the oPE.

Table 6.16 oPE Codes, Causes, and Possible Solutions

Digital Oper	ator Display	Error Name
oPE0 I	oPE01	Drive Capacity Setting Fault
01.01		Drive capacity and the value set to o2-04 do not match.
Ca	use	Possible Solutions
The drive model selection (o2-04) and not the same.	d the actual capacity of the drive are	Correct the value set to o2-04.

Digital Oper	rator Display	Error Name
0.0502	oPE02	Parameter Range Setting Error
orcuc		Use U1-18 to find parameters set outside the range.
Ca	use	Possible Solutions
Parameters were set outside the possi	ble setting range.	Set parameters to the proper values.
Note: When multiple errors occur simultaneously, other errors are given precedence over oPE02.		

D: ". I O	, D: 1	5 N	
Digital Oper	rator Display	Error Name	
		Multi-Function Input Selection Error	
oPE03	oPE03	A contradictory setting is assigned to multi-function contact inputs H1-01 to H1-08.	
Ca	use	Possible Solutions	
• The same function is assigned to tw	vo multi-function inputs.	Ensure all multi-function inputs are assigned to different functions.	
• Excludes "Not used" and "External	l Fault."	Re-enter the multi-function settings to ensure this does not occur.	
The Up command was set but the Dor (settings 10 vs. 11).	wn command was not, or vice versa	Properly set the functions that required for use in combination with other functions.	
The Up 2 command was set but the Do (settings 75 vs. 76).	own 2 command was not, or vice versa		
• Run/Stop command for a 2-wire sequence was set (H1-□□ = 42), but Forward/Reverse command (H1-□□ = 43) was not.		Properly set the functions that required for use in combination with other	
• "Drive Enable" is set to multi-function input S1 or S2 (H1-01 = 6A or H1-02 = 6A).		functions.	
Two of the following functions are se	et simultaneously:		
• Up/Down Command (10 vs. 11)			
• Up 2/Down 2 Command (75 vs. 76)		 Check if contradictory settings have simultaneously been assigned to the multi-function input terminals. Correct setting errors. 	
 Hold Accel/Decel Stop (A) 			
Analog Frequency Reference Samp	ole/Hold (1E)	Correct Setting errors.	
Offset Frequency 1, 2, 3 Calculation	ons (44, 45, 46)		
The Up/Down command (10, 11) and PID control (b5-01) are enabled simultaneously.		Set b5-01 to 0 to disable control PID or disable the Up/Down command.	

Settings for N.C. and N.O. input for the following functions were selected simultaneously:	
• External Search Command 1 and External Search Command 2 (61 vs. 62)	
• Fast Stop N.O. and Fast Stop N.C. (15 vs. 17)	
• KEB for Momentary Power Loss and High Slip Braking (65, 66, 7A, 7B vs. 68)	Check if contradictory settings have simultaneously been assigned to the multi-function input to region.
Motor Switch Command and Accel/Decel Time 2 (16 vs. 1A)	multi-function input terminals.
• KEB Command 1 and KEB Command 2 (65, 66 vs. 7A, 7B)	Correct setting errors.
• FWD Run Command (or REV) and FWD/REV Run Command (2-wire) (40, 41 vs. 42, 43)	
• External DB Command and Drive Enable (60 vs. 6A)	
• Motor Switch Command and Up 2/Down 2 Command (16 vs. 75, 76)	
One of the following settings was entered while H1- $\square\square$ = 2 (External Reference 1/2):	
• b1-15 = 4 (Pulse Train Input) but the pulse train input selection is not set for the frequency reference (H6-01 > 0)	
• b1-15 or b1-16 set to 3 but no option card is connected	
• Although b1-15 = 1 (Analog Input) and H3-02 or H3-10 are set to 0 (Frequency Bias)	Correct the settings for the multi-function input terminal parameters.
H2-□□ is set to 38 (Drive Enabled) and H1-□□ is not set to 6A (Drive Enable).	
H1-□□ is set to 7E (Direction Detection) and H6-01 is not set to 3 (for V/f Control with PG using terminal RP as speed feedback input).	
H1-□□ is set to 16 when using PG-RT3.	Correct the setting. PG-RT3 is not available for the application with Motor 2 selection.

Digital Oper	ator Display	Error Name
<i>₀₽ЕСЧ</i> оРЕО4		Initialization Required
Ca	use	Possible Solutions
The drive, control board, or terminal board have been replaced and the parameter settings between the control board and the terminal board no longer match.		Set A1-03 to 5550 to load the parameter settings stored in the terminal board to the drive. Initialize parameters after drive replacement by setting A1-03 to 2220 or 3330.

Digital Oper	rator Display	Error Name
oPE05	oPE05	Run Command/Frequency Reference Source Selection Error
Ca	use	Possible Solutions
Frequency reference is assigned to an option card ($b1-01 = 3$) and an input option card is not connected to the drive. The Run command is assigned to an option card ($b1-02 = 3$) and an input option card is not connected to the drive.		Personnest the input ention eard to the drive
		Reconnect the input option card to the drive.
Frequency reference is assigned to the terminal RP is not set for frequency reference.	e pulse train input (b1-01 = 4) and eference input (H6-01 > 0)	Set H6-01 to 0.
Although the digital card input is set $(F3-01 = 6)$, the data length is set for	for BCD special for a 5-digit input 8-bit or 12-bit (F3-03 = 0, 1).	Set F3-03 to 2 to set the input data for 16-bit.
 The following values have been set w The source of frequency reference (b1-01 = 3). The action for the analog card is se (F2-01 = 0). 		Properly set parameters.

Digital Operator Display		Error Name
oPE05	oPE06	Control Method Selection Error
0, 500		Correct the setting for the control method.
Cause		Possible Solutions
		Connect a PG option card.Correct the value set to A1-02.

Digital Oper	ator Display		Error Name
		Multi-Functi	ion Analog Input Selection Error
oPE01	oPE07	A contradict H3-10, or H3	ory setting is assigned to multi-function analog inputs H3-02, 3-06 and PID functions conflict.
Ca	use		Possible Solutions
At least two analog input terminals are	e set to the same function (i.e., at least	Change the s	ettings to H3-02, H3-10, and H3-06 so that functions no longer
two of these parameters have the same setting: H3-02, H3-10, or H3-06).		Note:	Both 0 (Frequency Reference Bias) and F (Not Used) can be set to H3-02, H3-10, or H3-06 simultaneously.
The following simultaneous contradictory settings:			
• H3-02, H3-10, or H3-06 = B (PID Feedback) while H6-01 (Pulse Train Input) = 1 (PID Feedback)			
• H3-02, H3-10, or H3-06 = C (PID Target Value) while H6-01 = 2 (pulse train input sets the PID target value)		Disable one	of the PID selections.
• H3-02, H3-10, or H3-06 = C (PID Target Value) while b5-18 = 1 (enables b5-19 as the target PID value)			
• H6-01 = 2 (PID target) while b5-18 (enables b5-19 as the target PID va			

Digital Operator Display		Error Name
		Parameter Selection Error
oPE08	oPE08	A function has been set that cannot be used in the motor control method selected.
Ca	use	Possible Solutions
Attempted to use a function that is no	t valid for the selected control mode.	Check the motor control method and the functions available.
In OLV, n2-02 is longer than n2-03		Adjust parameter values so n2-02 is shorter than n2-03.
In OLV, C4-02 is longer than C4-06		Adjust parameter values so C4-02 is shorter than C4-06.
In OLV/PM, parameters E5-02 to E5-	-07 are set to 0.	 Set the correct motor code in accordance with the motor being used (E5-01). When using a special-purpose motor, set E5-□□ in accordance with the test report provided.
The following settings have occurred in OLV/PM: • E5-03 does not equal 0 • E5-09 and E5-24 are both equal to 0, or neither equals 0		 Set E5-09 or E5-24 to the correct value, and set the other to 0. Set the motor rated current for PM to 0 (E5-03).
b1-14 (Phase Order Selection) is set to 1 (Switch phase order) when using a PG option card.		Correct the parameter settings.
In AOLV/PM High Frequency Injection minimum frequency (E1-09) is set low setting.	ion is disabled (n8-57 = 0) and the wer than $1/20$ of the base frequency	Correct the parameter settings.
Note: Use U1-18 to find paragiven precedence over		d setting range. When multiple errors occur simultaneously, other errors are

Digital Oper	ator Display	Error Name
		PID Control Selection Fault
oPE09	oPE09	PID control function selection is incorrect. Requires that PID control is enabled (b5-01 = 1 to 4).
Ca	use	Possible Solutions
 The following simultaneous contradic b5-15 is not set to 0.0 (PID Sleep F The stopping method is set to either with a timer (b1-03 = 2 or 3). 	, ,	 Set b5-15 to a value other than 0.0. Set the stopping method to coast to stop or ramp to stop (b1-03 = 0 or 1).
b5-01 is set to 1 or 2, enabling PID control, but the lower limit for the frequency reference (d2-02) is not set to 0 while reverse output is enabled (b5-11 = 1).		Correct the parameter settings.
b5-01 is set to 3 or 4, enabling PID control, but the lower limit for the frequency reference (d2-01) is not 0.		Correct the parameter settings.

Digital Operator Display		Error Name
		V/f Data Setting Error
oPE 10	<i>οΡΕ Ιΰ</i> οPΕ10	One or more of the parameters listed below are not set according to the formula:
		• E1-09 ≤ E1-07 < E1-06 ≤ E1-11 ≤ E1-04
		• $E3-09 \le E3-07 < E3-06 \le E3-11 \le E3-04$
Ca	use	Possible Solutions
V/f pattern setting error.		Correct the settings for E1-04, E1-06, E1-07, E1-09, and E1-11. For motor 2, correct E3-04, E3-06, E3-07, E3-09, and E3-11.

Digital Operator Display		Error Name
nPF I I	OC 11	Carrier Frequency Setting Error
01211	oPE11	Correct the setting for the carrier frequency.
Cause		Possible Solutions
The following simultaneous contradictory settings have occurred: C6-05 > 6 and C6-04 > C6-03 (carrier frequency lower limit is greater than the upper limit). If C6-05 \leq 6, the drive operates at C6-03.		Correct the parameter settings.
The upper and lower limits between C6-02 and C6-05 are contradictory.		

Digital Operator Display		Error Name
oPF 13	oPE13	Pulse Monitor Selection Error
0, 5, 13		Incorrect setting of monitor selection for pulse train (H6-06).
Ca	use	Possible Solutions
Scaling for the pulse train monitor is s set to 101, 102, 105, or 116.		Change scaling for the pulse train monitor or set H6-06 to 101, 102, 105, or 116.

Digital Operator Display		Error Name
		Torque Control Setting Error
oPE 15	oPE15	Parameter settings that are not allowed in combination with Torque Control have been set.
Ca	use	Possible Solutions
Torque Control is enabled (d5-01 = 1) while the Speed/Torque Control switch function is assigned to a digital input (H1- \square \square = 71).		
Either d5-01 is set to 1 to enable Torque Control, or the Speed/Torque Control switch is assigned to a digital input H1- $\Box\Box$ = 71, while at the same time:		
• Feed Forward is enabled (n5-01 = 1), or		Correct the parameter settings.
• Droop Control is enabled (b7-01 \neq 0), or		
Intelligent Stall Prevention or Intelligent Stall Prevention 2 is enabled $(L3-04 = 2 \text{ or } 5)$, or		
• A digital input is set for the power k	KEB 1 or KEB 2 (H1- $\square\square$ = 7A or 7B)	

Digital Oper	ator Display	Error Name
oPE 16	oPE16	Energy Savings Constants Error
Ca	use	Possible Solutions
In AOLV/PM, the automatically calculated energy saving coefficients are out of the allowable range.		Check and correct the motor data in E5 parameters.

Digital Operator Display		Error Name
oPE 18	oPE18	Online Tuning Parameter Setting Error
0, 5, 10		Parameters controlling online tuning are not set correctly.
Cause		Possible Solutions
One of the following errors occurred while online tuning was enabled in OLV $(A1-02=2)$:		
• E2-02 was set below 30% of the original default value		Set E2-02, E2-03, and E2-06 to the correct values.
• E2-06 was set below 50% of the original default value		
• E2-03 = 0		

6.6 Operator Programming Errors

Digital Operator Display		Error Name
nPF20	oPE20	PG-F3 Setting Error
טי כנט	OPE20	The encoder signal frequency is too high.
Cause		Possible Solutions
With the entered encoder resolution (F1-01), maximum output frequency		Set F1-01 to the correct encoder resolution.
(E1-04), and motor pole number (E5-04), the calculation encoder signal frequency exceeded 50 kHz (with PG-F3 option).		Reduce the maximum output frequency of the drive in parameter E1-04 so the encoder signal frequency at maximum speed is lower than 50 kHz.

6.7 Auto-Tuning Fault Detection

Auto-Tuning faults in this section are displayed on the digital operator and will cause the motor to coast to a stop. Auto-Tuning faults do not trigger a multi-function digital output set for fault or alarm output.

An End \square error on the digital operator display indicates Auto-Tuning has successfully completed with discrepancies in the calculations. Check the cause of the End \square error using the tables in this section and perform Auto-Tuning again after fixing the cause.

The drive may be used in the application if no cause can be identified despite the existence of an End \square error.

An Er error indicates that Auto-Tuning has not completed successfully. Check for the cause of the error using the tables in this section, and perform Auto-Tuning again after fixing the cause.

◆ Auto-Tuning Codes, Causes, and Possible Solutions

Table 6.17 Auto-Tuning Codes, Causes, and Possible Solutions

Digital Oper	ator Display	Error Name
End I	End1	Excessive V/f Setting (detected only during Rotational Auto-Tuning and displayed after Auto-Tuning is complete)
Ca	use	Possible Solutions
The torque reference Auto-Tuning.	exceeded 20% during	 Prior to Auto-Tuning, verify the information on the motor nameplate. Enter proper values from motor nameplate to parameters T1-03 to T1-05 and repeat Auto-Tuning.
The results from Auto-Tuning the no-load current exceeded 80%.		

Digital Oper	ator Display	Error Name
End2	End2	Motor Iron-Core Saturation Coefficient (detected only during Rotational Auto-Tuning and displayed after Auto-Tuning is complete)
Ca	use	Possible Solutions
Motor data entered di was incorrect.	uring Auto-Tuning	 Make sure the data entered to the T1 parameters match the information written on the motor nameplate. Restart Auto-Tuning and enter the correct information.
Results from Auto-Toparameter setting range core saturation coeffice E2-08) to temporary	ge, assigning the iron- cients (E2-07 and	 Check and correct faulty motor wiring. Disconnect the motor from machine and perform Rotational Auto-Tuning.

Digital Oper	ator Display	Error Name
End3	End3	Rated Current Setting Alarm (displayed after Auto-Tuning is complete)
Ca	use	Possible Solutions
The correct current ramotor nameplate was T1-04.	ating printed on the not entered into	 Check the setting of parameter T1-04. Check the motor data and repeat Auto-Tuning.

Digital Oper	ator Display	Error Name
End4	End4	Adjusted Slip Calculation Error
Ca	use	Possible Solutions
The calculated slip is	outside the allowable	Make sure the data entered for Auto-Tuning is correct.
range. • If possible, perform Rotational Auto-Tuning. If not possible, perform Stationary Auto-Tuning		• If possible, perform Rotational Auto-Tuning. If not possible, perform Stationary Auto-Tuning 2.

Digital Oper	ator Display	Error Name
End5	End5	Resistance Tuning Error
Ca	use	Possible Solutions
The calculated resistathe allowable range.	ance value is outside	 Double-check the data entered for the Auto-Tuning process. Check the motor and motor cable connection for faults.

Digital Oper	ator Display	Error Name
End6	End6	Leakage Inductance Alarm
Ca	use	Possible Solutions

	Double-check the data entered for the Auto-Tuning process.
A1-02 setting error.	• Check the setting of A1-02.
	Check the control mode and repeat Auto-Tuning.

Digital Oper	ator Display	Error Name
End7	End7	No-Load Current Alarm
Ca	use	Possible Solutions
The entered no-load outside the allowable		Check and correct faulty motor wiring.
Auto-Tuning results with the motor rated current		Double-check the data entered for the Auto-Tuning process.

Digital Oper	ator Display	Error Name
Er-01	Er-01	Motor Data Error
Ca	use	Possible Solutions
Motor data or data er Auto-Tuning was inc		 Check that the motor data entered to T1 parameters matches motor nameplate input before Auto-Tuning. Restart Auto-Tuning and enter the correct information.
Motor output power a current settings (T1-0 match.	and motor-rated 22 and T1-04) do not	 Check the drive and motor capacities. Correct the settings of parameters T1-02 and T1-04.
Motor rated current a current are inconsisted		 Check the motor rated current and no-load current. Correct the settings of parameters T1-04 and E2-03.
Base frequency and r (T1-05 and T1-07) do	notor rated speed o not match.	 Correct the settings of parameters T1-05 and T1-07. Check that the correct number of poles were entered to T1-06.

Digital Oper	ator Display	Error Name
Er-02	Er-02	Minor Fault
Ca	use	Possible Solutions
An alarm was trigger Tuning.	ed during Auto-	Exit the Auto-Tuning menu, check the alarm code, remove the alarm cause, and repeat Auto-Tuning.

Digital Operator Display		Error Name
Er-03	Er-03	STOP Button Input
Cause		Possible Solutions
Auto-Tuning canceled by pressing STOP button.		Auto-Tuning did not complete properly. Restart Auto-Tuning.

Digital Operator Display		Error Name
Er-04	Er-04	Line-to-Line Resistance Error
Ca	use	Possible Solutions
Motor data entered during Auto-Tuning was incorrect.		 Make sure the data entered to the T1 parameters match the information written on the motor nameplate. Restart Auto-Tuning and enter the correct information.
Results from Auto-Tuning are outside the parameter setting range or the tuning process took too long.		Check and correct faulty motor wiring.
Faulty motor cable or cable connection.		

Digital Operator Display		Error Name
Er-05	Er-05	No-Load Current Error
Ca	use	Possible Solutions
Motor data entered during Auto-Tuning was incorrect.		 Make sure the data entered to the T1 parameters match the information written on the motor nameplate. Restart Auto-Tuning and enter the correct information.
Results from Auto-Tuning are outside the parameter setting range or the tuning process took too long.		Check and correct faulty motor wiring. Perform Rotational Auto-Tuning.
The load was too high during Rotational Auto-tuning.		 Disconnect the motor from machine and restart Auto-Tuning. If motor and load cannot be uncoupled make sure the load is lower than 30%. If a mechanical brake is installed, make sure it is fully lifted during tuning.

Digital Operator Display		Error Name
Er-08	Er-08	Rated Slip Error
Ca	use	Possible Solutions
Motor data entered di was incorrect.	uring Auto-Tuning	 Make sure the data entered to the T1 parameters match the information written on the motor nameplate. Restart Auto-Tuning and enter the correct information.
Results from Auto-To parameter setting ran process took too long	ge or the tuning	Check and correct faulty motor wiring. Perform Rotational Auto-Tuning.
The load was too high during rotational Auto-tuning.		 Disconnect the motor from machine and restart Auto-Tuning. If motor and load cannot be uncoupled make sure the load is lower than 30%. If a mechanical brake is installed, make sure it is fully lifted during tuning.

Digital Operator Display		Error Name
Er-09	Er-09	Acceleration Error
Ca	use	Possible Solutions
The motor did not ac		• Increase the acceleration time (C1-01).
specified acceleration	n time.	Disconnect the machine from the motor if possible.
Torque limit when m	otoring is too low	Check L7-01 and L7-02 settings.
(L7-01 and L7-02).		• Increase the setting.
The load was too high during Rotational		• Disconnect the motor from machine and restart Auto-Tuning. If motor and load cannot be uncoupled make sure the load is lower than 30%.
Auto-Tuning.		If a mechanical brake is installed, make sure it is fully lifted during tuning.

Digital Operator Display		Error Name
Er - 10	Er-10	Motor Direction Error
Ca	use	Possible Solutions
The encoder signal lines are not properly connected to the drive.		Check and correct wiring to the PG encoder.
Motor direction and PG direction are opposite.		Check the motor speed monitor U1-05 while manually turning the motor forward. If the sign displayed is negative, change the setting of parameter F1-05.
The load pulled the motor in the opposite direction of the speed reference and the torque exceeded 100%.		Uncouple the motor from the load and restart Auto-Tuning.

Digital Operator Display		Error Name
Er-11	Er-11	Motor Speed Fault
Cause		Possible Solutions
Torque reference is too high		Increase the acceleration time (C1-01).
Torque reference is too high.		Disconnect the machine from the motor if possible.

Digital Operator Display		Error Name
Er - 12	Er-12	Current Detection Error
Car	use	Possible Solutions
One of the motor pha (U/T1, V/T2, W/T3).	ses is missing:	Check motor wiring and correct any problems.
The current exceeded the current rating of the drive.		 Check motor wiring for a short between motor lines. Close any magnetic contactors used between motors.
The current is too low.		Replace the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.
Attempted Auto-Tuning without motor connected to the drive.		Connect the motor and restart Auto-Tuning.
Current detection signal error.		Replace the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or your nearest sales representative.

6.7 Auto-Tuning		
_		_ ::
	ator Display	Error Name
Er - 13	Er-13	Leakage Inductance Error
Ca	use	Possible Solutions
Drive was unable to o	complete tuning for	Check all wiring and correct any mistakes.
leakage inductance w	rithin 300 seconds.	• Check the motor rated current value written on the motor nameplate and enter the correct value to T1-04.
Divital O	-tB'l	F M
	ator Display	Error Name
Er-14	Er-14	Motor Speed Error 2
Ca	use	Possible Solutions
The motor speed exce		
amplitude of speed re Tuning.	ference during Inertia	Reduce the ASR gain set to C5-01.
runing.		
Digital Oper	ator Display	Error Name
Er - 15	Er-15	Torque Saturation Error
Ca	use	Possible Solutions
	iched the torque limit	Increase the torque limits in L7-01 through L7-04 within reasonable limits.
set in L7-01 through		• Reduce the test signal amplitude in T3-01 and restart Auto-Tuning. If necessary, reduce the test signal
Tuning.	_,	frequency (T3-02) and restart Auto-Tuning.
Digital Oper	ator Display	Error Name
Er - 16	Er-16	Inertia Detection Error
Ca	use	Possible Solutions
The inertia identified	by the drive was	• Reduce the test signal amplitude in T3-01 and restart Auto-Tuning. If necessary, reduce the test signal
abnormally small or a		frequency (T3-02) and restart Auto-Tuning.
during Inertia Tuning	<u>.</u>	Check the basic motor inertia value entered to T3-03.
Digital Oper	ator Display	Error Name
Digital Operator Display		
Digital Oper	ato: Diopiay	Life Halle
Er - 17	Er-17	Reverse Prohibited Error
Er-17		
Er - 17 Ca Drive is prohibited from	Er-17 use om rotating the motor	Reverse Prohibited Error Possible Solutions
Er - 17 Ca Drive is prohibited from reverse while attention	Er-17 use om rotating the motor	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia
Er - 17 Ca Drive is prohibited from	Er-17 use om rotating the motor	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse.
Er - 17 Ca Drive is prohibited from reverse while attent Inertia Tuning.	Er-17 use om rotating the motor opting to perform	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning.
Er - 17 Ca Drive is prohibited from reverse while attention Tuning. Digital Oper	Er-17 use om rotating the motor npting to perform ator Display	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then pertorm Inertia Tuning. Error Name
Er - 17 Ca Drive is prohibited from reverse while attended in the Inertia Tuning. Digital Oper Er - 18	Er-17 use om rotating the motor opting to perform ator Display Er-18	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error
Er - 17 Ca Drive is prohibited from reverse while attended Inertia Tuning. Digital Oper Er - 18 Ca	Er-17 use om rotating the motor opting to perform ator Display Er-18 use	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then pertorm Inertia Tuning. Error Name
Er-17 Ca Drive is prohibited from reverse while attended in Tuning. Digital Oper Er-18 Ca The result of Back El	Er-17 use om rotating the motor opting to perform ator Display Er-18 use MF Constant Tuning	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions
Er - 17 Ca Drive is prohibited from reverse while attended Inertia Tuning. Digital Oper Er - 18 Ca	Er-17 use om rotating the motor opting to perform ator Display Er-18 use MF Constant Tuning	Reverse Prohibited Error Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error
Ca Drive is prohibited from reverse while attended Inertia Tuning. Digital Oper Er - 18 Ca The result of Back En (induced voltage) excessetting range.	Er-17 use om rotating the motor opting to perform eator Display Er-18 use MF Constant Tuning to the motor opting to perform	Possible Solutions • Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. • Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.
Er-17 Ca Drive is prohibited from reverse while attended in reverse while attended in the second of	Er-17 use om rotating the motor opting to perform ator Display Er-18 use MF Constant Tuning peeds the allowable ator Display	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name
Er - 17 Ca Drive is prohibited from reverse while attended in revers	Er-17 use om rotating the motor opting to perform ator Display Er-18 use MF Constant Tuning peeds the allowable ator Display Er-19	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error
Er-17 Ca Drive is prohibited from reverse while attended in reverse while attended from the reverse while attended from the result of Back En (induced voltage) excepting range. Digital Oper Er-19 Ca	Er-17 use om rotating the motor opting to perform ator Display Er-18 use MF Constant Tuning the motor opting to perform ator Display Er-19 use	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name
Er-17 Ca Drive is prohibited from reverse while attended in the internal Tuning. Digital Oper Er-18 Ca The result of Back Ef (induced voltage) excisetting range. Digital Oper Er-19 Ca The induced voltage	Er-17 use om rotating the motor opting to perform eator Display Er-18 use MF Constant Tuning the motor opting to perform eator Display Er-19 use constant attempted to	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions
Ca Drive is prohibited from reverse while attended in reverse while at	Er-17 use om rotating the motor opting to perform eator Display Er-18 use MF Constant Tuning the motor opting to perform eator Display Er-19 use constant attempted to	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error
Er-17 Ca Drive is prohibited from reverse while attended in the internal Tuning. Digital Oper Er-18 Ca The result of Back Ef (induced voltage) excisetting range. Digital Oper Er-19 Ca The induced voltage	Er-17 use om rotating the motor opting to perform eator Display Er-18 use MF Constant Tuning the motor opting to perform eator Display Er-19 use constant attempted to	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions
Ca Drive is prohibited from reverse while attended in reverse while at	Er-17 use om rotating the motor opting to perform eator Display Er-18 use MF Constant Tuning the motor opting to perform eator Display Er-19 use constant attempted to	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions
Ca Drive is prohibited from reverse while attended in reverse while at	Er-17 use om rotating the motor opting to perform eator Display Er-18 use MF Constant Tuning the motor opting to perform eator Display Er-19 use constant attempted to r E5-09 that is outside	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.
Ca Drive is prohibited from reverse while attended in reverse while at	Er-17 use om rotating the motor opting to perform ator Display Er-18 MF Constant Tuning seeds the allowable ator Display Er-19 use constant attempted to r E5-09 that is outside	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.
Ca Drive is prohibited from reverse while attended Inertia Tuning. Digital Oper Er-18 Ca The result of Back El (induced voltage) excepting range. Digital Oper Er-19 Ca The induced voltage set a value to E5-08 of the allowable range. Digital Oper Er-20 Ca Stator resistance tuning	Er-17 use om rotating the motor repting to perform ator Display Er-18 WF Constant Tuning seeds the allowable ator Display Er-19 use constant attempted to r E5-09 that is outside ator Display Er-20 use ng attempted to set a	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then pertorm Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.
Ca Drive is prohibited from reverse while attended Inertia Tuning. Digital Oper Er-18 Ca The result of Back El (induced voltage) excepting range. Digital Oper Er-19 Ca The induced voltage set a value to E5-08 of the allowable range. Digital Oper Er-20 Ca Stator resistance tuning	Er-17 use om rotating the motor repting to perform ator Display Er-18 WF Constant Tuning seeds the allowable ator Display Er-19 use constant attempted to r E5-09 that is outside ator Display Er-20 use ng attempted to set a	Possible Solutions Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse. Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning. Error Name Induction Voltage Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning. Error Name PM Inductance Error Possible Solutions Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.

Digital Operator Display		Error Name
Er-21	Er-21	Z Pulse Correction Error
Car	ise	Possible Solutions
Motor was coasting was performed.	hen Auto-Tuning	Make sure the motor has stopped completely. Restart Auto-Tuning.
Either the motor or the PG encoder on the motor are not properly wired.		Check the wiring for the motor and the PG encoder. Restart Auto-Tuning.
The direction for the PG encoder is set incorrectly, or the number of pulses set for the PG encoder is wrong.		Check the direction and number of pulses set for the PG encoder. Restart Auto-Tuning.
PG encoder is damaged.		Check the signal output from the PG encoder attached to the motor. Replace the PG if damaged.

Digital Operator Display		Error Name
Er-25	Er-25	High Frequency Injection Parameter Tuning Error
Ca	use	Possible Solutions
Motor data was incorrect.		Perform Stationary Auto-Tuning and then perform High Frequency Injection Parameter Tuning again. If the problem continues, high frequency injection control might not be possible with that motor.
		Note: Auto-Tuning is not applicable for SPM motors.

6.8 Copy Function Related Displays

Tasks, Errors, and Troubleshooting

The table below lists the messages and errors that may appear when using the Copy function.

When executing the tasks offered by the Copy function, the operator will indicate the task being performed. When an error occurs, a code appears on the operator to indicate the error. Note that errors related to the Copy function do not trigger a multifunction output terminal that has been set up to close when a fault or alarm occurs. To clear an error, simply press any key on the operator and the error display will disappear.

Table 6.18 lists the corrective action that can be taken when an error occurs.

Note:

- 1. Whenever using the copy function, the drive should be fully stopped.
- 2. The drive will not accept a Run command while the Copy function is being executed.
- 3. Parameters can only be saved to a drive when the voltage class, capacity, control mode, and software version match.

Table 6.18 Copy Function Task and Error Displays

	Digital Operator Display		Task
	<i>СоРУ</i> СоРу		Writing Parameter Settings (flashing)
	Cause		Possible Solutions
Par	Parameters are being written to the drive.		This is not an error.

Digital Operator Display		Task
[PEr	CPEr	Control Mode Mismatch
Cause		Possible Solutions
Control mode of the parameters to be loaded onto the drive and the control mode set to the drive do not match.		 Verify the control mode for the parameters to be loaded onto the drive and the control mode on drive to which those parameters will be written. Set the same control mode using parameter A1-02 and retry.

Digital Operator Display		Task
<i>[РУЕ</i> СРуЕ		Error Writing Data
Cause		Possible Solutions
Failed writing parameters		Attempt to write parameters again.

Digital Operator Display		Task
ESEr	CSEr	Copy Unit Error
Cause		Possible Solutions
Hardware fault		Replace the operator or the USB Copy Unit.

Digital Operator Display		Task
dFP5	dFPS	Drive Model Mismatch
Cause		Possible Solutions
 The drives used in the conot the same model. The drive from which copied is a different m The drive to be written 	the parameters were odel.	 Verify the model number of the drive from which the parameters were copied and the model of the drive to which those parameters will be written. Make sure the two drives are the same model and have the same software version.

Digital Operator Display		Task
End	End	Task Complete
Cause		Possible Solutions
Finished reading, writing, or verifying parameters.		This is not an error.

Digital Operator Display		Task
,FEr	iFEr	Communication Error
Cause		Possible Solutions
A communication error occurred between the drive and the operator or the USB copy unit.		Check the cable connection.

A non-compatible cable is being used to connect the USB Copy Unit and the drive.		Use the cable originally packaged with the USB Copy Unit.
Digital Operator Display		Task
ndAf	ndAT	Model, Voltage Class, Capacity Mismatch
Cause		Possible Solutions
The drive from which the parameters were copied and the drive to which the parameters will be written have different electrical specifications, capacities, are set to different control modes, or are different models.		Make sure model numbers and specifications are the same for both drives.
The device being used to write the parameters is blank and does not have any parameters saved on it.		Make sure all connections are correct, and copy the parameter settings onto the USB Copy Unit or the operator.

Digital Operator Display		Task
rdEr rdEr		Error Reading Data
Cause		Possible Solutions
		Press and hold the READ key on the USB Copy Unit for at least one second to have the unit read parameters from the drive.

Digital Operator Display		Task
r EAd	rEAd	Reading Parameter Settings (flashing)
Cause		Possible Solutions
Displayed while the parameter settings are being read onto the USB Copy Unit.		This is not an error.

Digital Operator Display		Task
υ8Er	vAEr	Voltage Class, Capacity Mismatch
Cause		Possible Solutions
The drive from which the parameters were copied and the drive on which the Verify mode is being performed have different electrical specifications or are a different capacity.		Make sure electrical specifications and capacities are the same for both drives.

Digital Operator Display		Task
uFYE	vFyE	Parameter settings in the drive and those saved to the copy function are not the same
Cause		Possible Solutions
Indicates that parameter settings that have been Read and loaded onto the Copy Unit or Digital Operator are different.		To synchronize parameters, either write the parameters saved on the USB Copy Unit or digital operator onto the drive, or Read the parameter settings on the drive onto the USB Copy Unit.

Digital Operator Display		Task
n-FA	vrFy	Comparing Parameter Settings (flashing)
Cause		Possible Solutions
The Verify mode has confirmed that parameters settings on the drive and parameters read to the copy device are identical.		This is not an error.

6.9 Diagnosing and Resetting Faults

When a fault occurs and the drive stops, follow the instructions below to remove whatever conditions triggered the fault, then restart the drive.

Note: An oC/SC fault will be displayed in the event of an IGBT failure. It may not be possible to reset this fault until the IGBT problem is corrected.

Fault Occurs Simultaneously with Power Loss

WARNING! Electrical Shock Hazard. Ensure there are no short circuits between the main circuit terminals (R/L1, S/L2, and T/L3) or between the ground and main circuit terminals before restarting the drive. Do not immediately restart models 4A0930 and 4A1200 or operate peripheral devices if a fuse is blown or a GFCI has tripped. Failure to comply may result in serious injury or death and will cause damage to equipment.

- Turn on the drive input power.
- 2. Use monitor parameters U2- $\Box\Box$ to display data on the operating status of the drive just before the fault occurred.
- **3.** Remove the cause of the fault and reset.

Note:

- To find out what faults were triggered, check the fault history in U2-02. Information on drive status when the fault occurred such as the frequency, current, and voltage can be found in U2-03 through U2-20. Refer to Viewing Fault Trace Data After Fault on page 464 for information on how to view fault data.
- 2. When the fault continues to be displayed after cycling power, remove the cause of the fault and reset.

If the Drive Still has Power After a Fault Occurs

- 1. Look at the digital operator for information on the fault that occurred.
- 2. Refer to Fault Displays, Causes, and Possible Solutions on page 423.
- Reset the fault. Refer to Fault Reset Methods on page 465.

Viewing Fault Trace Data After Fault

	Step		Display/Result
1.	Turn on the drive input power. The first screen displays.	→	- MODE - DRV Rdy
2.	Press or until the monitor screen is displayed.	→	- MODE - DRV Rdy Monitor Menu U1-01= 0.00Hz U1-02= 0.00Hz SEQ U1-03= 0.00A LREF LOG FWD FWD/REV
3.	Press to display the parameter setting screen.	→	-MONITR- DRV Rdy Monitor U11-01= 0.00Hz U1-02= 0.00Hz U1-03= 0.00A
4.	Press and and to scroll to monitor U2-02. The fault code shown in U2-02 is the fault that occurred most recently.	→	- MONITR - DRV Rdy Last Fault U2.02=
5.	Press to view drive status information when fault occurred. Parameters U2-03 through U2-20 help determine the cause of a fault. Parameters to be monitored differ depending on the control mode.	→	-MONITR - DRV Rdy Frequency Ref U2-05= 0.00Hz U2-05= 0.00A LREF LOG FWD FWD/REV -MONITR - DRV Rdy Heatsink Temp U2-20= XX °C U2-01= LSEO U2-02= LREF LOG FWD FWD/REV

Fault Reset Methods

When a fault occurs, the cause of the fault must be removed and the drive must be restarted. The table below lists the different ways to restart the drive.

After the Fault Occurs	Procedu	re
Fix the cause of the fault, restart the drive, and reset the fault	Press on the digital operator when the error code is displayed.	Properties about EDDS - MODE - DRV OC OURCLAIRENT - PVD DESSEI - PVD DESSEI
Resetting via Fault Reset Digital Input S4	Close then open the fault signal digital input via terminal S4. S4 is set for "Fault Reset" as default (H1-04 = 14).	Fault Reset Switch S4 Fault Reset Digital Input SC Digital Input Common
Turn off the main power supply if the above methods do not reset the fault. Reapply power after the digital operator display has turned off.		② ON

Note:

If the Run command is present, the drive will disregard any attempts to reset the fault. Remove the Run command before attempting to clear a fault situation.

6.10 Troubleshooting without Fault Display

This section describes troubleshooting problems that do not trip an alarm or fault.

The following symptoms indicate that the drive is not set correctly for proper performance with the motor. *Refer to Motor Performance Fine-Tuning on page 412* for guidance on troubleshooting.

- Motor hunting and oscillation
- · Poor motor torque
- Poor speed precision
- Poor motor torque and speed response
- · Motor noise

Common Problems

Common Problems		Page
Cannot Change Parameter Settings		466
	Motor Does Not Rotate	
Motor Does Not Rotate Properly after Pressing RUN Button or after Entering External Run Command	Motor Rotates in the Opposite Direction from the Run Command	468
Entering External Rail Command	Motor Rotates in One Direction Only	468
Motor is Too Hot		468
Drive Does Not Allow Selection of Rotational Auto-Tuning		469
oPE02 Error Occurs When Lowering the Motor Rated Current Setti	ng	469
Motor Stalls During Acceleration or With Large Loads		469
Drive Frequency Reference Differs from the Controller Frequency Reference Command		470
Excessive Motor Oscillation and Erratic Rotation		470
Deceleration Takes Longer Than Expected with Dynamic Braking Enabled		470
Noise From Drive or Motor Cables When the Drive is Powered On		471
Ground Fault Circuit Interrupter (GFCI) Trips During Run		471
Connected Machinery Vibrates When Motor Rotates	Unexpected Noise from Connected Machinery	471
Connected Machinery Vibrates when Motor Rotates	Oscillation or Hunting	471
PID Output Fault		472
Insufficient Starting Torque		472
Motor Rotates After the Drive Output is Shut Off (Motor Rotates During DC Injection Braking)		472
Output Frequency is not as High as Frequency Reference		472
Buzzing Sound from Motor at 2 kHz		473
Unstable Motor Speed when Using PM or IPM		473
Motor Does Not Restart after Power Loss		

Cannot Change Parameter Settings

Cause	Possible Solutions
The drive is running the motor (i.e., the Run command is present).	Stop the drive and switch over to the Programming Mode.Most parameters cannot be edited during run.
The Access Level is set to restrict access to parameter settings.	• Set the Access Level to allow parameters to be edited (A1-01 = 2).
The operator is not in the Parameter Setup Mode (the screen will display "PAr").	 See what mode the operator is currently set for. Parameters cannot be edited when in the Setup Mode ("STUP"). Switch modes so that "PAr" appears on the screen. <i>Refer to The Drive and Programming Modes on page 186</i>.
A multi-function contact input terminal is set to allow or restrict parameter editing (H1-01 through H1-08 = 1B).	 When the terminal is open, parameters cannot be edited. Turn on the multi-function contact input set to 1B.

Cause	Possible Solutions
	• If the password entered to A1-04 does not match the password saved to A1-05, then drive settings cannot be changed.
	Reset the password.
The wrong password was entered.	If you cannot remember the password:
	• Scroll to A1-04. Press and simultaneously. Parameter A1-05 will appear.
	• Set a new password to parameter A1-05.
ndervoltage was detected	Check the drive input power voltage by looking at the DC bus voltage (U1-07).
	Check all main circuit wiring.

Motor Does Not Rotate Properly after Pressing RUN Button or after Entering External Run Command

■ Motor Does Not Rotate

Cause	Possible Solutions
	Check if the DRV light on the digital operator is lit.
The drive is not in the Drive Mode.	• Enter the Drive Mode to begin operating the motor. <i>Refer to The Drive and Programming Modes on page 186</i> .
RE was pushed	Stop the drive and check if the correct frequency reference source is selected. If the operator keypad shall be the source, the LO/RE button LED must be on. If the source is REMOTE, it must be off. Take the following steps to solve the problem:
was pushed.	Push Push
	• If o2-01 is set to 0, then the LO/RE button will be disabled.
Auto Tuning has instangulated	When Auto-Tuning completes, the drive is switched back to the Programming Mode. The Run command will not be accepted unless the drive is in the Drive Mode.
Auto-Tuning has just completed.	• Use the digital operator to enter the Drive Mode. <i>Refer to The Drive and Programming Modes on page 186</i> .
A Fast Stop was executed and has not yet been reset.	Reset the Fast Stop command.
Settings are incorrect for the source that provides the Run command.	Check parameter b1-02 (Run Command Selection). Set b1-02 so that it corresponds with the correct Run command source. 0: Digital operator 1: Control circuit terminal (default setting) 2: MEMOBUS/Modbus communications 3: Option card
	Check the wiring for the control terminal.
There is faulty wiring in the control circuit terminals.	Correct wiring mistakes.
	• Check the input terminal status monitor (U1-10).
The drive has been set to accept the frequency reference from the incorrect source.	Check parameter b1-01 (Frequency Reference Selection 1). Set b1-01 to the correct source of the frequency reference. 0: Digital operator 1: Control circuit terminal (default setting) 2: MEMOBUS/Modbus communications 3: Option card 4: Pulse train input (RP)
The terminal set to accept the main speed reference is set to the incorrect voltage and/or current.	If the frequency reference is set at terminal A1, check parameter H3-01 for the correct signal level selection. If terminal A2 is used, check DIP switch S1 parameter H3-08. If terminal A3 is used, check parameter H3-08. <i>Refer to Terminal A2 Input Signal Selection on page 172</i> .
Selection for the sink/source mode and the internal/external power supply is incorrect.	Check jumper S3. Refer to Sinking/Sourcing Mode for Digital Inputs on page 170.
F	Check the frequency reference monitor (U1-01).
Frequency reference is too low.	• Increase the frequency by changing the maximum output frequency (E1-09).
	Check the multi-function analog input settings.
Multi-function analog input is set up to accept gain for the frequency reference, but no voltage (current) has	• Check if analog input A1, A2, or A3 is set for frequency reference gain (H3-02, H3-10, H3-06 = 1). If so, check if the correct signal is applied to the terminal. The gain and the frequency reference will be 0 if no signal is applied to the gain input.
been provided.	• Check if H3-02, H3-10, and H3-06 have been set to the proper values.
	• Check if the analog input value has been set properly. (U1-13 to U1-15)

6.10 Troubleshooting without Fault Display

Cause	Possible Solutions
was pressed when the drive was started from a REMOTE source.	 Pressing STOP will decelerate the drive to stop. Switch off the Run command and then re-enter a new Run command. Set o2-02 to 0 to disable STOP.
Motor starting torque is too low.	Refer to Motor Performance Fine-Tuning on page 412.
Frequency reference value is too low or the drive does not accept the value entered.	Enter a value that is above the minimum output frequency determined by E1-09.
Th	• If the drive is supposed to be set up for a 2-wire sequence, then ensure parameters H1-03 through H1-08 are not set to 0.
The sequence Start/Stop sequence is set up incorrectly.	• If the drive is supposed to be set up for a 3-wire sequence, then one of the parameters H1-03 through H1-08 must be set to 0. Terminal S1 will become the Start, terminal S2 will become the Stop input.

■ Motor Rotates in the Opposite Direction from the Run Command

Cause	Possible Solutions
	Check the motor wiring.
	Switch two motor cables (U, V, and W) to reverse motor direction.
Phase wiring between the drive and motor is incorrect.	Connect drive output terminals U/T1, V/T2, and W/T3 in the right order to match motor terminals U, V, and W.
	Change the setting of parameter b1-14.
The forward direction for the motor is set up incorrectly.	Typically, forward is designated as being counterclockwise when looking from the motor shaft (see figure below).
	2
	1. Forward Rotating Motor (looking down the motor shaft)
	2. Motor Shaft
The motor is running at almost 0 Hz and the Speed Search estimated the speed to be in the opposite direction.	• Disable bi-directional search (b3-14 = 0) so that Speed Search is performed only in the specified direction.

Note: Check the motor specifications for the forward and reverse directions. The motor specifications will vary depending on the manufacturer of the motor.

■ Motor Rotates in One Direction Only

Cause	Possible Solutions
The drive prohibits reverse rotation.	 Check parameter b1-04. Set parameter b1-04 to 0 to allow the motor to rotate in reverse.
A Reverse run signal has not been entered, although 3-Wire sequence is selected.	• Make sure that one of the input terminals S3 to S8 used for the 3-Wire sequence has been set for reverse.

♦ Motor is Too Hot

Cause	Possible Solutions
	If the load is too heavy for the motor, the motor will overheat as it exceeds its rated torque value for an extended period of time. Keep in mind that the motor also has a short-term overload rating in addition to the possible solutions provided below:
The load is too heavy.	Reduce the load.
	Increase the acceleration and deceleration times.
	• Check the values set for the motor protection (L1-01, L1-02) as well as the motor rated current (E2-01).
	Increase motor capacity.
The air around the motor is too hot.	Check the ambient temperature.
The an around the motor is too not.	Cool the area until it is within the specified temperature range.

Cause	Possible Solutions
	Perform Auto-Tuning.
The drive is operating in a vector control mode but Auto-Tuning has not yet been performed.	Calculate the motor value and reset the motor parameters.
rute runing has not yet seen performed.	• Change the motor control method to V/f Control (A1-02 = 0).
	When the motor cable is long, high voltage surges occur between the motor coils and drive switching. Normally, surges can reach up to three times the drive input power supply voltage.
Insufficient voltage insulation between motor phases	Use a motor with a voltage tolerance higher than the maximum voltage surge.
Insufficient voltage insulation between motor phases.	Use an inverter-duty motor rated for use with AC drives when using the motor on drives rated higher than 200 V class.
	• Install an AC reactor on the output side of the drive. The carrier frequency should be set to 2 kHz when installing an AC reactor.
The motor fan has stopped or is clogged.	Check the motor fan.
The carrier frequency is too low.	Increase the carrier frequency to lower the current harmonic distortion and lower the motor temperature.

◆ Drive Does Not Allow Selection of the Desired Auto-Tuning Mode

Cause	Possible Solutions
The desired Auto-Tuning mode is not available for the selected control mode.	 Check if the desired tuning mode is available for the selected control mode. Refer to Auto- Tuning on page 201.
	Change the motor control method by setting A1-02.

oPE02 Error Occurs When Lowering the Motor Rated Current Setting

Cause	Possible Solutions
Motor rated current and the motor no-load current setting in the drive are incorrect.	 The user is trying to set the motor rated current in E2-01 to a value lower than the no-load current set in E2-03. Make sure that value set in E2-01 is higher than E2-03. If it is necessary to set E2-01 lower than E2-03, first lower the value set to E2-03, then change the setting in E2-01 as needed.

Motor Stalls during Acceleration or Acceleration Time is Too Long

Cause	Possible Solutions
Torque limit has been reached or current suppression	Take the following steps to resolve the problem:
keeps the drive from accelerating.	Reduce the load.
Load is too heavy.	Increase motor capacity. Note: Although the drive has a Stall Prevention function and a Torque Compensation Limit function, accelerating too quickly or trying to drive an excessively large load can exceed the capabilities of the motor.
Torque limit is not set properly.	Check the torque limit setting.
	Check the maximum output frequency (E1-04).
	• Increase E1-04 if it is set too low.
Frequency reference is too low	Check U1-01 for proper frequency reference.
Frequency reference is too low.	Check if a frequency reference signal switch has been set to one of the multi-function input terminals.
	Check for low gain level set to terminals A1, A2, or A3 (H3-03, H3-11, H3-07).
Load is too heavy.	Reduce the load so that the output current remains within the motor rated current.
	• In extruder and mixer applications, the load will sometimes increase as the temperature drops.
	Increase the acceleration time.
	Check if the mechanical brake is fully releasing as it should.
Acceleration time has been set too long.	Check if the acceleration time parameters have been set too long (C1-01, C1-03, C1-05, C1-07).
	• Set the correct V/f pattern so that it matches the characteristics of the motor being used.
Motor characteristics and drive parameter settings are incompatible with one another.	Check the V/f pattern set to E1-03.
	Execute Rotational Auto-Tuning.

6.10 Troubleshooting without Fault Display

Cause	Possible Solutions
Although the drive is operating in Open Loop Vector	Perform Auto-Tuning.
motor control method, Auto-Tuning has not been	Calculate motor data and reset motor parameters.
performed.	• Switch to V/f Control (A1-02 = 0).
Incorrect frequency reference setting.	• Check the multi-function analog input settings. Multi-function analog input terminal A1, A2, or A3 is set for frequency gain (H3-02, H3-10, or H3-06 is set to "1"), but there is no voltage or current input provided.
	Make sure H3-02, H3-10, and H3-06 are set to the proper values.
	• See if the analog input value is set to the right value (U1-13 to U1-15).
	Check the Stall Prevention level during acceleration (L3-02).
The Stall Prevention level during acceleration and deceleration set too low.	• If L3-02 is set too low, acceleration may be taking too long.
deceleration set too low.	• Increase L3-02.
TI O II D	Check the Stall Prevention level during run (L3-06).
The Stall Prevention level during run has been set too low.	• If L3-06 is set too low, speed will drop as the drive outputs torque.
	Increase the setting value.
Drive reached the limitations of the V/f motor control method.	• The motor cable may be long enough (over 50 m) to require Auto-Tuning for line-to-line resistance.
	Be aware that V/f Control is comparatively limited when it comes to producing torque at low speeds.
	Consider switching to Open Loop Vector Control.

◆ Drive Frequency Reference Differs from the Controller Frequency Reference Command

Cause	Possible Solutions
The analog input gain and bias for the frequency reference input are set to incorrect values.	• Check the gain and bias settings for the analog inputs that are used to set the frequency reference. Check parameters H3-03 and H3-04 for input A1, check parameters H3-11, and H3-12 for input A2, and check parameters H3-07 and H3-08 for input A3.
	Set these parameters to the appropriate values.
A frequency bias signal is being entered via analog input terminals A1 to A3.	• If more than one of multi-function analog inputs A1 to A3 is set for frequency reference bias (H3-02, H3-10, or H3-06 is set to "0"), then the sum of all signals builds the frequency reference.
	Make sure that H3-02, H3-10, and H3-06 are set appropriately.
	• Check the input level set for terminals A1 to A3 (U1-13 to U1-15).
PID control is enabled, and the drive is consequently adjusting the output frequency to match the PID setpoint. The drive will only accelerate to the maximum output frequency set in E1-04 while PID control is active.	If PID control is not necessary for the application, disable it by setting b5-01 to 0.

◆ Excessive Motor Oscillation and Erratic Rotation

Cause	Possible Solutions
Poor balance between motor phases.	Check drive input power voltage to ensure that it provides stable power.
Hunting prevention function is disabled.	• Enable Hunting Prevention (n1-01 = 1).
	• Increase the AFR gain (n2-01) or the AFR time constant (n2-02).

◆ Deceleration Takes Longer Than Expected with Dynamic Braking Enabled

Cause	Possible Solutions
	Check the Stall Prevention level during deceleration (L3-04).
L3-04 is set incorrectly.	• If a dynamic braking option has been installed, disable Stall Prevention during deceleration (L3-04 = 0).
The deceleration time is set too long.	Set deceleration to more appropriate time (C1-02, C1-04, C1-06, C1-08).
Insufficient motor torque.	Assuming parameter settings are normal and that no overvoltage occurs when there is insufficient torque, it is likely that the demand on the motor has exceeded the motor capacity.
	Use a larger motor.

Cause	Possible Solutions
Reaching the torque limit.	Check the settings for the torque limit (L7-01 through L7-04).
	If the torque limit is enabled, deceleration might take longer than expected because the drive cannot output more torque than the limit setting. Ensure the torque limit is set to a high enough value.
	Increase the torque limit setting.
	• If multi-function analog input terminal A1, A2, or A3 is set to torque limit (H3-02, H3-10, or H3-06 equals 10, 11, 12, or 15), ensure that the analog input levels are set to the correct levels.
	• Ensure H3-02, H3-10, and H3-06 are set to the right levels.
	• Ensure the analog input is set to the correct value (U1-13 to U1-15).
Load exceeded the internal torque limit determined by the drive rated current.	Switch to a larger capacity drive.

◆ Noise From Drive or Motor Cables When the Drive is Powered On

Cause	Possible Solutions
Relay switching in the drive generates excessive noise.	• Lower the carrier frequency (C6-02).
	Install a noise filter on the input side of drive input power.
	Install a noise filter on the output side of the drive.
	Place the wiring inside a metal conduit to shield it from switching noise.
	Ground the drive and motor properly.
	Separate the main circuit wiring and the control lines.
	Make sure wires and the motor have been properly grounded.

◆ Ground Fault Circuit Interrupter (GFCI) Trips During Run

Cause	Possible Solutions
Excessive leakage current trips GFCI.	Check the wiring and rating of peripheral devices.
	Increase the GFCI sensitivity or use GFCI with a higher threshold.
	• Lower the carrier frequency (C6-02).
	Reduce the length of the cable used between the drive and the motor.
	Install a noise filter or reactor on the output side of the drive. Set the carrier frequency to 2 kHz when connecting a reactor.
	Disable the internal EMC filter.

◆ Connected Machinery Vibrates When Motor Rotates

■ Unexpected Noise from Connected Machinery

Cause	Possible Solutions
The carrier frequency is at the resonant frequency of the connected machinery.	Adjust the carrier frequency using parameters C6-02 through C6-05.
The drive output frequency is the same as the resonant frequency of the connected machinery.	 Adjust the parameters used for the Jump frequency function (d3-01 through d3-04) to skip the problem-causing bandwidth. Place the motor on a rubber pad to reduce vibration.

Note: The drive may have trouble assessing the status of the load due to white noise generated from using Swing PWM (C6-02 = 7 to A).

■ Oscillation or Hunting

Cause	Possible Solutions	
Insufficient tuning.	Perform Auto-Tuning. Refer to Motor Performance Fine-Tuning on page 412.	
Gain is too low when using PID control.	Refer to b5: PID Control on page 249 for details.	
The frequency reference is assigned to an external source and the signal is noisy.	 Ensure that noise is not affecting the signal lines. Separate main circuit wiring and control circuit wiring. Use twisted-pair cables or shielded wiring for the control circuit. Increase the analog input time filter constant (H3-13). 	
The cable between the drive and motor is too long.	 Perform Auto-Tuning. Reduce the length of the cable. 	

◆ PID Output Fault

Cause Possible Solutions	
	Check the multi-function analog input terminal settings.
	• Set multi-function analog input terminal A1, A2, or A3 for PID feedback (H3-02, H3-10, or H3-06 = B).
No PID feedback input.	A signal input to the terminal selection for PID feedback is needed.
No FID feedback input.	Check the connection of the feedback signal.
	Check the various PID-related parameter settings.
	• No PID feedback input to the terminal causes the value detected to be 0, causing a PID fault and the drive to operate at max frequency.
The level of detection and the target value do not	• PID control keeps the difference between target and detection values at 0. Set the input level for the values relative to one another.
correspond with each other.	• Use analog input gains H3-03, H3-07, and H3-11 to adjust PID target and feedback signal scaling.
Reverse drive output frequency and speed detection. When output frequency rises, the sensor detects a speed decrease.	Set PID output for reverse characteristics (b5-09 = 1).
Adjustment made to PID parameter settings are insufficient.	Refer to b5: PID Control on page 249 for details.

◆ Insufficient Starting Torque

Cause	Possible Solutions
	Perform Auto-Tuning. Refer to Motor Performance Fine-Tuning on page 412.
The control mode was changed after performing Auto-Tuning.	Perform Auto-Tuning again.
Only Stationary Auto-Tuning was performed.	Perform Rotational Auto-Tuning.

◆ Motor Rotates after the Drive Output is Shut Off (Motor Rotates During DC Injection Braking)

Cause	Possible Solutions
DC Injection Braking is set too low and the drive cannot decelerate properly.	 Adjust the DC Injection braking settings. Increase the current level for DC Injection Braking (b2-02). Increase the DC Injection Braking time at stop (b2-04).
The stopping method is set so that the drive coasts to stop.	Set b1-03 (Stopping Method Selection) to 0 or 2.

Output Frequency is Not as High as Frequency Reference

Cause	Possible Solutions	
Frequency reference is set within the range of the Jump	• Adjust the parameters used for the Jump frequency function (d3-01, d3-02, d3-03).	
frequency.	• Enabling the Jump frequency prevents the drive from outputting the frequencies specified in the Jump range.	
Upper limit for the frequency reference has been	• Set the maximum output frequency and the upper limit for the frequency reference to more appropriate values (E1-04, d2-01).	
exceeded.	• The following calculation yields the upper value for the output frequency: E1-04 x d2-01 / 100	
Large load triggered Stall Prevention function during	Reduce the load.	
acceleration.	Adjust the Stall Prevention level during acceleration (L3-02).	
Motor runs at the following speed: b2-01 ≤ Motor	Set b1-21 (Start Condition Selection at Closed Loop Vector Control) to 1.	
speed < E1-09	• Set E1-09 (Minimum Output Frequency) to a value lower than the setting for b2-01 (DC Injection Braking Start Frequency).	

♦ Sound from Motor

Cause	Possible Solutions
Exceeded 110% of the roted output current of the drive	 If the output current rises too high at low speeds, the carrier frequency is automatically reduced and causes a whining or buzzing sound. If the sound is coming from the motor, disable carrier frequency derating (L8-38 = 0). Disabling the automatic carrier frequency derating increases the chances of an overload fault (oL2). Switch to a larger capacity motor if oL2 faults occur too frequently.

◆ Unstable Motor Speed when Using PM

Cause	Possible Solutions	
The motor code for the PM motor (E5-01 or T2-02) is set incorrectly (Yaskawa motors only).	Refer to Motor Performance Fine-Tuning on page 412 for details.	
Drive is attempting to operate the motor beyond the speed control range listed in the specifications.	Check the speed control range and adjust the speed accordingly.	
Motor hunting occurs.	Refer to Motor Performance Fine-Tuning on page 412 for details.	
Hunting occurs at start.	Increase the S-curve time at the start of acceleration (C2-01).	
Too much current is flowing through the drive.	 Enter the correct motor code for the PM motor being used into E5-01. For special-purpose motors, enter the correct data to all E5 parameters according to the test report provided for the motor. 	

Motor Does Not Restart after Power Loss

Cause	Possible Solutions
The Run command was not issued again when power was restored.	 Check the sequence and wiring that has been set up to enter the Run command. A relay should be set up to make sure the Run command remains enabled throughout any power loss.
The relay that is supposed to maintain the Run command has been switched off.	Check wiring and circuitry for the relay intended to keep the Run command enabled.

6.10 Troubleshooting without Fault Display			
This Page Intentionally Blank			

Periodic Inspection & Maintenance

This chapter describes the periodic inspection and maintenance of the drive to ensure that it receives the proper care to maintain overall performance.

7.1	SECTION SAFETY	476
7.2	INSPECTION	478
7.3	PERIODIC MAINTENANCE	481
7.4	DRIVE COOLING FANS	483
7.5	REPLACING THE AIR FILTER	509
7.6	DRIVE REPLACEMENT	511

7.1 Section Safety

A WARNING

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and servicing must be performed only by authorized personnel familiar with installation, adjustment, and maintenance of AC drives.

Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure the DC bus voltage level to confirm it has reached a safe level.

Fire Hazard

Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

Do not use improper combustible materials.

Failure to comply could result in death or serious injury by fire.

Attach the drive to metal or other noncombustible material.

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Follow cooling fan replacement instructions. The cooling fan cannot operate properly when it is installed incorrectly and could seriously damage the drive.

Follow the instructions in this manual to replace the cooling fan, making sure that the label is on top before inserting the cooling fan into the drive. To ensure maximum useful product life, replace both cooling fans when performing maintenance.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the drive.

Do not allow unqualified personnel to use the product.

Failure to comply could result in damage to the drive or braking circuit.

Maintenance, inspection, and replacement of parts must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for any modification of the product made by the user. This product must not be modified.

Check all the wiring to ensure that all connections are correct after installing the drive and connecting any other devices.

Failure to comply could result in damage to the drive.

Comply with proper wiring practices.

The motor may run in reverse if the phase order is backward.

Connect motor input terminals U, V and W to drive output terminals U/T1, V/T2, and W/T3. The phase order for the drive and motor should match.

Frequently switching the drive power supply to stop and start the motor can damage the drive.

To get the full performance life out of the electrolytic capacitors and circuit relays, refrain from switching the drive power supply off and on more than once every 30 minutes. Frequent use can damage the drive. Use the drive to stop and start the motor.

Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment.

Do not connect or operate any equipment with visible damage or missing parts.

7.2 Inspection

Power electronics have limited life and may exhibit changes in characteristics or performance deterioration after years of use under normal conditions. To help avoid such problems, it is important to perform preventive maintenance and periodic inspection on the drive.

Drives contain a variety of power electronics such as power transistors, semiconductors, capacitors, resistors, fans, and relays. The electronics in the drive serve a critical role in maintaining proper motor control.

Follow the inspection lists provided in this chapter as a part of a regular maintenance program.

Note: The drive will require more frequent inspection if it is placed in harsh environments, such as:

- · High ambient temperatures
- · Frequent starting and stopping
- Fluctuations in the AC supply or load
- · Excessive vibrations or shock loading
- Dust, metal dust, salt, sulfuric acid, chlorine atmospheres
- Poor storage conditions.

Perform the first equipment inspection one to two years after installation.

◆ Recommended Daily Inspection

Table 7.1 outlines the recommended daily inspection for Yaskawa drives. Check the following items on a daily basis to avoid premature deterioration in performance or product failure. Copy this checklist and mark the "Checked" column after each inspection.

Table 7.1 General Recommended Daily Inspection Checklist

Table 7.1 General Recommended Daily Inspection Checkist			
Inspection Category	Inspection Points	Corrective Action	Checked
	Inspect for abnormal oscillation or noise coming from	Check the load coupling.	
Motor	the motor.	Measure motor vibration.	
		Tighten all loose components.	
		Check for the following:	
	In an ant for also amount has to a some and a financial addition on	Excessive load.	
	Inspect for abnormal heat generated from the drive or motor and visible discoloration.	Loose connections.	
Castina	inotor and vision disconoration.	Dirty heatsink or motor.	
Cooling		Ambient temperature.	
	Inspect drive cooling fan and circulation fan operation.	Check for the following:	
		Clogged or dirty fan.	
		Correct Fan operation parameter setting.	
Environment Verify the drive environment complies with the specifications listed in <i>Installation Environment</i> on page 54.		Eliminate the source of contaminants or correct poor environment.	
		Check for the following:	
Load	The drive output current should not be higher than the motor or drive rating for an extended period of time.	Excessive load.	
	inition of drive rating for an extended period of time.	Correct motor parameter settings.	
Power Supply Voltage	Check main power supply and control voltages.	Correct the voltage or power supply to within nameplate specifications.	
		Verify all main circuit phases.	

◆ Recommended Periodic Inspection

Table 7.2 outlines the recommended periodic inspections for Yaskawa drive installations. Although periodic inspections should generally be performed once a year; the drive may require more frequent inspection in harsh environments or with rigorous use. Operating and environmental conditions, along with experience in each application, will determine the actual inspection frequency for each installation. Periodic inspection will help to avoid premature deterioration in performance or product failure. Copy this checklist and mark the "Checked" column after each inspection.

■ Periodic Inspection

WARNING! Electrical Shock Hazard. Do not inspect, connect, or disconnect any wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Table 7.2 Periodic Inspection Checklist

Inspection Area Inspection Points		Corrective Action	Checked
	Main Circuit Periodic		
	 Inspect equipment for discoloration from overheating or deterioration. Inspect for damaged or deformed parts. 	Replace damaged components as required. The drive has few serviceable parts and may require complete drive replacement.	
General	Inspect for dirt, foreign particles, or dust collection on components.	 Inspect enclosure door seal if used. Remove foreign particles and dust with a vacuum cleaner to avoid touching parts. Replace components if cleaning is not possible. 	
Conductors and Wiring	 Inspect wiring and connections for discoloration, damage, or heat stress. Inspect wire insulation and shielding for wear. 	Repair or replace damaged wiring.	
Terminals	Inspect terminals for stripped, damaged, or loose connections.	Tighten loose screws and replace damaged screws or terminals.	
Relays and Contactors	 Inspect contactors and relays for excessive noise during operation. Inspect coils for signs of overheating such as melted or cracked insulation. 	 Check coil voltage for overvoltage or undervoltage conditions. Replace damaged removable relays, contactors, or circuit board. 	
 Inspect for leaking, discoloration, or cracks. Check if the cap has come off, for any swelling, or if the sides have burst open. 		The drive has few serviceable parts and may require complete drive replacement.	
Diode, IGBT (Power Transistor)			
	Motor Periodic Ins	pection	
Operation Check	Check for increased vibration or abnormal noise.	Stop the motor and contact qualified maintenance personnel as required.	
	Control Circuit Periodic	Inspection	
General	 Inspect terminals for stripped, damaged, or loose connections. Make sure all terminals have been properly tightened. 	Tighten loose screws and replace damaged screws or terminals. If terminals are integral to a circuit board, then board or drive replacement may be required.	
Circuit Boards	Check for any odor, discoloration, and rust. Make sure connections are properly fastened and that no dust or oil mist has accumulated on the surface of the board.	 Fix any loose connections. If an antistatic cloth or vacuum plunger cannot be used, replace the board. Do not use any solvents to clean the board. Remove foreign particles and dust with a vacuum cleaner to avoid touching parts. The drive has few serviceable parts and may require complete drive replacement. 	
	Cooling System Period	ic Inspection	
Cooling Fan, Circulation Fan, Control Board Cooling Fan	 Check for abnormal oscillation or unusual noise. Check for damaged or missing fan blades. Refer to Drive Cooling Fans on page 483 for inferred to record the factorial of the factorial oscillation or unusual noise. Refer to Drive Cooling Fans on page 483 for inferred to record the factorial oscillation or unusual noise. 		
Heatsink	Inspect for dust or other foreign material collected on the surface. Remove foreign particles and dust with a vacuum cleaner to avoid touching parts.		

7.2 Inspection

Inspection Area	Inspection Points	Corrective Action	Checked		
Air Duct Inspect air intake and exhaust openings. They must be free from obstruction and properly installed.		 Visually inspect the area. Clear obstructions and clean air duct as required.			
	Display Periodic Inspection				
Digital Operator	Make sure data appears on the display properly. Inspect for dust or other foreign material that may have collected on surrounding components.	 Contact the nearest sales office if there is any trouble with the display or keypad. Clean the digital operator. 			

7.3 Periodic Maintenance

The drive has Maintenance Monitors that keep track of component wear. This feature provides advance maintenance warning and eliminates the need to shut down the entire system for unexpected problems. The drive allows the user to check predicted maintenance periods for the components listed below.

- Cooling Fan, Circulation Fan, Control Board Cooling Fan
- Electrolytic Capacitors
- Inrush Prevention Circuit
- IGBTs

For replacement parts, contact the distributor where the drive was purchased or contact Yaskawa directly.

Replacement Parts

Table 7.3 contains the estimated performance life of components that require replacement during the life of the drive. Only use Yaskawa replacement parts for the appropriate drive model and revision.

Table 7.3 Estimated Performance Life

Component	Estimated Performance Life
Cooling Fan, Circulation Fan	10 years
Electrolytic Capacitors	10 years <1>

<1> Electrolytic capacitors cannot be replaced on some lower capacity models. Complete drive replacement may be required for these models.

NOTICE: Estimated performance life based on specific usage conditions. These conditions are provided for the purpose of replacing parts to maintain performance. Some parts may require more frequent replacement due to poor environments or rigorous use. Usage conditions for estimated performance life:

Ambient temperature: Yearly average of 40 °C (IP00/Open Type enclosure)

Load factor: 80% maximum Operation time: 24 hours a day

■ Performance Life Monitors Maintenance Monitors

The drive calculates the maintenance period for components that may require replacement during the life of the drive. A percentage of the maintenance period is displayed on the digital operator by viewing the appropriate monitor parameter.

When the maintenance period reaches 100%, there is increased risk that the drive may malfunction. Yaskawa recommends checking the maintenance period regularly to ensure maximum performance life.

Refer to Recommended Periodic Inspection on page 479 for more details.

Table 7.4 Performance Life Monitors Used for Component Replacement

Parameter	Component	Contents
04-03	Circulation Fan	Displays the accumulated operation time of the fan from 0 to 99999 hours. This value is automatically reset to 0 after it reaches 99999.
U4-04	Control Board Cooling Fan	Displays the accumulated fan operation time as a percentage of the specified maintenance period.
U4-05	DC Bus Capacitors	Displays the accumulated time the capacitors are used as a percentage of the specified maintenance period.
U4-06	Pre-charge Circuit	Displays the number of times the drive is powered up as a percentage of the performance life of the inrush circuit.
U4-07	IGBT	Displays the percentage of the maintenance period reached by the IGBTs.

■ Alarm Outputs for Maintenance Monitors

An output can be set up to inform the user when a specific components has neared its expected performance life.

When one of multi-function digital output terminals has been assigned the maintenance monitor function (H2- $\Box\Box$ = 2F), the terminal will close when the cooling fan, DC bus capacitors, or DC bus pre-charge relay reach 90% of the expected performance life, or when the IGBTs have reached 50% of their expected performance life. Additionally the digital operator will display an alarm like shown in *Table 7.5* to indicate the specific components that may need maintenance.

Table 7.5 Maintenance Alarms

Digital Operator Alarm Display		Function	Corrective Action	
[[- <1>	LT-1	The cooling fans have reached 90% of their designated life time.	Replace the cooling fan.	
[[-2 <1>	LT-2	The DC bus capacitors have reached 90% of their designated life time.	Contact a Yaskawa representative or the nearest Yaskawa sales office on possible drive replacement.	
[[-] <i></i>	LT-3	The pre-charge circuit has reached 90% of its designated life time.	Contact a Yaskawa representative or the nearest Yaskawa sales office on possible drive replacement.	
[[-4 <1>	LT-4	The IGBTs have reached 50% of their designated life time.	Check the load, carrier frequency, and output frequency.	
[-P[< >	TrPC	The IGBTs have reached 90% of their designated life time.	Contact a Yaskawa representative or the nearest Yaskawa sales office on possible drive replacement.	

<1> This alarm message will be output only if the Maintenance Monitor function is assigned to one of the digital outputs (H2- $\Box\Box$ = 2F). The alarm will also trigger a digital output that is programmed for alarm indication (H2- $\Box\Box$ = 10).

■ Related Drive Parameters

Use parameters o4-03, o4-05, o4-07, and o4-09 to reset a Maintenance Monitor to zero after replacing a specific component. *Refer to Parameter List on page 573* for details on parameter settings.

NOTICE: If these parameters are not reset after the corresponding parts have been replaced, the Maintenance Monitor function will continue to count down the performance life from the value that was reached with the old part. If the Maintenance Monitor is not reset, the drive will not have the correct value of the performance life for the new component.

This alarm message will always be output, even if the Maintenance Monitor function is not assigned to any of the digital outputs (H2- \square = 2F). The alarm will also trigger a digital output that is programmed for alarm indication (H2- \square = 10).

7.4 Drive Cooling Fans

NOTICE: Follow cooling fan replacement instructions. The cooling fan cannot operate properly when installed incorrectly and could seriously damage the drive. To ensure maximum useful product life, replace all cooling fans when performing maintenance.

Contact a Yaskawa representative or the nearest Yaskawa sales office to order replacement cooling fans as required.

For drives with multiple cooling fans, replace all the fans when performing maintenance to ensure maximum product performance life.

Number of Cooling Fans

Drive Model	Cooling Fans	Circulation Fans	Control Board Cooling Fans	Page
		Three-Phase 200 V Class		
2A0004	_	_	_	_
2A0006	_	_	_	_
2A0008	_	_	_	_
2A0010	_	_	_	_
2A0012	_	_	_	_
2A0018	1	_	_	
2A0021	1	_	_	
2A0030	2	_	_	
2A0040	2	_	_	487
2A0056	2	_	_	
2A0069	2	_	_	
2A0081	2	_	_	
2A0110	2	_	_	100
2A0138	2	_	_	489
2A0169	2	_	_	
2A0211	2	_	_	
2A0250	2	_	_	
2A0312	2	_	_	493
2A0360	3	1	_	
2A0415	3	1	_	
		Three-Phase 400 V Class		
4A0002	_	_	_	_
4A0004	_	_	_	_
4A0005	_	_	_	_
4A0007	1	_	_	
4A0009	1	_	_	
4A0011	1	_	_	
4A0018	2	_	_	407
4A0023	2	_	_	487
4A0031	2	_	_	
4A0038	2	_	_	
4A0044	2	_	_	
4A0058	2	-	_	489
4A0072	2	_	_	
4A0088	2	_	_	491
4A0103	2	_	_	

7.4 Drive Cooling Fans

Drive Model	Cooling Fans	Circulation Fans	Control Board Cooling Fans	Page	
4A0139	2	_	-		
4A0165	2	_	-	493	
4A0208	2	_	-		
4A0250	3	_	-		
4A0296	3	_	-		
4A0362	3	1	-		
4A0414	3	1	-	497	
4A0515	3	2	2	499	
4A0675	3	2	2	499	
4A0930	6	4	4		
4A1200	6	4	4	503	
		Three-Phase 600 V Class			
5A0003	-	_	-	_	
5A0004	-	_	-	_	
5A0006	1	_	-		
5A0009	1	_	-		
5A0011	2	_	-		
5A0017	2	_	-	487	
5A0022	2	_	-		
5A0027	2	_	-		
5A0032	2	_	-		
5A0041	2	_	-	400	
5A0052	2	_	-	489	
5A0062	2	_	-	493	
5A0077	2	_	-		
5A0099	2	_	-		
5A0125	2	_	_		
5A0145	2	_	_		
5A0192	3	_	_		
5A0242	3	1	_		

◆ Cooling Fan Component Names

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

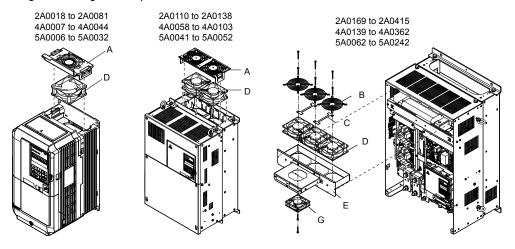


Figure 7.1 Cooling Fan Component Names

Remaining models can be found on the following page.

D - Cooling fan

E - Fan bracket

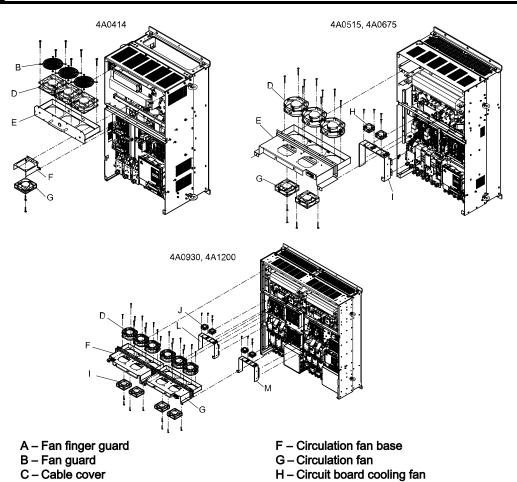


Figure 7.2 Cooling Fan Component Names (Continued)

I - Circuit board cooling fan unit case

Cooling Fan Replacement: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow cooling fan replacement instructions. Improper fan replacement could cause damage to equipment. Make sure the fan is facing upwards when installing the replacement fan into the drive. Replace all fans when performing maintenance to help ensure maximum useful product life.

■ Removing the Cooling Fan Finger Guard and Cooling Fan

1. Depress the right and left sides of the fan cover tabs and pull upward. Remove the fan cover from the top of the drive. The following figure illustrates a drive with a single cooling fan.

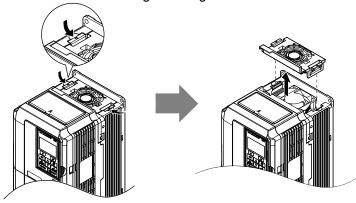
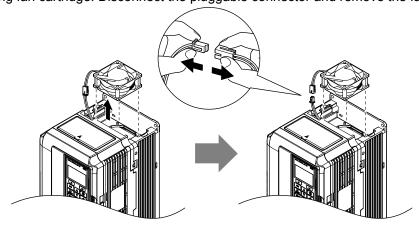
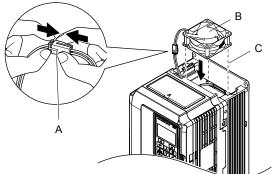


Figure 7.3 Remove the Cooling Fan Finger Guard: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032

2. Remove the cooling fan cartridge. Disconnect the pluggable connector and remove the fan.




Figure 7.4 Remove the Cooling Fan: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032

■ Installing the Cooling Fan

NOTICE: Prevent Equipment Damage. Follow cooling fan replacement instructions. Improper cooling fan replacement could result in damage to equipment. When installing the replacement cooling fan into the drive, make sure the fan is facing upwards. To ensure maximum useful product life, replace all cooling fans when performing maintenance.

Reverse the procedure described above to reinstall the cooling fan.

1. Install the replacement cooling fan into the drive, ensuring the alignment pins line up as shown in the figure below.

- A Push the connectors together so no space remains between them
- B Label facing up

C – Make sure the alignment pins line up properly

Figure 7.5 Install the Cooling Fan: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032

2. Properly connect the fan power lines, then place the cable back into the recess of the drive.

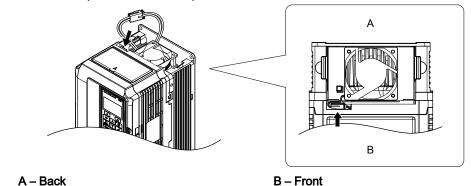


Figure 7.6 Connect the Cooling Fan Power Supply Connectors: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032

3. While pressing in on the hooks on the left and right sides of the fan finger guard, guide the fan finger guard until it clicks back into place.

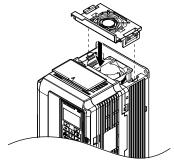


Figure 7.7 Reattach the Fan Finger Guard: 2A0018 to 2A0081, 4A0007 to 4A0044, and 5A0006 to 5A0032

4. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

Cooling Fan Replacement: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

These models allow access to the fans from the back or top of the drive for fan replacement. The drive can also be dismounted to replace the fans.

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow cooling fan replacement instructions. Improper fan replacement could cause damage to equipment. Make sure the fan is facing upwards when installing the replacement fan into the drive. Replace all fans when performing maintenance to help ensure maximum useful product life.

NOTICE: When dismounting Flange Type Enclosure (NEMA 12 Backside) drives, ensure that the gasket of the mounting flange is not damaged. If the gasket is damaged, contact a Yaskawa representative or the nearest Yaskawa sales office for replacement gasket. Refer to Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives on page 508 for gasket replacement parts and procedures.

■ Removing the Cooling Fan Finger Guard and Cooling Fan

1. While pressing in on the hooks located on the left and right sides of the fan finger guard, free the fan finger guard leading by lifting the back end first.

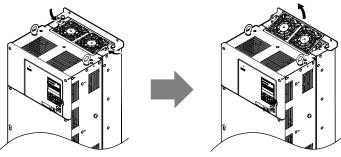


Figure 7.8 Remove the Cooling Fan Finger Guard: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

2. Lift out the back end of the fan finger guard first. Unplug the replay connector and free the fan finger guard from the drive.

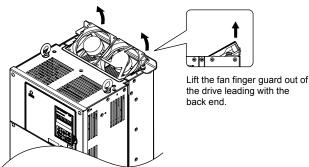


Figure 7.9 Remove the Cooling Fan: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

■ Installing the Cooling Fan

Reverse the procedure described above to reinstall the cooling fan.

- **1.** Properly connect the fan power lines.
- 2. Place the power supply connectors and cable back into the recess of the drive.

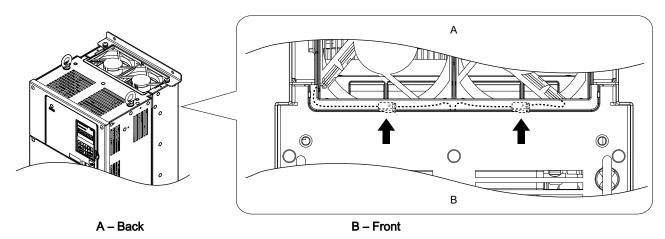


Figure 7.10 Cooling Fan Power Supply Connectors: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

3. Install the replacement fan into the drive.

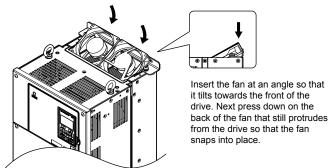


Figure 7.11 Install the Cooling Fan: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

4. Tilt up the back end of the fan finger guard and slide the fan finger guard into the opening near the front of the drive, then guide the fan finger guard into place.

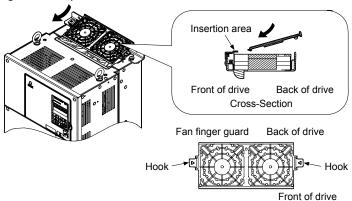


Figure 7.12 Reattach the Fan Cover: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

5. Press in on the hooks of the left and right sides of the fan cover and guide the fan finger guard until it clicks into place.

Figure 7.13 Reattach the Fan Finger Guard: 2A0110, 2A0138, 4A0058, 4A0072, 5A0041, and 5A0052

6. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

◆ Cooling Fan Replacement: 4A0088 and 4A0103

These models allow access to the fans from the back or top of the drive for fan replacement. The drive can also be dismounted to replace the fans.

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow cooling fan replacement instructions. Improper fan replacement could cause damage to equipment. Make sure the fan is facing upwards when installing the replacement fan into the drive. Replace all fans when performing maintenance to help ensure maximum useful product life.

NOTICE: When dismounting Flange Type Enclosure (NEMA 12 Backside) drives, ensure that the gasket of the mounting flange is not damaged. If the gasket is damaged, contact a Yaskawa representative or the nearest Yaskawa sales office for replacement gasket. Refer to Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives on page 508 for gasket replacement parts and procedures.

■ Removing the Cooling Fan Finger Guard and Cooling Fan

1. While pressing in on the hooks located on the left and right sides of the fan finger guard, free the fan finger guard by lifting the back end first.

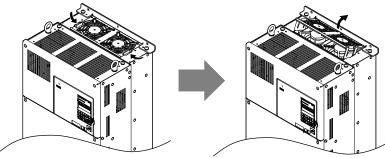


Figure 7.14 Remove the Cooling Fan Finger Guard: 4A0088 and 4A0103

2. Lift up directly on the cooling fan as shown in *Figure 7.15*. Unplug the relay connector and release the fan from the drive.

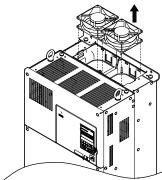


Figure 7.15 Remove the Cooling Fan: 4A0088 and 4A0103

■ Installing the Cooling Fan

Reverse the procedure describe above to reinstall the cooling fan.

1. Install the replacement fan into the drive. Align the pins as shown in *Figure 7.16*.

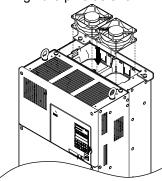


Figure 7.16 Install the Cooling Fan: 4A0088 and 4A0103

2. Properly connect the fan power lines then replace the power supply connectors and cables into the recess of the drive.

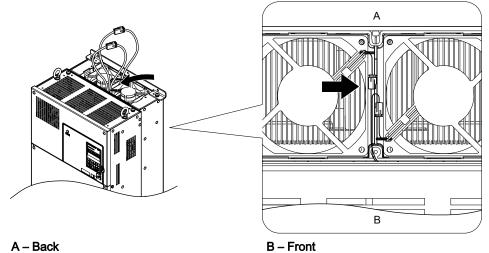


Figure 7.17 Cooling Fan Power Supply Connectors: 4A0088 and 4A0103

3. Angle the fan finger guard as shown in *Figure 7.18* and insert the connector tabs into the corresponding holes on the drive.

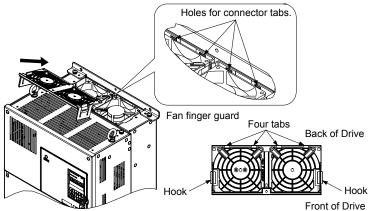


Figure 7.18 Reattach the Fan Finger Guard: 4A0088 and 4A0103

4. While pressing in on the hooks of the left and right sides of the fan finger guard, guide the fan finger guard until it clicks back into place.



Figure 7.19 Reattach the Fan Finger Guard: 4A0088 and 4A0103

5. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

◆ Cooling Fan Replacement: 2A0169 to 2A0415, 4A0139 to 4A0362, and 5A0062 to 5A0242

These models allow access to the fans from the front of the drive for fan replacement.

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow cooling fan and circulation fan replacement instructions. Improper fan replacement may cause damage to equipment. When installing the replacement fan into the drive, make sure the fan is facing upwards. Replace all fans when performing maintenance to help ensure maximum useful product life.

NOTICE: When dismounting the fan bracket sub-assembly on Flange Type Enclosure (NEMA 12 Backside) drives, ensure that the gasket attached to the mounting surface of the fan bracket is not damaged. If the gasket is damaged, contact a Yaskawa representative or the nearest Yaskawa sales office for replacement gasket. Refer to Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives on page 508 for gasket replacement parts and procedures.

Removing and Disassembling the Cooling Fan Unit

- 1. Remove the terminal cover and front cover.
- Remove the fan connector (CN6).

Remove the fan connectors (CN6, CN7) in models 2A0360, 2A0415, 4A0362, and 5A0242.

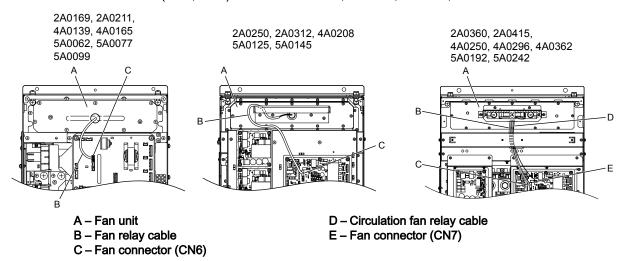


Figure 7.20 Cooling Fan Replacement: Fan Unit and Connectors

3. Remove the screws holding the fan unit in place and slide the fan unit out of the drive.

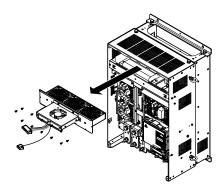


Figure 7.21 Remove the Fan Unit: 2A0169 to 2A0415, 4A0139 to 4A0362, and 5A0062 to 5A0242

4. Remove the fan guard and replace the cooling fans.

Note: Do not pinch the fan cable between parts when reassembling the fan unit.

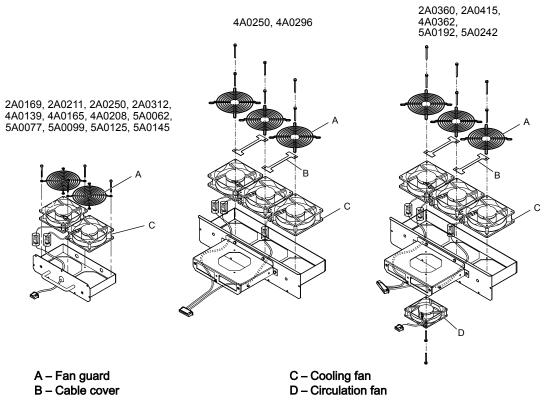


Figure 7.22 Fan Unit Disassembly: 2A0169 to 2A0415, 4A0139 to 4A0362, and 5A0062 to 5A0242

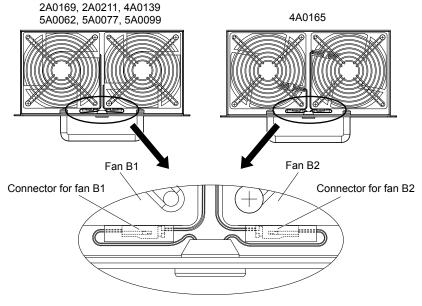
495

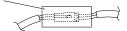
■ Cooling Fan Wiring: 2A0169, 2A0211, 4A0139, 4A0165, and 5A0062 to 5A0099

1. Position the protective tube so the fan connector sits in the center of the protective tube.

Protective tube

2. Place the fan connector covered by the tube as shown in *Figure 7.23*.




Figure 7.23 Cooling Fan Wiring: 2A0169, 2A0211, 4A0139, 4A0165, and 5A0062 to 5A0099

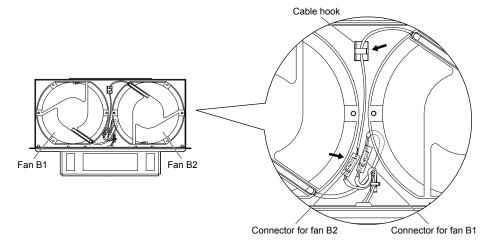
3. Make sure that the protective tube does not stick out beyond the fan guard.

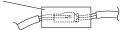
■ Cooling Fan Wiring: 2A0250, 2A0312, 4A0208, 5A0125, and 5A0145

1. Position the protective tube so the fan connector sits in the center of the protective tube.

Protective tube

2. Insert the connector for fan B2 and guide the lead wire for fan B2 so the cable hook holds it in place. Insert the connector for fan B1.




Figure 7.24 Cooling Fan Wiring: 2A0250, 2A0312, 4A0208, 5A0125, and 5A0145

3. Make sure that the protective tube does not stick out beyond the fan guard.

■ Cooling Fan Wiring: 2A0360, 2A0415, 4A0250 to 4A0362, 5A0192, and 5A0242

1. Position the protective tube so the fan connector sits in the center of the protective tube.

Protective tube

- 2. In the space between fans 1 and 2, place the fan connector for fan B2 in front of the fan connector for fan B1.
- 3. Place the connector for fan B3 between fans B2 and B3.

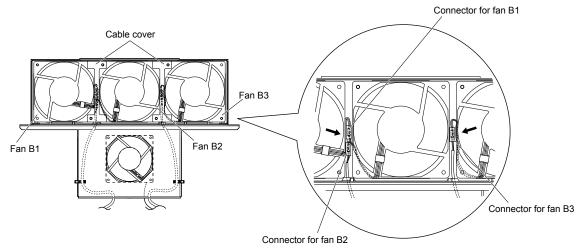


Figure 7.25 Cooling Fan Wiring: 2A0360, 2A0415, 4A0250 to 4A0362, 5A0192, and 5A0242

- **4.** Double-check the relay connector to ensure it is properly connected.
- 5. Reattach the cable cover to its original position and tighten the screws so the fan guard holds the cable cover in place.Note: Do not pinch the fan cable between parts when reassembling the fan unit.

■ Installing the Cooling Fan Unit

1. Reverse the procedure described above to reinstall the cooling fan unit.

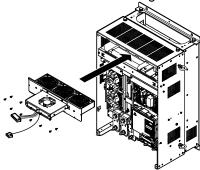


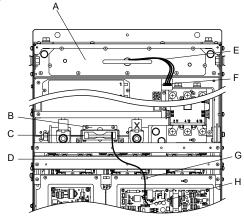
Figure 7.26 Install the Cooling Fan Unit: 2A0169 to 2A0415 and 4A0139 to 4A0362, and 5A0062 to 5A0242

- **2.** Reattach the covers and digital operator.
- 3. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

◆ Cooling Fan Replacement: 4A0414

This model allows access to the fans from the front of the drive for fan replacement.

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.


CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow cooling fan and circulation fan replacement instructions. Improper fan replacement may cause damage to equipment. When installing the replacement fan into the drive, make sure the fan is facing upwards. Replace all fans when performing maintenance to help ensure maximum useful product life.

NOTICE: When dismounting the fan bracket sub-assembly on Flange Type Enclosure (NEMA 12 Backside) drives, ensure that the gasket attached to the mounting surface of the fan bracket is not damaged. If the gasket is damaged, contact a Yaskawa representative or the nearest Yaskawa sales office for replacement gasket. Refer to Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives on page 508 for gasket replacement parts and procedures.

Removing and Disassembling the Cooling Fan Unit

- 1. Remove the terminal cover and front covers 1 and 2.
- Remove the fan connector (CN6).

A – Fan unit

B - Circulation fan unit

C - Circulation fan

D - Circulation fan relay cable

E - Fan relay cable

F - Fan connector (CN6)

G-Hook

H - Fan connector (CN7)

Figure 7.27 Component Names: 4A0414

- 3. Remove the circulation fan relay cable from the hook. Remove the fan connector (CN7).
- 4. Remove the screws holding the fan units in place and slide the fan units out of the drive.

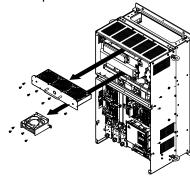


Figure 7.28 Remove the Fan Unit: 4A0414

5. Remove the fan guard and circulation fan casing. Replace the cooling fans.

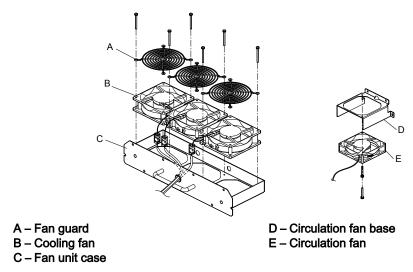


Figure 7.29 Fan Unit Disassembly: 4A0414

■ Cooling Fan Wiring

1. Position the protective tube so the fan connector sits in the center of the protective tube.

Protective tube

2. Place the fan connector covered by the tube as shown in *Figure 7.30*.

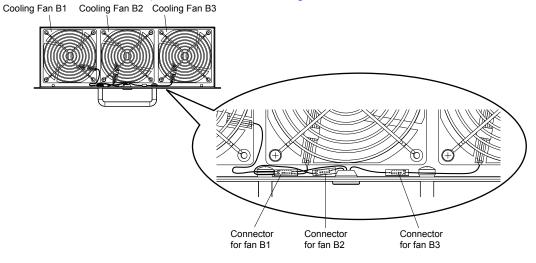


Figure 7.30 Cooling Fan Wiring: 4A0414

 ${f 3.}\;\;$ Double-check the relay connector to ensure that it is properly connected.

■ Installing the Cooling Fan Unit

1. Reverse the procedure described above to reinstall the cooling fan unit.

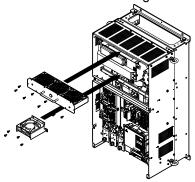


Figure 7.31 Install the Cooling Fan Unit: 4A0414

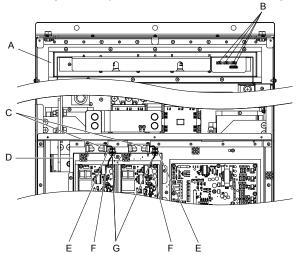
- Reattach the covers and digital operator.
- **3.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

Cooling Fan Replacement: 4A0515 and 4A0675

These models allow access to the fans from the front of the drive for fan replacement.

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.


NOTICE: Follow cooling fan and circulation fan replacement instructions. Improper fan replacement may cause damage to equipment. When installing the replacement fan into the drive, make sure the fan is facing upwards. Replace all fans when performing maintenance to help ensure maximum useful product life.

NOTICE: When dismounting the fan bracket sub-assembly on Flange Type Enclosure (NEMA 12 Backside) drives, ensure that the gasket attached to the mounting surface of the fan bracket is not damaged. If the gasket is damaged, contact a Yaskawa representative or the nearest Yaskawa sales office for replacement gasket. Refer to Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside)

Drives on page 508 for gasket replacement parts and procedures.

■ Removing and Disassembling the Cooling Fan Unit

- 1. Remove the terminal cover and front covers 1 and 2.
- 2. Remove the connectors for the cooling fan relay and the circuit board cooling fan.

- A Fan unit
- B Fan relay connector
- C Circuit board cooling fan
- D Circuit board cooling fan case
- E Hook
- F Circuit board cooling fan connector
- G-Circuit board cooling fan cable

Figure 7.32 Component Names: 4A0515 and 4A0675

3. Loosen all nine screws and slide the panel to the right.

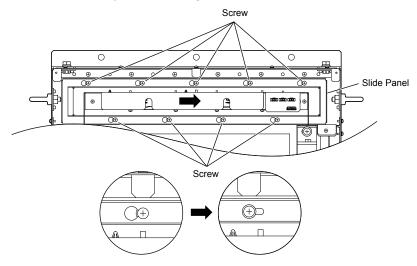


Figure 7.33 Remove the Fan Unit: 4A0515 and 4A0675

4. Remove the slide panel, fan unit, and circuit board cooling fan unit.

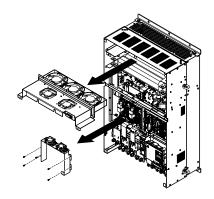
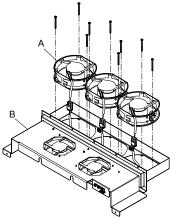
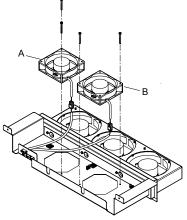



Figure 7.34 Remove the Fan Unit: 4A0515 and 4A0675

5. Replace the cooling fans.

Note: Do not pinch the fan cable between parts when reassembling the fan unit.

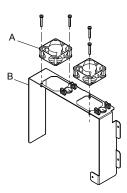


A - Cooling fan

B - Fan unit case

Figure 7.35 Fan Unit Disassembly: 4A0515 and 4A0675

6. Turn the fan unit over and replace the circulation fans.



A - Circulation fan 1

B - Circulation fan 2

Figure 7.36 Fan Unit Disassembly: 4A0515 and 4A0675

7. Replace the cooling fans.

A - Circuit board cooling fan

B - Circuit board cooling fan case

Figure 7.37 Fan Unit Disassembly: 4A0515 and 4A0675

■ Cooling Fan Wiring

1. Place the cooling fan connectors and guide the lead wires so they are held in place by the cable hooks.

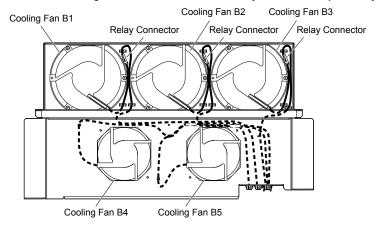


Figure 7.38 Cooling Fan Wiring: 4A0515 and 4A0675

2. Guide the lead wires so that they are held in place by the cable hooks and place the circulation fan connectors between the fan and the fan unit.

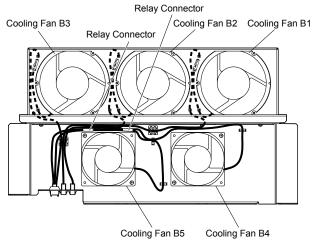


Figure 7.39 Cooling Fan Wiring: 4A0515 and 4A0675

3. Position the protective tube so the fan connector sits in the center of the protective tube. (Circuit board cooling fans only)

4. Guide the lead wires through the provided hooks so the wires are held in place.

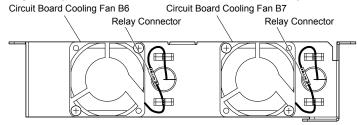


Figure 7.40 Cooling Fan Wiring: 4A0515 and 4A0675

5. Double-check the relay connector to ensure that it is properly connected.

■ Installing the Cooling Fan Unit

1. Reverse the procedure described above to reinstall the cooling fan unit.

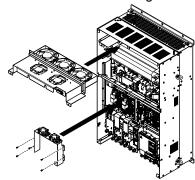


Figure 7.41 Install the Cooling Fan Unit: 4A0515 and 4A0675

- 2. Reattach the covers and digital operator.
- **3.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

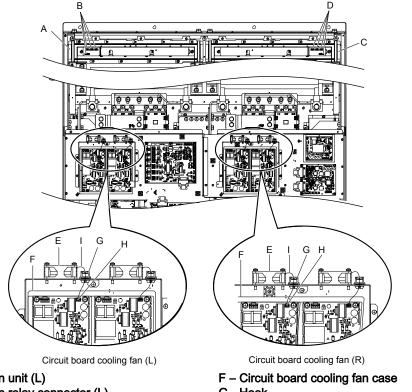
Cooling Fan Replacement: 4A0930 and 4A1200

These models allow access to the fans from the front of the drive for fan replacement.

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow cooling fan and circulation fan replacement instructions. Improper fan replacement may cause damage to equipment. When installing the replacement fan into the drive, make sure the fan is facing upwards. Replace all fans when performing maintenance to help ensure maximum useful product life.


NOTICE: When dismounting the fan bracket sub-assembly on Flange Type Enclosure (NEMA 12 Backside) drives, ensure that the gasket attached to the mounting surface of the fan bracket is not damaged. If the gasket is damaged, contact a Yaskawa representative or the nearest Yaskawa sales office for replacement gasket. Refer to Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives on page 508 for gasket replacement parts and procedures.

■ Removing and Disassembling the Cooling Fan Unit

1. Remove the terminal cover and front covers 1 and 2.

CAUTION! Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off and cause an injury. Take special care when removing and reattaching the terminal covers for larger drives.

2. Remove the connectors for the cooling fan relay and the circuit board cooling fan.

A - Fan unit (L)

B - Fan relay connector (L)

C-Fan unit (R)

D - Fan relay connector (R)

E - Circuit board cooling fan

G-Hook

H - Circuit board cooling fan connector

I - Circuit board cooling fan cable

Figure 7.42 Component Names: 4A0930 and 4A1200

3. Loosen screws A (4 count) and B (18 count) and slide the panel to the right. The fan unit can be removed by loosening these screws; they do not need to be removed. Note:

> Screw B Screw B Slide Panel Slide Panel Screw A Ð $\Theta \otimes \Theta \otimes \Theta$ Screw B Screw A Screw B (H)> \bigcirc

Figure 7.43 Remove the Fan Unit: 4A0930 and 4A1200

4. Remove the slide panel, fan units, and circuit board cooling fan unit.

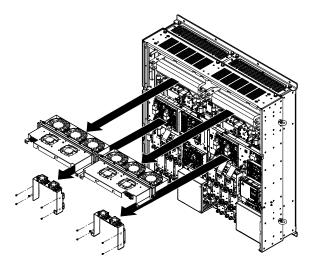
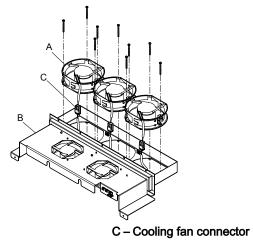



Figure 7.44 Remove the Fan Unit: 4A0930 and 4A1200

5. Replace the cooling fans.

Note:

- 1. Figure 7.45 shows the right side fan unit.
- 2. Do not pinch the fan cable between parts when reassembling the fan unit.

A – Cooling fan B – Fan unit case

Figure 7.45 Fan Unit Disassembly: 4A0930 and 4A1200

6. Place the cooling fan connectors and guide the lead wires so that they are held in place by the cable hooks.

Fun Unit Case (R)

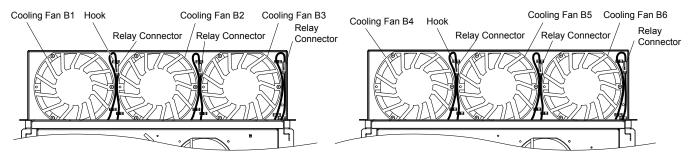
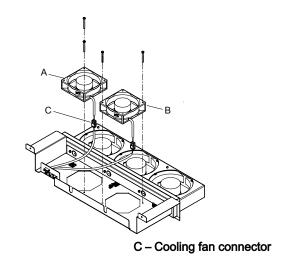



Figure 7.46 Cooling Fan Wiring: 4A0930 and 4A1200

7. Turn the fan unit over and replace the circulation fans.

A - Circulation fan 1

B - Circulation fan 2

Figure 7.47 Fan Unit Disassembly: 4A0930 and 4A1200

8. Place the cooling fan connectors and guide the lead wires so that they are held in place by the cable hooks.

Fun Unit Case (L)

Fun Unit Case (R)

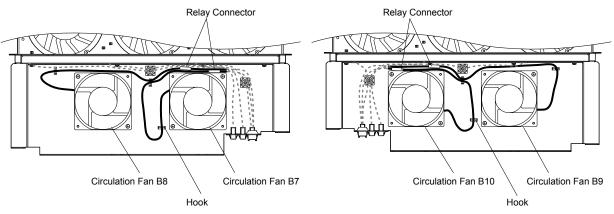
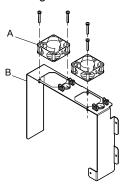
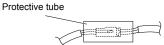



Figure 7.48 Cooling Fan Wiring: 4A0930 and 4A1200

9. Replace the circuit board cooling fans.

Note: Figure 7.49 shows the right side circuit board cooling fan.



A - Circuit board cooling fan

B - Circuit board cooling fan case

Figure 7.49 Fan Unit Disassembly: 4A0930 and 4A1200

10.Position the protective tube so the fan connector sits in the center of the protective tube. (Circuit board cooling fans only)

11.Guide the lead wires through the provided hooks so the wires are held in place.

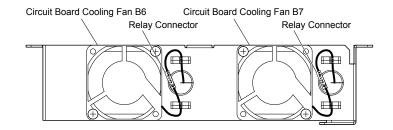


Figure 7.50 Cooling Fan Wiring: 4A0930 and 4A1200

12. Double-check the relay connector to ensure that it is properly connected.

■ Installing the Cooling Fan Unit

1. Reverse the procedure described above to reinstall the cooling fan unit.

Note: Properly connect the relay connectors to the fan unit connectors.

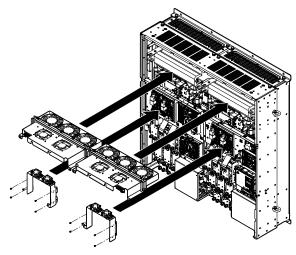


Figure 7.51 Install the Cooling Fan Unit: 4A0930 and 4A1200

- 2. Reattach the covers and digital operator.
- 3. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

Gasket Replacement for Flange Type Enclosure (NEMA 12 Backside) Drives

■ Gasket Replacement Procedure

- 1. Use a plastic scraper to remove the damaged or torn gasket without scratching the mounting surfaces.
- **2.** Peel off the adhesive cover from the replacement gasket.
- Align the holes on the mounting flange or fan bracket with the holes on the replacement gasket and apply the new gasket.

■ Gasket Replacement Parts

Each replacement part contains two gaskets in the event that a gasket is torn during application.

Contact a Yaskawa representative or the nearest Yaskawa sales office to order replacement gaskets as required.

Table 7.6 Gasket Replacement Part Numbers

Drive Model	Replacement Part	Part Number
2A0110U 4A0058U	Mounting Flange Gasket	UGK00418-A
2A0138U 4A0072U 5A0041U 5A0052U	Mounting Flange Gasket	UGK00419-A
4A0088U 4A0103U	Mounting Flange Gasket	UGK00420-A
2A0169U 2A0211U 4A0139U 4A0165U 5A0062U 5A0077U 5A0099U	Fan Bracket Gasket	UGK00421-A
2A0250U 2A0312U 4A0208U 5A0125U 5A0145U	Fan Bracket Gasket	UGK00422-A
2A0360U 4A0250U 4A0296U 4A0362U 5A0192U 5A0242U 2A0415U	Fan Bracket Gasket	UGK00423-A
4A0414U	Fan Bracket Gasket	UGK00424-A
4A0515U 4A0675U 4A0930U 4A1200U	Fan Bracket Gasket	UGK00425-A

7.5 Replacing the Air Filter

Drive models 4A0930 and 4A1200 have a built-in air filter.

Contact a Yaskawa representative or the nearest Yaskawa sales office to order new replacement air filters as necessary. Follow the instructions below to remove and replace the air filter.

Air Filter Replacement

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

CAUTION! Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

NOTICE: Follow air filter replacement instructions. Improper air filter replacement may cause damage to equipment. Replace all filters when performing maintenance to help ensure maximum useful product life.

■ Removing the Air Filter

- 1. Remove the terminal cover.
- 2. Remove the screws holding the blind cover in place on the bottom of the drive. Pull forward on the blind cover to free it from the drive.

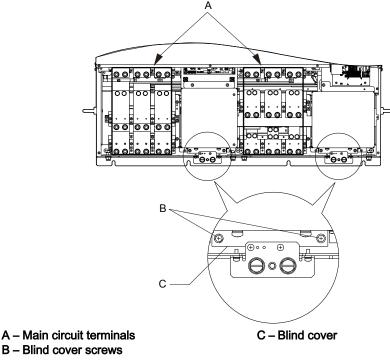
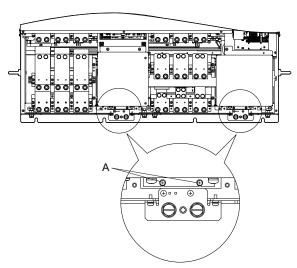



Figure 7.52 Remove the Blind Cover

3. Loosen the screws holding the filter case in place. Do not remove the screws.

Note: Only loosen the filter case; it should not be removed.

A -Screws holding filter case

Figure 7.53 Loosen the Filter Case Screws

4. Hold the bottom of the filter case and slide it out from the drive.

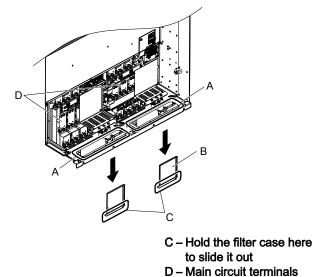


Figure 7.54 Slide Out the Filter Case

5. Remove the filter from the filter case

A - Opening

B - Filter case

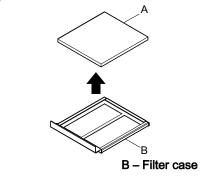


Figure 7.55 Remove the Air Filter

■ Installing the Air Filter

Reverse the procedure described above to reinstall the air filter.

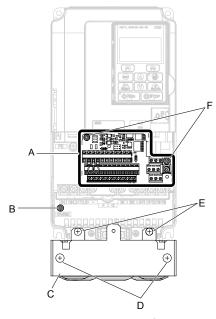
A - Air filter

7.6 Drive Replacement

Serviceable Parts

The drive contains some serviceable parts. The following parts can be replaced over the life span of the drive:

- Terminal board I/O PCBs
- Cooling fan(s)
- · Front cover


Replace the drive if the main power circuitry is damaged. Contact your local Yaskawa representative before replacing parts if the drive is still under warranty. Yaskawa reserves the right to replace or repair the drive according to Yaskawa warranty policy.

Terminal Board

The drive has a modular I/O terminal block that facilitates quick drive replacement. The terminal board contains on-board memory that stores all drive parameter settings and allows the parameters to be saved and transferred to the replacement drive. To transfer the terminal board, disconnect the terminal board from the damaged drive and reconnect it to the replacement drive. There is no need to manually reprogram the replacement drive after transferring the terminal board.

Note:

If the damaged drive and the new replacement drive are have different capacities, the data stored in the terminal board cannot be transferred to the new drive and an oPE01 error will appear on the display. The terminal board can still be used, but parameter setting from the old drive cannot be transferred. The replacement drive must be initialized and manually programmed.

- A Removable terminal board
- B Charge LED
- C Conduit bracket

- D Conduit bracket cover screws
- E Conduit bracket mounting screws
- F Terminal board locking screws

Figure 7.56 Terminal Board

Replacing the Drive

WARNING! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

WARNING! Electrical Shock Hazard. Do not allow unqualified personnel to perform work on the drive. Failure to comply could result in serious injury. Installation, maintenance, inspection and servicing must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

NOTICE: Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards. Failure to comply may result in ESD damage to the drive circuitry.

The following procedure explains how to replace a drive.

This section provides instructions for drive replacement only.

To install option boards or other types of options, refer to the specific manuals for those options.

NOTICE: When transferring a braking transistor, braking resistor, or other type of option from a damaged drive to a new replacement drive, make sure it is working properly before reconnecting it to the new drive. Replace broken options to prevent immediate breakdown of the replacement drive.

1. Remove the terminal cover.

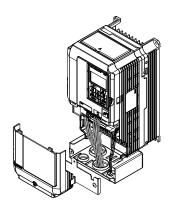


Figure 7.57 Remove the Terminal Cover

2. Loosen the screws holding the terminal board in place. Remove the screw securing the bottom cover and remove the bottom cover from the drive.

Note: IP00/Open Type enclosure drives do not have a bottom cover or conduit.

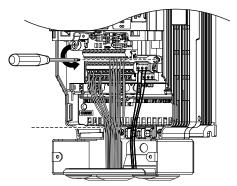


Figure 7.58 Unscrew the Terminal Board and Remove the Bottom Cover

3. Slide the terminal board as illustrated by the arrows to remove it from the drive along with the bottom cover.

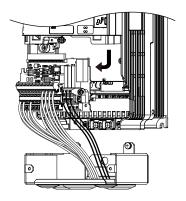


Figure 7.59 Remove the Terminal Board

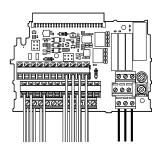


Figure 7.60 Disconnected Removable Terminal Board

- 4. Disconnect all option cards and options, making sure they are intact before reusing.
- **5.** Replace the drive and wire the main circuit.

Installing the Drive

1. After wiring the main circuit, connect the terminal block to the drive as shown in *Figure 7.61*. Use the installation screw to fasten the terminal block into place.

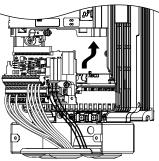


Figure 7.61 Install the Terminal Board

- 2. Reconnect options for the new drive the same way the options were connected in the old drive. Connect option boards to the same option ports in the new drive that were used in the old drive.
- **3.** Replace the terminal cover.
- **4.** After powering on the drive, all parameter settings are transferred from the terminal board to the drive memory. If an oPE04 error occurs, load the parameter settings saved on the terminal board to the new drive by setting parameter A1-03 to 5550. Reset the Maintenance Monitor function timers by setting parameters o4-01 through o4-12 to 0, and parameter o4-13 to 1.

7.6 Drive Replacement

This Page Intentionally Blank

Peripheral Devices & Options

This chapter explains the installation of peripheral devices and options available for the drive.

8.1	SECTION SAFETY	516
8.2	DRIVE OPTIONS AND PERIPHERAL DEVICES	518
8.3	CONNECTING PERIPHERAL DEVICES	520
8.4	OPTION INSTALLATION	521
8.5	INSTALLING PERIPHERAL DEVICES	532

8.1 Section Safety

⚠ DANGER

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply will result in death or serious injury.

The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

A WARNING

Electrical Shock Hazard

Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection and servicing must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing and wear eye protection before beginning work on the drive.

Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Do not use damaged wires, place excessive stress on wiring, or damage the wire insulation.

Failure to comply could result in death or serious injury.

Fire Hazard

Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices.

Contact your supplier if the cause cannot be identified after checking the above.

Do not restart the drive or immediately operate the peripheral devices if a fuse is blown or a GFCI is tripped.

Check the wiring and the selection of peripheral devices to identify the cause. Contact your supplier before restarting the drive or the peripheral devices if the cause cannot be identified.

Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment.

Do not connect or operate any equipment with visible damage or missing parts.

Do not use unshielded wire for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

Properly connect all pins and connectors.

Failure to comply may prevent proper operation and possibly damage equipment.

Check all the wiring to ensure that all connections are correct after installing the option and connecting any other devices.

Failure to comply could result in damage to the option.

8.2 Drive Options and Peripheral Devices

Table 8.1 lists the names of the various peripheral devices, accessories, and options available for Yaskawa drives. Contact Yaskawa or your Yaskawa agent to order these peripheral devices.

- Peripheral Device Selection: Refer to the Yaskawa catalog for selection and part numbers.
- Peripheral Device Installation: Refer to the corresponding option manual for installation instructions.

Table 8.1 Available Peripheral Devices

Option	Option Model Number Description					
Ориоп	Wiodel Nullibel	Power Options				
DC link choke						
	_	Improves the power factor by suppressing harmonic distortion from the power supply. Protects the drive when operating from a large power supply and improves the power factor by				
AC Reactor	-	suppressing harmonic distortion. Highly recommended for power supplies that exceed 600 kVA.				
Braking Resistor	_	For use with systems that require dynamic braking with up to 3% ED. If higher ED is required, use a Braking Resistor Unit.				
		Note: Not rated for 600 V class drive models.				
		Input/Output Option Cards				
		Allows high precision, high resolution analog reference input				
Analog Input	AI-A3	• Input channels: 3				
Analog input	AI-A3	• Voltage input: -10 to 10 Vdc (20 kΩ), 13-bit signed				
		• Current input: 4 to 20 mA or 0 to 20 mA (250 Ω), 12-bit				
		Provides extra multi-function analog output terminals				
Analog Monitor	AO-A3	• Output channels: 2				
		Output voltage: -10 to 10 V, 11-bit (signed)				
		Sets the frequency reference by digital inputs				
Digital Input	DI-A3	Input channels: 18 (including SET signal and SIGN signal)				
Digital Input		• Input signal type: BCD 16-bit (4-digit), 12-bit (3-digit), 8-bit (2-digit)				
		• Input signal: 24 Vdc, 8 mA				
		Provides extra insulated multi-function digital outputs				
Digital Output	DO-A3	• Photocoupler relays: 6 (48 V, up to 50 mA)				
		Contact relays: 2 (250 Vac/up to 1 A, 30 Vdc/up to 1 A)				
		Motor Speed Feedback Option Cards				
		For speed feedback input by connecting a motor encoder				
Matan DC Facilities		• Input: 3-track (can be used with 1 or 2 tracks), line driver, 300 kHz max				
Motor PG Feedback Line Driver Interface	PG-X3	Pulse monitor: Matches RS-422 level				
		Output: 3-track, line driver				
		Encoder power supply: 5 V or 12 V, max current 200 mA				
		For speed feedback input by connecting a motor encoder				
Motor PG Feedback Open	PG-B3	• Input: 3-track (can be used with 1 or 2 tracks), HTL encoder connection, 50 kHz max				
Collector Interface	10 55	Output: 3-track, open collector				
		Encoder power supply: 12 V, max current 200 mA				
		For speed feedback input by connecting a motor encoder				
		Encoder type: EnDat 2.1/01, EnDat 2.2/01, and EnDat 2.2/22 (HEIDENHAIN), HIPERFACE (SICK-STEGMANN)				
EnDat Encoder		Maximum input frequency: 20 kHz				
		Pulse monitor: Matches RS-422 level				
	PG-F3	Output voltage: 5 V±5%, 8 V±10%				
		Maximum output current: 200 mA				
		Encoder power supply: 5 V, max current 330 mA or 8 V, max current 150 mA				
		• Wiring length: 20 m max. for the encoder, 30 m max. for the pulse monitor				
		Note: 1. Available in drive software versions PRG: 1018 and later.				
		The PG-F3 option can only be used in CLV/PM and might not be compatible with models 4A0930 and 4A1200.				

Option	Model Number	Description
		For motor speed feedback by connecting a resolver that meets the specifications set by Yaskawa.
		Input voltage: 10 Vac rms 10 kHz
Motor Feedback Resolver	PG-RT3	• Transformation ratio: $0.5 \pm 5\%$
Interface		Maximum input current: 100 mA rms
		Note: 1. Available in drive software versions PRG: 1017 and later.
		2. Not available with drive models 4A0930 and 4A1200.
		Communication Option Cards
EtherNet/IP	SI-EN3	Connects to an EtherNet/IP network.
Etherricari	ST ET(S	Note: Not available with models 4A0930 and 4A1200.
Modbus TCP/IP	SI-EM3	Connects to a Modbus TCP/IP network.
Wodous TC1/II	SI-EWI3	Note: Not available with models 4A0930 and 4A1200.
PROFINET	SI-EP3	Connects to a PROFINET network.
PROFINET	SI-EP3	Note: Not available with models 4A0930 and 4A1200.
r	CI III	Connects to a LonWorks network.
LonWorks	SI-W3	Note: Not available with models 4A0930 and 4A1200.
DeviceNet	SI-N3	Connects to a DeviceNet network
PROFIBUS-DP	SI-P3	Connects to a PROFIBUS-DP network.
MECHATROLINK-II	SI-T3	Connects to a MECHATROLINK-II network.
	51 15	Connects to a MECHATROLINK-III network.
MECHATROLINK-III	SI-ET3	Note: Not available with models 4A0930 and 4A1200.
		Connects to a BACnet network.
BACnet	SI-B3	
		Note: Not available with models 4A0930 and 4A1200.
EtherCAT	SI-ES3	Connects to an EtherCAT network.
		Note: Not available with models 4A0930 and 4A1200.
CC-Link <1>	SI-C3	Connects to a CC-Link network.
CANopen <1>	SI-S3	Connects to a CANopen network.
		Interface Options
LED Operator	JVOP-182	5-digit LED operator; max. cable length for remote usage: 3 m
Remote Operator Cable	UWR000051, 1 m cable UWR000052, 2 m cable	RJ-45, 8-pin straight through, UTP CAT5e, extension cable (1 m or 2 m) to connect the digital operator for remote operation.
USB Copy Unit	JVOP-181	Allows the user to copy and verify parameter settings between drives.
СБВ сору сти	3 7 61 161	Functions as an adapter to connect the drive to a USB port on a PC.
		Mechanical Options
Attachment for External Heatsink	EZZ020800A/B/C/D	Installation kit for mounting the drive with the heatsink outside of the panel (Side-by-Side mounting possible)
IP20/NEMA Type 1 Kit	EZZ021136A-H	Parts to make the drive conform to IP20/NEMA Type 1 enclosure requirements.
IP20/NEMA Type 1, 4, 12 Blank Keypad Kit	UUX0000526	Provides digital operator (JVOP-180, JVOP-182) functionality on an enclosure designed for IP20/NEMA Type 1, 3R, 4, 4X, 12, or IP□6 environment. This keypad has a blank label on the front.
IP20/NEMA Type 1, 4, 12 Yaskawa Logo Keypad Kit	UUX0000527	Provides digital operator (JVOP-180, JVOP-182) functionality on an enclosure designed for IP20/NEMA Type 1, $3R$, 4 , $4X$, 12 , or IP \square 6 environment. This keypad has a Yaksawa brand label on the front.
		Others
24 V Power Supply	200 V Class: PS-A10LB 400 V Class: PS-A10HB 600 V Class: PS-A10HB	Supplies the drive controller with 24 Vdc power during main power loss.
		PC Software Tools
DriveWizard Industrial	Contact Yaskawa	PC tool for drive setup and parameter management
DriveWorksEZ	Contact Yaskawa	PC tool for enhanced programming of the drive

<1> Limited support. Contact a Yaskawa representative or the nearest Yaskawa sales office for assistance.

8.3 Connecting Peripheral Devices

Figure 8.1 illustrates how to configure the drive and motor to operate with various peripheral devices.

Refer to the specific manual for the devices shown below for more detailed installation instructions.

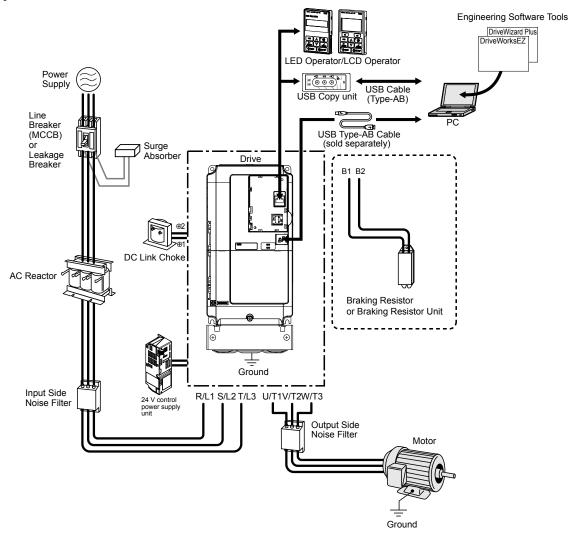


Figure 8.1 Connecting Peripheral Devices

Note: If the drive is set to trigger a fault output when the fault restart function is activated (L5-02 = 1), then a sequence to interrupt power when a fault occurs will turn off the power to the drive while the drive attempts to restart. The default setting for L5-02 is 0 (fault output active during restart).

8.4 Option Installation

This section provides instructions on installing the options in *Table 8.2*.

◆ Prior to Installing the Option

Prior to installing the option, wire the drive, make necessary connections to the drive terminals, and verify that the drive functions normally without the option installed.

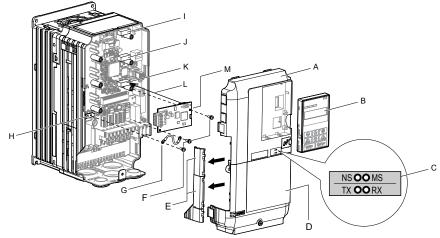

Table 8.2 below lists the number of options that can be connected to the drive and the drive ports for connecting those options.

Table 8.2 Option Installation

Option	Port/Connector	Number of Options Possible
PG-B3, PG-X3	CN5-C	2 <1>
PG-F3 <2> <3>, PG-RT3 <2> <3>	CN5-C	1
AO-A3, DO-A3	CN5-A, B, C	1
SI-B3 <3>, SI-C3, SI-EN3 <3>, SI-EM3 <3>, SI-EP3 <3>, SI-ES3 <3>, SI-ET3 <3>, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3 <3>, AI-A3 <4>, DI-A3	CN5-A	1

- <1> When connecting two PG option cards, use both CN5-B and CN5-C. When connecting only one PG option card, use the CN5-C connector.
- <2> Not available for the application with Motor 2 Selection.
- <3> Not available with models 4A0930 and 4A1200.
- <4> When using AI-A3 and DI-A3 as monitors, the card can be connected to any of CN5-A, CN5-B or CN5-C. The input status of AI-A3 can then be viewed using U1-21, U1-22, and U1-23, and the input status of DI-A3 can then be viewed using U1-17.

Figure 8.2 shows an exploded view of the drive with the option and related components for reference.

- A Drive front cover
- B Digital operator
- C LED label (for communication options)
- D Drive terminal cover
- E Removable tabs for wire routing
- F Included screws
- G Ground wire

H - Drive grounding terminal (FE)

- I Connector CN5-C
- J Connector CN5-B
- K Connector CN5-A
- L Insertion point for CN5 connector
- M Option

Figure 8.2 Drive Components with Option

PG Option Installation Example

Remove the front covers of the drive before installing the option. PG options can inserted into the CN5-B or CN5-C connectors located on the drive control board.

1. Shut off power to the drive, wait the appropriate amount of time for voltage to dissipate, then remove the digital operator (B) and front covers (A, D). Front cover removal varies by model.

DANGER! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Before installing the option, disconnect all power to the drive. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait at least five minutes after all indicators are off and measure the DC bus voltage level to confirm safe level.

NOTICE: Damage to Equipment. Observe proper electrostatic discharge procedures (ESD) when handling the option, drive, and circuit boards. Failure to comply may result in ESD damage to circuitry.

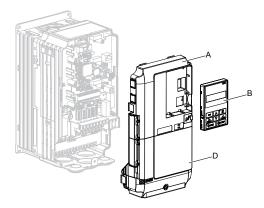


Figure 8.3 Remove the Front Covers and Digital Operator

2. Insert the option (M) into the CN5-B or CN5-C connector (I, J) located on the drive and fasten it using one of the included screws (F). When connecting only one PG option, use the CN5-C connector.

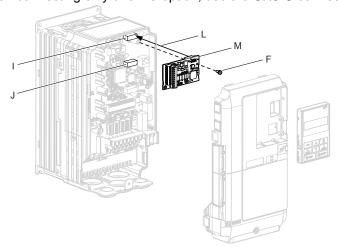


Figure 8.4 Insert the Option

3. Connect the ground wire (G) to the ground terminal (H) using one of the remaining provided screws (F). Connect the other end of the ground wire (G) to the remaining ground terminal and installation hole on the option (M) using the last remaining provided screw (F) and tighten both screws to 0.5 ~ 0.6 N m or (4.4 ~ 5.3 in lbs).

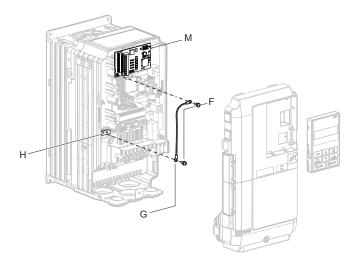


Figure 8.5 Connect the Ground Wire

Note:

- The option package includes two ground wires. Use the longer wire when plugging the option into connector CN5-C on the
 drive side. Use the shorter wire when plugging the option into connector CN5-B. Refer to the Option Installation manual for
 more information.
- 2. There are two screw holes on the drive for use as ground terminals (H). When connecting three options, two ground wires will need to share the same drive ground terminal.
- **4.** Prepare and connect the wire ends as shown in *Figure 8.6* and *Figure 8.7*. *Refer to Wire Gauges and Tightening Torques of PG-X3 Option on page 529* or *Refer to Wire Gauges and Tightening Torques of PG-X3 Option on page 529* to confirm that the proper tightening torque is applied to each terminal. Take particular precaution to ensure that each wire is properly connected and that wire insulation is not accidentally pinched into electrical terminals.

WARNING! Fire Hazard. Tighten all terminal screws according to the specified tightening torque. Loose electrical connections could result in death or serious injury by fire due to overheating electrical connections. Tightening screws beyond the specified tightening torque may result in erroneous operation, damage to the terminal block, or cause a fire.

NOTICE: Heat shrink tubing or electrical tape may be required to ensure that cable shielding does not contact other wiring. Insufficient insulation may cause a short circuit and damage the option or drive.

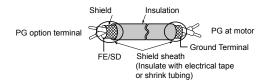


Figure 8.6 Preparing Ends of Shielded Cable

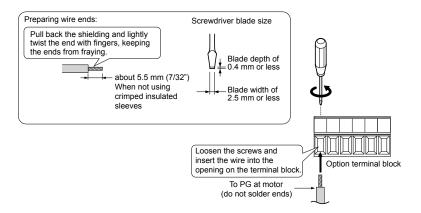


Figure 8.7 Preparing and Connecting Cable Wiring

Wire the motor PG encoder to the terminal block on the option. Refer to Figure 8.8 and Figure 8.12 for wiring instructions.

Refer to PG-B3 Option Terminal Functions on page 525 for a detailed description of the option terminal functions.

PG-B3 Parameter Settings

- Connecting a Single-Pulse Encoder in V/f with PG Control Mode: Connect the pulse output from the PG to the option and set F1-21 to 0.
- Connecting a Two-Pulse Encoder: Connect the A and B pulse outputs on the PG to the option and set F1-21 to 1. When using a two-pulse encoder in CLV control mode, connect pulse outputs A and B from the encoder to the corresponding terminals on the option.
- Connecting a Two-Pulse Encoder with Z Marker Pulse: Connect the A, B, and Z pulse outputs to the corresponding terminals on the option.

Control Method	V/f with PG		Closed Loop Vector	
No. of Encoders	1 (CN5-C) 2 (CN5-B)		1 (CN5-C)	2 (CN5-B)
Single Pulse (A)	F1-21 = 0	F1-37 = 0	N/A	N/A
Two Pulse (AB Quadrature)	F1-21 = 1	F1-37 = 1	No setting required	No setting required
Two Pulse with Marker (ABZ)	F1-21 = 1	F1-37 = 1	No setting required	No setting required

PG-B3 Connection Diagram

Refer to PG-B3 Option Terminal Functions on page 525 for a detailed description of the option board terminal functions.

Refer to Wire Gauges and Tightening Torques of PG-B3 Option on page 526 for information on making cables.

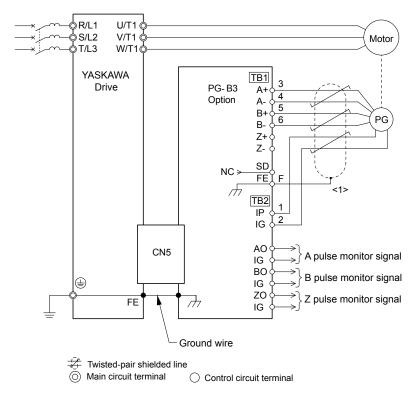


Figure 8.8 PG-B3 Option and Encoder Connection Diagram

<1> Ground the shield on the PG side and the drive side. If electrical signal interference problems arise in the PG signal, remove the shield ground from one end of the signal line or remove the shield ground connection on both ends.

Note: The PG-B3 option reads a maximum input frequency of 50 kHz from the PG encoder. Select a PG encoder with an output pulse frequency of maximum 50 kHz when operating at maximum speed.

Take the following steps to prevent erroneous operation caused by noise interference:

- Use shielded wire for the PG encoder signal lines.
- Limit the length of all motor output power cables to less than 100 m. Limit the length of open-collector output lines to less than 50 m.
- Use separate conduit or cable tray dividers to separate option control wiring, main circuit input power wiring, and motor output power cables.

PG-B3 Interface Circuit

Complementary Output

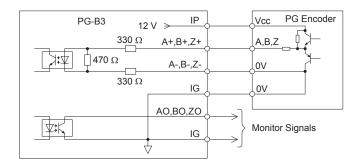


Figure 8.9 Complementary Outputs for the Interface Circuit

Open-Collector Outputs

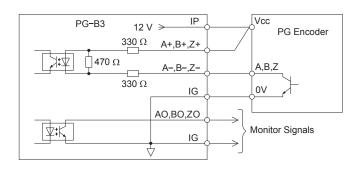


Figure 8.10 Open-Collector Outputs for the Interface Circuit

PG-B3 Terminal Functions

Table 8.3 PG-B3 Option Terminal Functions

Table 8.3 PG-B3 Option Terminal Functions					
Terminal Block		Terminal	Function	Description	
		A+	A+ pulse signal input		
		A-	A– pulse signal input	Pulse signal inputs from the PG	
TB1		B+	B+ pulse signal input	Signal inputs from complementary and open- collector outputs	
	TD1	B–	B– pulse signal input	Signal level	
	TB1 -	Z+	Z+ pulse signal input	H level: 8 to 12 V L level: 2.0 V or less	
		Z-	Z– pulse signal input	E level. 2.0 v of less	
		SD	NC pin (open)	For use when cables shields should not be grounded	
		FE	Ground	Used for grounding shielded lines	
		IP	PG power supply	• Output voltage: 12.0 V ± 5%	
		IG	PG power supply common	• Max output current: 200 mA	
TB2		AO	A pulse monitor signal	Outputs the monitor signal for the A, B, and Z	
	TB2	ВО	B pulse monitor signal	pulses from the PG speed control card	
		ZO	Z pulse monitor signal	• For open collector outputs from the option	
		IG	Monitor signal common	Max voltage: 24 V Max current: 30 mA	

<1> A separate UL-listed class 2 power supply is necessary when the PG requires more than 200 mA to operate.

PG-B3 Wire Gauges and Tightening Torques

Wire gauge and torque specifications are listed in *Table 8.4*. For simpler and more reliable wiring, use crimp ferrules on the wire ends. Refer to the option manuals for the wire size and torque specifications of other options.

Table 8.4 Wire Gauges and Tightening Torques of PG-B3 Option

		Tightening Bare Cab		Cable	Crimp Terminals		
Terminal Signal	Screw Size	\	Recomm. Gauge mm ²	Applicable Gauges mm ²	Recomm. Gauge mm ²	Applicable Gauges mm ²	Wire Type
A+, A-, B+, B-, Z+, Z-, FE, IP, IG				Stranded wire: 0.25 to 1.0			Shielded twisted pair, etc.
AO, IG, BO, IG, ZO, IG	M2	0.22 to 0.25 (1.95 to 2.21)	0.75 (18 AWG)	(24 to 17 AWG) Solid wire: 0.25 to 1.5 (24 to 16 AWG)	0.5 (20 AWG)	0.25 to 0.5 (24 to 20 AWG)	Shielded cable, etc.

PG-B3 Crimp Terminals

Yaskawa recommends using CRIMPFOX 6 by Phoenix Contact or equivalent crimp terminals with the specifications listed in *Table 8.5* for wiring to ensure proper connections.

Note: Properly trim wire ends so loose wire ends do not extend from the crimp terminals.

Table 8.5 Crimp Terminal Sizes

	Wire Gauge mm ²	Phoenix Contact Model	L mm (in)	d1 mm (in)	d2 mm (in)
<u> </u>	0.25 (24 AWG)	AI 0.25 - 6YE	10.5 (13/32)	0.8 (1/32)	2 (5/64)
d1 6 mm d2	0.34 (22 AWG)	AI 0.34 - 6TQ	10.5 (13/32)	0.8 (1/32)	2 (5/64)
<u> </u>	0.5 (20 AWG)	AI 0.5 - 6WH	14 (9/16)	1.1 (3/64)	2.5 (3/32)

PG Encoder Cables for PG-B3 Option

Yaskawa recommends using a LMA- $\square\square$ B-S185Y (complementary output) for cables running between the option and the PG as shown in *Figure 8.11*.

Refer to PG-B3 Option Terminal Functions on page 525 for instructions on wiring the terminal block.

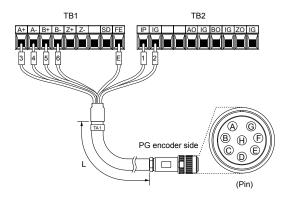


Figure 8.11 Wiring the PG Encoder Cable

Table 8.6 Connecting the PG Encoder Cable Specification

Ontion Torminal	PG Encoder Cable			
Option Terminal	Wire	Color	Pin	
IP	1	Blue	С	
IG	2	White	Н	
A+	3	Yellow	В	
A–	4	White	G	
B+	5	Green	A	
В–	6	White	F	
FE	Е	N/A (shield)	D	

Table 8.7 PG Encoder Cable Types

Length	Туре	Length	Туре
10 m (32 ft.)	W5010	50 m (164 ft.)	W5050
30 m (98 ft.)	W5030	100 m (328 ft.)	W5100

PG-X3 Parameter Settings

- Connecting a Single-Pulse Encoder in V/f with PG Control Mode: Connect the pulse output from the PG to the option and set F1-21 to 0.
- Connecting a Two-Pulse Encoder: Connect the A and B pulse outputs on the PG to the option and set F1-21 to 1. When using a two-pulse encoder in CLV control mode, connect pulse outputs A and B from the encoder to the corresponding terminals on the option.
- Connecting a Two-Pulse Encoder with Z Marker Pulse: Connect the A, B, and Z pulse outputs to the corresponding terminals on the option.

Control Method	V/f wi	th PG	Closed Lo	op Vector
No. of Encoders	1 (CN5-C) 2 (CN5-B)		1 (CN5-C)	2 (CN5-B)
Single Pulse (A)	F1-21 = 0	F1-21 = 0 $F1-37 = 0$ N		N/A
Two Pulse (AB Quadrature)	F1-21 = 1	F1-37 = 1	No setting required	No setting required
Two Pulse with Marker (ABZ)	F1-21 = 1	F1-37 = 1	No setting required	No setting required

PG-X3 Connection Diagram

Refer to PG-X3 Option Terminal Functions on page 528 for a detailed description of the option board terminal functions.

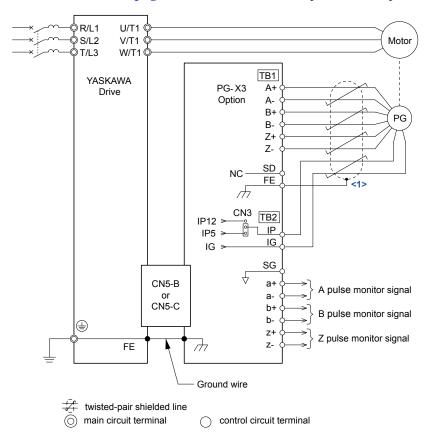


Figure 8.12 PG-X3 Option and Encoder Connection Diagram

<1> Ground the shield on the PG side and the drive side. If electrical signal interference problems arise in the PG signal, remove the shield ground from one end of the signal line or remove the shield ground connection on both ends.

Note: The PG-X3 option reads a maximum input frequency of 300 kHz from the PG encoder. Select a PG encoder with an output pulse frequency of maximum 300 kHz when operating at maximum speed.

Take the following steps to prevent erroneous operation caused by noise interference:

- Use shielded wire for the PG encoder signal lines.
- Use separate conduit or cable tray dividers to separate option control wiring, main circuit input power wiring, and motor output power cables.

PG-X3 Interface Circuit

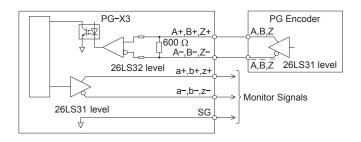


Figure 8.13 PG-X3 Interface Circuit

PG-X3 Terminal Functions

Table 8.8 PG-X3 Option Terminal Functions

Terminal Block		Terminal	Function	Description
		A+	A pulse signal input	
		A-	A inverse pulse signal input	
		B+	B pulse signal input	Inputs for the A channel, B channel, and Z pulses from the PG encoder
		В-	B inverse pulse signal input	• Signal level matches RS-422
TB1	TB1	Z+	Z pulse signal input	
		Z-	Z inverse pulse signal input	
		SD	NC pin (open)	Open connection port for use when cable shields should not be grounded
		FE	Ground	Used as the shield ground termination point.
	TB2	IP	PG encoder power supply	• Output voltage: 12.0 V \pm 5% or 5.5 V \pm
		IG	PG encoder power supply common	5% • Max. output current: 200 mA
		SG	Monitor signal common	
		a+	A pulse monitor signal	
TB2		a–	A pulse inverse monitor signal	Output signal for monitoring A channel, B
		b+	B pulse monitor signal	channel, and Z pulses from the PG encoder
		b–	B pulse inverse monitor signal	Signal level matches RS-422
		z+	Z pulse monitor signal	
		z–	Z pulse inverse monitor signal	

<1> A separate UL-listed class 2 power supply is necessary when the PG requires more than 200 mA to operate.

PG Encoder Power Supply Voltage

For the PG-X3 option, set the voltage for the PG encoder power supply using jumper CN3 located on the option. Position the jumper as shown in *Table 8.9* to select the voltage level.

NOTICE: The positioning of jumper CN3 selects the PG encoder power supply voltage (5.5 V or 12 V). Select the voltage level for the PG encoder connected to the option and motor. If the wrong voltage is selected, the PG encoder may not operate properly or may become damaged as a result.

Table 8.9 Setting the PG Encoder Power Supply Voltage (IP) with Jumper CN3

	111 0 1	•
Voltage Level	5.5 V ± 5% (default)	$12.0 \text{ V} \pm 5\%$
Jumper CN3	55V 12V	55V 12V CN3

PG-X3 Wire Gauges and Tightening Torques

Wire gauge and torque specifications are listed in *Table 8.10*. For simpler and more reliable wiring, use crimp ferrules on the wire ends. Refer to the option manuals for the wire size and torque specifications of other options.

Table 8.10 Wire Gauges and Tightening Torques of PG-X3 Option

		Tightening	Bare (Cable	Crimp T		
Terminal Signal	Screw Size	Torque N·m (in·lb)	Recomm. Gauge mm ²	Applicable Gauges mm ²	Recomm. Gauge mm ²	Applicable Gauges mm ²	Wire Type
A+, A-, B+, B-, Z+, Z-, SD, FE, IP, IG		0.22 to 0.25	0.75 (18 AWG)	Stranded wire: 0.25 to 1.0 (24 to 17 AWG)	0.5 (20 AWG)	0.25 to 0.5	Shielded twisted pair, etc.
a+, a-, b+, b-, z+, z-, SG		(1.95 to 2.21)	0.75 (1571, 16)	Solid wire: 0.25 to 1.5 (24 to 16 AWG)	0.5 (20 1111 0)	(24 to 20 AWG)	Shielded cable, etc.

PG-X3 Crimp Terminals

Yaskawa recommends using CRIMPFOX 6 by Phoenix Contact or equivalent crimp terminals with the specifications listed in *Table 8.11* for wiring to ensure proper connections.

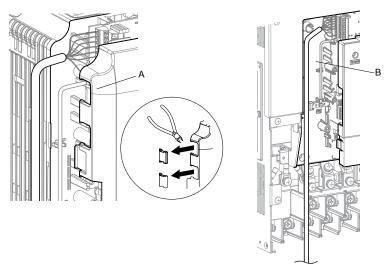
Note: Properly trim wire ends so loose wire ends do not extend from the crimp terminals.

Table 8.11 Crimp Terminal Sizes

	Wire Gauge mm ²	Phoenix Contact Model	L mm (in)	d1 mm (in)	d2 mm (in)
1	0.25 (24 AWG)	AI 0.25 - 6YE	10.5 (13/32)	0.8 (1/32)	2 (5/64)
d1 6 mm d2	0.34 (22 AWG)	AI 0.34 - 6TQ	10.5 (13/32)	0.8 (1/32)	2 (5/64)
	0.5 (20 AWG)	AI 0.5 - 6WH	14 (9/16)	1.1 (3/64)	2.5 (3/32)

Replacing the Drive Covers and Digital Operator and Checking for Proper Motor Rotation

1. Route the option wiring.


Depending on the drive model, some drives may require routing the wiring through the side of the front cover to the outside to provide adequate space for the wiring. In these cases, using diagonal cutting pliers, cut out the perforated openings on the left side of the drive front cover. Sharp edges along the cut out should be smoothed down with a file or sand paper to prevent any damage to the wires.

Route the communication wiring inside the enclosure for drives that do not require routing through the front cover. Refer to *Table 8.12* and *Figure 8.14* to determine the proper wire routing by drive model.

Table 8.12 Communication Wire Routing Selection

		Wire Routing <1>		
Drive Series	Model	Through Front Cover	Inside Drive	
A1000	Models 2A0004 to 2A0040; 4A0002 to 4A0023; 5A0003 to 5A0011	Figure 8.14 (A)	-	
A1000	Models 2A0056 and above; 4A0031 and above; 5A0023 and above	-	<i>Figure 8.14</i> (B)	

<1> Refer to *Figure 8.14* for examples of the different wire routing techniques.

- A Route wires through the openings provided on the left side of the front cover. <1>
- B Use the open space provided inside the drive to route option wiring.

Figure 8.14 Wire Routing Examples

<1> The drive will not meet NEMA Type 1 requirements if wiring is exposed outside the enclosure.

2. Replace and secure the front covers of the drive (A, D) and replace the digital operator (B).

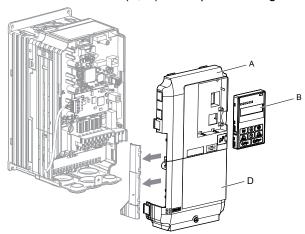


Figure 8.15 Replace the Front Covers and Digital Operator

Note: Take proper precautions when wiring the option so that the front covers will easily fit back onto the drive. Make sure no cables are pinched between the front covers and the drive when replacing the covers.

3. Set drive parameters for proper motor rotation. (*Refer to A1: Initialization on page 578* and *Refer to F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3) on page 610* for details on parameter settings) With a two-pulse or three-pulse PG encoder, the leading pulse determines the motor rotation direction. A PG encoder signal with leading A pulse is considered to be rotating forward (counterclockwise when viewing rotation from motor load side).

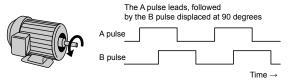


Figure 8.16 Displacement of A and B Pulses

After connecting the PG encoder outputs to the option, apply power to the drive and manually rotate the motor and check the rotation direction by viewing monitor U1-05 on the digital operator.

Reverse motor rotation is indicated by a negative value for U1-05; forward motor rotation is indicated by a positive value.

If monitor U1-05 indicates that the forward direction is opposite of what is intended, set F1-05 or F1-32 to 1 or reverse the two A pulse wires with the two B pulse wires on option terminal TB1 as shown in *Figure 8.17*.

Figure 8.17 A Channel and B Channel Wire Switching

Please note that when the drive is initialized using A1-03 =1110, 2220, 3330, the value for F1-05/F1-32 will reset to factory default and the parameter will need to be readjusted to switch the direction.

8.5 Installing Peripheral Devices

This section describes the proper steps and precautions to take when installing or connecting various peripheral devices to the drive.

NOTICE: Use a class 2 power supply when connecting to the control terminals. Improper application of peripheral devices could result in drive performance degradation due to improper power supply. Refer to NEC Article 725 Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power Limited Circuits for requirements concerning class 2 power supplies.

Dynamic Braking Options

Dynamic braking (DB) helps bring the motor to a smooth and rapid stop when working with high inertia loads. As the drive lowers the frequency of a motor moving a high inertia load, regeneration occurs. This can cause an overvoltage situation when the regenerative energy flows back into the DC bus capacitors. A braking resistor prevents these overvoltage faults.

NOTICE: Do not allow unqualified personnel to use the product. Failure to comply could result in damage to the drive or braking circuit. Carefully review the braking resistor instruction manual when connecting a braking resistor option to the drive.

Note

- 1. Properly size the braking circuit to dissipate the power required to decelerate the load in the desired time. Ensure that the braking circuit can dissipate the energy for the set deceleration time prior to running the drive.
- 2. Set L8-55 to 0 to disable the internal braking transistor of the drive protection when using braking resistor options.
- 3. Set L3-04 to 0 to disable Stall Prevention during deceleration when using a regenerative converter, a regenerative unit, a braking resistor, or the Braking Resistor Unit. The default setting for the Stall Prevention function (enabled) will interfere with the braking resistor.

WARNING! Fire Hazard. The braking resistor connection terminals are B1 and B2. Do not connect a braking resistor directly to any other terminals. Improper wiring connections could result in death or serious injury by fire. Failure to comply may result in damage to the braking circuit or drive.

NOTICE: Connect braking resistors to the drive as shown in the I/O wiring examples. Improperly wiring braking circuits could result in damage to the drive or equipment.

■ Installing a Braking Resistor: ERF type

ERF type braking resistors provide dynamic braking capability with up to 3% ED. They can be directly connected to the B1 and B2 terminals of the drive as shown in *Figure 8.18*.

Enable the drive braking resistor overload protection by setting L8-01 to 1 when using ERF type resistors.

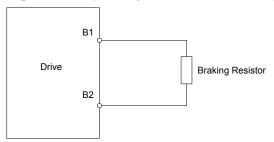


Figure 8.18 Connecting a Braking Resistor: ERF Type

■ Installing a Braking Resistor Unit: LKEB type

LKEB type braking resistors provide dynamic braking capability with up to 10% ED. They can be directly connected to the drives B1 and B2 terminals as shown in *Figure 8.19*. The LKEB unit has a thermal overload contact that should be utilized in order to switch off the drive in case braking resistor overheat occurs.

The internal braking resistor overload protection of the drive cannot protect LKEB resistors. Set L8-01 to 0 to disable this function.

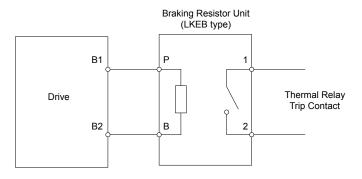


Figure 8.19 Connecting a Braking Resistor Unit: LKEB Type (Models 2A0004 to 2A0138, 4A0002 to 4A0072, and 5A0003 to 5A0052)

■ Installing Other Types of Braking Resistors

When installing braking resistors other than the ERF or LKEB types, make sure that the drive internal braking transistor will not be overloaded with the required duty cycle and the selected resistance value. Use a resistor that is equipped with a thermal overload relay contact, and utilize this contact to switch off the drive in case of braking resistor overheat.

■ Braking Resistor Overload Protection

If using a braking resistor option, a sequence such as the one shown in *Figure 8.20* should be set up to interrupt the power supply in case the braking resistor overheats.

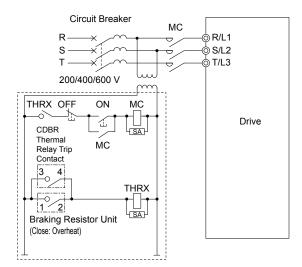


Figure 8.20 Power Supply Interrupt for Overheat Protection (Example)

■ Installing a Braking Unit: CDBR Type

To install a CDBR type braking unit, connect the $\oplus 3$ terminal of the drive to the positive terminal on the braking unit.

Next, wire together the negative terminals on the drive and braking unit. Terminal $\oplus 2$ is not used.

Connect the braking resistor to CDBR terminals $\oplus 0$ and $\ominus 0$. Refer to *Figure 8.20* and *Figure 8.21* for proper configuration.

Wire the thermal overload relay normally open contacts of the CDBR and the braking resistor in parallel, and connect this signal to a control circuit as shown in *Figure 8.20* to interrupt the main input power supply to the drive in the event of a CDBR or braking resistor overload.

Set L8-55 to 0 to disable dynamic braking transistor protection.

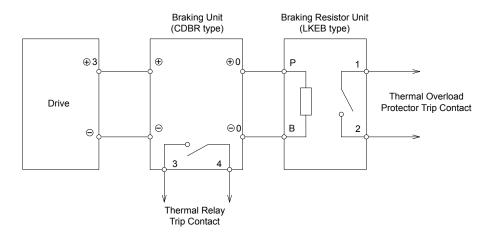


Figure 8.21 Connecting a Braking Unit (CDBR type) and Braking Resistor Unit (LKEB type) Models 2A0169 to 2A0415, 4A0088 to 4A1200 and 5A0125 to 5A0242

Note: To install a CDBR type braking unit to the drive with a built-in dynamic braking transistor (models 2A0004 to 2A0138, 4A0002 to 4A0072, and 5A0003 to 5A0052), connect the drive B1 terminal to the positive terminal on the braking unit. Next, wire the negative terminals on the drive and braking unit together. Terminal B2 is not used.

Using Braking Units in Parallel

When using multiple braking units, install the braking units with a master-slave configuration with a single braking unit acting as the master. *Figure 8.22* illustrates how to wire braking units in parallel.

Wire the normally open thermal overload contact relays of all CDBRs and all braking resistors in parallel, then connect this signal to a control circuit as shown in *Figure 8.20* to interrupt the main input power supply to the drive in the event of a CDBR or braking resistor overload.

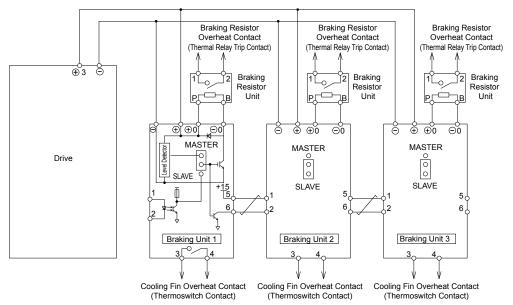


Figure 8.22 Connecting Braking Units in Parallel

Installing a Molded Case Circuit Breaker (MCCB) or Ground Fault Circuit Interrupter (GFCI)

Install an MCCB or GFCI for line protection between the power supply and the main circuit power supply input terminals R/L1, S/L2, and T/L3. This protects the main circuit and devices wired to the main circuit while also providing overload protection.

NOTICE: Prevent Equipment Damage. Install a fuse and a GFCI to models 4A0930 and 4A1200, Failure to comply may result in damage to the power supply in the event of a short circuit.

Consider the following when selecting and installing an MCCB or GFCI:

- The capacity of the MCCB or GFCI should be 1.5 to 2 times the rated output current of the drive. Use an MCCB or GFCI to keep the drive from faulting out instead of using overheat protection (150% for one minute at the rated output current).
- If several drives are connected to one MCCB or GFCI that is shared with other equipment, use a sequence that shuts the power OFF when errors are output by using magnetic contactor (MC) as shown in *Figure 8.23*.

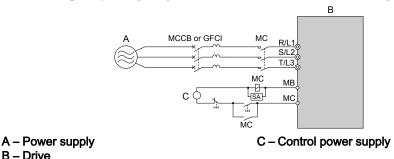


Figure 8.23 Power Supply Interrupt Wiring (Example)

WARNING! Electrical Shock Hazard. Disconnect the MCCB (or GFCI) and MC before wiring terminals. Failure to comply may result in serious injury or death.

Application Precautions when Installing a GFCI

B - Drive

Drive outputs generate high-frequency leakage current as a result of high-speed switching. Install a GFCI on the input side of the drive to switch off potentially harmful leakage current.

Factors in determining leakage current:

- · Size of the AC drive
- AC drive carrier frequency
- Motor cable type and length
- EMI/RFI filter

If the GFCI trips spuriously, consider changing these items or use a GFCI with a higher trip level.

Note:

Choose a GFCI designed specifically for an AC drive. The operation time should be at least 0.1 s with sensitivity amperage of at least 200 mA per drive. The output waveform of the drive and built-in EMC filter may cause an increase in leakage current. This may in turn cause the leakage breaker to malfunction. Increase the sensitivity amperage or lower the carrier frequency to correct the problem.

Installing a Magnetic Contactor at the Power Supply Side

Install a magnetic contactor (MC) to the drive input for the purposes explained below.

Disconnecting the Power Supply

Shut off the drive with an MC when a fault occurs in any external equipment such as braking resistors.

NOTICE: Do not connect electromagnetic switches or MCs to the output motor circuits without proper sequencing. Improper sequencing of output motor circuits could result in damage to the drive.

NOTICE: Install an MC on the input side of the drive when the drive should not automatically restart after power loss. To get the full performance life out of the electrolytic capacitors and circuit relays, refrain from switching the drive power supply off and on more than once every 30 minutes. Frequent use can damage the drive. Use the drive to stop and start the motor.

NOTICE: Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.

1. Install an MC to the drive input side to prevent the drive from restarting automatically when power is restored after momentary power

2. Set up a delay that prevents the MC from opening prematurely to continue operating the drive through a momentary power loss.

YASKAWA ELECTRIC SIEP C710616 41E YASKAWA AC Drive - A1000 Technical Manual

■ Protecting the Braking Resistor or Braking Resistor Unit

Use an MC on the input side of the drive to protect a braking resistor or braking resistor unit from overheat or fire.

WARNING! Fire Hazard. When using a braking unit, use a thermal relay on the braking resistors and configure a fault contact output for the braking resistor unit to disconnect drive main power via an input contactor. Inadequate braking circuit protection could result in death or serious injury by fire from overheating resistors.

Connecting an AC Reactor or DC Link Choke

AC reactors and DC link chokes suppress surges in current and improve the power factor on the input side of the drive.

Use an AC reactor, a DC link choke, or both in the following situations:

- To suppress harmonic current or improve the power factor of the power supply.
- When using a phase advancing capacitor switch.
- With a large capacity power supply transformer (over 600 kVA).

Note: Use an AC reactor or DC link choke when also connecting a thyristor converter (such as a DC drive) to the same power supply system, regardless of the conditions of the power supply.

Connecting an AC Reactor

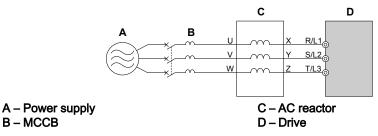
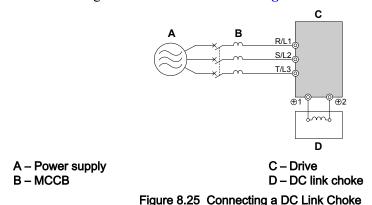



Figure 8.24 Connecting an AC Reactor

■ Connecting a DC Link Choke

A DC link choke can be installed to drive models 2A0004 to 2A0081, 4A0002 to 4A0044, and 5A0003 to 5A0032. When installing a DC link choke, remove the jumper between terminals $\oplus 1$ and $\oplus 2$ (terminals are jumpered for shipment). The jumper must be installed if not using a DC link choke. Refer to *Figure 8.25* for an example of DC link choke wiring.

Connecting a Surge Absorber

A surge absorber suppresses surge voltage generated from switching an inductive load near the drive. Inductive loads include magnetic contactors, relays, valves, solenoids, and brakes. Always use a surge absorber or diode when operating with an inductive load.

WARNING! Fire Hazard. Due to surge absorber short circuit on drive output terminals U/T1, V/T2, and W/T3, do not connect surge absorbers to the drive output power terminals. Failure to comply may result in serious injury or death by fire or flying debris.

Connecting a Noise Filter

■ Input-Side Noise Filter

Drive outputs generate noise as a result of high-speed switching. This noise flows from inside the drive back to the power supply, possibly affecting other equipment. Installing a noise filter to the input side of the drive can reduce the amount of noise flowing back into the power supply. This also prevents noise from entering the drive from the power supply.

- Use a noise filter specifically designed for AC drives.
- Install the noise filter as close as possible to the drive.

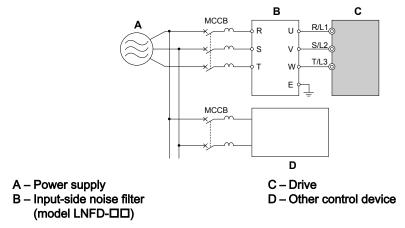


Figure 8.26 Input-Side Noise Filter (Three-Phase 200/400 V)

200 V Class and 400 V Class drive models are tested according to European standards IEC/EN 61800-5-1 and comply with EMC guidelines. *Refer to EMC Guidelines Compliance on page 754* for details on EMC filter selection and installation.

■ Output-Side Noise Filter

A noise filter on the output side of the drive reduces inductive noise and radiated noise. *Figure 8.27* illustrates an example of output-side noise filter wiring.

NOTICE: Do not connect phase-advancing capacitors or LC/RC noise filters to the output circuits. Improper application of noise filters could result in damage to the drive.

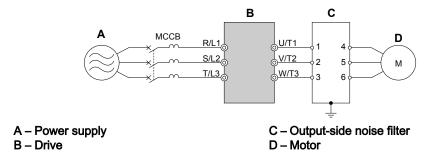


Figure 8.27 Output-Side Noise Filter

- Radiated Noise: Electromagnetic waves radiated from the drive and cables create noise throughout the radio bandwidth that can affect surrounding devices.
- **Induced Noise:** Noise generated by electromagnetic induction can affect the signal line and may cause the controller to malfunction.

Preventing Induced Noise

Use a noise filter on the output side or use shielded cables. Lay the cables at least 30 cm away from the signal line to prevent induced noise.



Figure 8.28 Preventing Induced Noise

Reducing Radiated and Radio Frequency Noise

The drive, input lines, and output lines generate radio frequency noise. Use noise filters on input and output sides and install the drive in a metal enclosure panel to reduce radio frequency noise.

Note: The cable running between the drive and motor should be as short as possible.

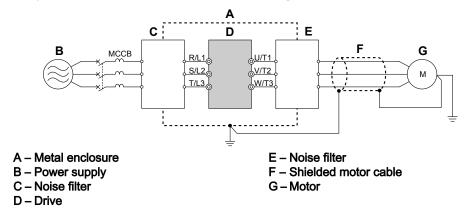


Figure 8.29 Reducing Radio Frequency Noise

Installing Input Fuses

NOTICE: If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices. Check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa before restarting the drive or the peripheral devices if the cause cannot be identified.

■ Factory Recommended Branch Circuit Protection

Yaskawa recommends installing one of the following types of branch circuit protection to maintain compliance with UL508C. Semiconductor protective type fuses are preferred. Alternate branch circuit protection devices are also listed in *Table 8.13* and *Table 8.14*.

	Normal Duty						
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps <2>	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)	
			200 V Class				
2A0004	0.75	3.9	15	6.25	10	FWH-70B (70)	
2A0006	1 - 1.5	7.3	15	12	20	FWH-70B (70)	
2A0008	2	8.8	15	15	25	FWH-70B (70)	
2A0010	3	10.8	20	17.5	30	FWH-70B (70)	

Table 8.13 Factory Recommended Drive Branch Circuit Protection (Normal Duty)

	Normal Duty							
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps <1>	Time Delay Fuse Rating Amps **	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)		
2A0012	3	13.9	25	20	40	FWH-70B (70)		
2A0018	5	18.5	35	30	50	FWH-90B (90)		
2A0021	7.5	24	45	40	70	FWH-90B (90)		
2A0030	10	37	60	60	110	FWH-100B (100)		
2A0040	15	52	100	90	150	FWH-200B (200)		
2A0056	20	68	125	110	200	FWH-200B (200)		
2A0069	25	80	150	125	225	FWH-200B (200)		
2A0081	30	96	175	150	275	FWH-300A (300)		
2A0110	40	111	200	175	300	FWH-300A (300)		
2A0138	50	136	250	225	400	FWH-350A (350)		
2A0169	60	164	300	250	450	FWH-400A (400)		
2A0211	75	200	400	350	600	FWH-400A (400)		
2A0250	100	271	500	450	800	FWH-600A (600)		
2A0312	125	324	600	500	800	FWH-700A (700)		
2A0360	150	394	700	600	1000 <5>	FWH-800A (800)		
2A0415	175	471	900	800	1400 <5>	FWH-1000A (1000		
2/10/13	173	171	400 V Class	000	1400	1 111 100011 (1000		
4A0002	1	2.1	15	3.5	6	FWH-40B (40)		
4A0004	2	4.3	15	7.5	12	FWH-50B (50)		
4A0005	3	5.9	15	10	17.5	FWH-70B (70)		
4A0007	3	8.1	15	12	20	FWH-70B (70)		
4A0009	5	9.4	15	15	25	FWH-90B (90)		
4A0011	7.5	14	25	20	40	FWH-90B (90)		
4A0018	10	20	40	35	60	FWH-80B (80)		
4A0023	15	24	45	40	70	FWH-100B (100)		
4A0031	20	38	75	60	110	FWH-125B (125)		
4A0038	25	44	75	75	125	FWH-200B (200)		
4A0044	30	52	100	90	150	FWH-250A (250)		
4A0058	40	58	100	100	150	FWH-250A (250)		
4A0072	50	71	125	110	200	FWH-250A (250)		
4A0088	60	86	150	150	250	FWH-250A (250)		
4A0103	75	105	200	175	300	FWH-250A (250)		
4A0103 4A0139	100	142	250	225	400	FWH-350A (350)		
4A0165	125	170	300	250	500	FWH-400A (400)		
4A0103 4A0208	150	207	400	350	600	FWH-500A (500)		
4A0250	200	248	450	400	700	FWH-600A (600)		
4A0296	250	300	600	500	800	FWH-700A (700)		
4A0362	300	346	600	600	1000 <5>	FWH-800A (800)		
4A0414	350	410	800	700	1200 <5>	FWH-800A (800)		
4A0515	400 - 450	465	900	800	1350 <5>	FWH-1000A (1000		
4A0675	500 - 600	657	1200	1100 <5>	1800 <5>	FWH-1200A (1200		
4A0930	700 - 800	922		Not Applicable		FWH-1200A (1200		
4A1200	900 - 1000	1158		тог друпсаше		FWH-1600A (1600		
			600 V Class					
5A0003	2	3.6	15	6.25	10	FWP-50B (50)		
5A0004	3	5.1	15	8	15	FWP-50B (50)		

	Normal Duty							
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)		
5A0006	5	8.3	15	12	20	FWP-60B (60)		
5A0009	7.5	12	20	20	35	FWP-60B (60)		
5A0011	10	16	30	25	45	FWP-70B (70)		
5A0017	15	23	40	40	60	FWP-100B (100)		
5A0022	20	31	60	50	90	FWP-100B (100)		
5A0027	25	38	75	60	110	FWP-125A (125)		
5A0032	30	45	75	75	125	FWP-125A (125)		
5A0041	40	44	75	75	125	FWP-175A (175)		
5A0052	50	54	100	90	150	FWP-175A (175)		
5A0062	60	66	125	110	175	FWP-250A (250)		
5A0077	75	80	150	125	225	FWP-250A (250)		
5A0099	100	108	175	175	300	FWP-250A (250)		
5A0125	125	129	225	225	350	FWP-350A (350)		
5A0145	150	158	300	275	450	FWP-350A (350)		
5A0192	200	228	400	350	600	FWP-600A (600)		
5A0242	250	263	500	450	700	FWP-600A (600)		

<1> Maximum MCCB Rating is 15 A, or 200 % of drive input current rating, whichever is larger. MCCB voltage rating must be 600 VAC or greater.

Table 8.14 Factory Recommended Drive Branch Circuit Protection (Heavy Duty)

	Heavy Duty					
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)
			200 V Class			
2A0004	0.75	2.9	15	5	8	FWH-70B (70)
2A0006	1	5.8	15	10	15	FWH-70B (70)
2A0008	2	7	15	12	17.5	FWH-70B (70)
2A0010	2	7.5	15	12	20	FWH-70B (70)
2A0012	3	11	20	17.5	30	FWH-70B (70)
2A0018	3	15.6	25	25	40	FWH-90B (90)
2A0021	5	18.9	35	30	50	FWH-90B (90)
2A0030	7.5	28	50	40	75	FWH-100B (100)
2A0040	10	37	60	60	100	FWH-200B (200)
2A0056	15	52	100	90	150	FWH-200B (200)
2A0069	20	68	125	110	200	FWH-200B (200)
2A0081	25	80	150	125	225	FWH-300A (300)
2A0110	30	82	150	125	225	FWH-300A (300)
2A0138	40	111	200	175	250	FWH-350A (350)
2A0169	50	136	250	225	350	FWH-400A (400)
2A0211	60	164	300	250	450	FWH-400A (400)
2A0250	75	200	400	350	600	FWH-600A (600)
2A0312	100	271	500	450	800	FWH-700A (700)

<2> Maximum Time Delay fuse is 175% of drive input current rating. This covers any Class CC, J or T class fuse.

<3> Maximum Non-time Delay fuse is 300% of drive input current rating. This covers any CC, J or T class fuse.

<4> When using semiconductor fuses, Bussman FWH and FWP are required for UL compliance. Select FWH for 200 V Class and 400 V Class models and FWP fuses for 600 V models.

<5> Class L fuse is also approved for this rating.

	Heavy Duty										
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps **	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)					
2A0360	125	324	600	500	900 <4>	FWH-800A (800)					
2A0415	150	394	700	600	1100 <4>	FWH-1000A (1000)					
			400 V Class		1100						
4A0002	0.75	1.8	15	3	5	FWH-40B (40)					
4A0004	1 - 2	3.2	15	5	9	FWH-50B (50)					
4A0005	3	4.4	15	7	12	FWH-70B (70)					
4A0007	3	6	15	10	17.5	FWH-70B (70)					
4A0009	5	8.2	15	12	20	FWH-90B (90)					
4A0011	5	10.4	20	17.5	30	FWH-90B (90)					
4A0018	7.5 - 10	15	30	25	40	FWH-80B (80)					
4A0023	10	20	40	35	60	FWH-100B (100)					
4A0023	15	29	50	50	80	FWH-125B (125)					
4A0031 4A0038	20	39	75	60	110	FWH-200B (200)					
4A0038 4A0044	25 - 30	47	75	75	125	FWH-250A (250)					
4A0044 4A0058	30	43	75	75	125	` ′					
	40	58	100	100		FWH-250A (250)					
4A0072					150	FWH-250A (250)					
4A0088	60	71	125	110	200	FWH-250A (250)					
4A0103	60	86	150	150	250	FWH-250A (250)					
4A0139	75	105	175	175	300	FWH-350A (350)					
4A0165	100	142	225	225	400	FWH-400A (400)					
4A0208	125 - 150	170	250	250	500	FWH-500A (500)					
4A0250	150	207	350	350	600	FWH-600A (600)					
4A0296	200	248	400	400	700	FWH-700A (700)					
4A0362	250	300	500	500	800	FWH-800A (800)					
4A0414	300	346	600	600	1000 <4>	FWH-800A (800)					
4A0515	350	410	700	700	1200 <4>	FWH-1000A (1000)					
4A0675	400 - 500	584	1000	1000 <4>	1600 <4>	FWH-1200A (1200)					
4A0930	600 - 700	830			Į.	FWH-1200A (1200)					
4A1200	800 - 900	1031		Not Applicable		FWH-1600A (1600)					
			600 V Class								
5A0003	1	1.9	15	3	5	FWP-50B (50)					
5A0004	2	3.6	15	6.25	10	FWP-50B (50)					
5A0006	3	5.1	15	8	15	FWP-60B (60)					
5A0009	5	8.3	15	12	20	FWP-60B (60)					
5A0011	7.5	12	20	20	35	FWP-70B (70)					
5A0017	10	16	30	25	45	FWP-100B (100)					
5A0022	15	23	40	40	60	FWP-100B (100)					
5A0027	20	31	60	50	90	FWP-125A (125)					
5A0032	25	38	75	60	100	FWP-125A (125)					
5A0041	30	33	60	50	90	FWP-175A (175)					
5A0052	40	44	75	75	125	FWP-175A (175)					
5A0052 5A0062	50	54	100	90	150	FWP-250A (250)					
5A0077	60	66	125	110	175	FWP-250A (250)					
5A0077 5A0099	75	80	150	125	225	FWP-250A (250)					
5A0099 5A0125	100	108	175	175	300	FWP-350A (250)					
5A0125 5A0145	125	129	250	225	350	FWP-350A (350)					
JA0143	123	129	230	223	330	FWF-33UA (33U)					

	Heavy Duty										
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)					
5A0192	150	158	300	250	400	FWP-600A (600)					
5A0242	200	228	400	350	600	FWP-600A (600)					

- <1> Maximum MCCB Rating is 15 A, or 200 % of drive input current rating, whichever is larger. MCCB voltage rating must be 600 VAC or greater.
- <2> Maximum Time Delay fuse is 175% of drive input current rating. This covers any Class CC, J or T class fuse.
- <3> Maximum Non-time Delay fuse is 300% of drive input current rating. This covers any CC, J or T class fuse.
- <4> Class L fuse is also approved for this rating.

Wiring Fuses for Models 4A0930 and 4A1200

NOTICE: If a fuse is blown or an Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa before restarting the drive or the peripheral devices if the cause cannot be identified.

Install a fuse on the input side to protect drive wiring and prevent other secondary damage. Wire the fuse so that leakage current in the upper controller power supply will trigger the fuse and shut off the power supply.

Select the appropriate fuse from *Table 3.2*.

Table 8.15 Input Fuses for Models 4A0930 and 4A1200

Valtage			Selection			Input Fuse	(Example)	
Voltage Class	Model	Input Voltage	Current	Pre-arc l ² t (A ² s)	Model	Manufacturer	Rating	Pre-arc I ² t (A ² s)
Three-	4A0930	480 V	1500 A	140000 to	CS5F-1200	Fuji Electric	AC500 V, 1200 A	276000
Phase	4A0930	460 V	1300 A	3100000	FWH-1200A	Bussman	AC500 V, 1200 A	_
400 V Class	4 4 1 2 0 0	490 17	1500 A	320000 to	CS5F-1500	Fuji Electric	AC500 V, 1500 A	351000
Class	4A1200	480 V	1300 A	3100000	FWH-1600A	Bussman	AC500 V, 1600 A	_

◆ Attachment for External Heatsink Mounting

An external attachment can be used to project the heatsink outside of an enclosure to ensure that there is sufficient air circulation around the heatsink.

Contact a Yaskawa sales representative or Yaskawa directly for more information on this attachment.

◆ Installing a Motor Thermal Overload (oL) Relay on the Drive Output

Motor thermal overload relays protect the motor by disconnecting power lines to the motor due to a motor overload condition.

Install a motor thermal overload relay between the drive and motor:

- When operating multiple motors on a single AC drive.
- When using a power line bypass to operate the motor directly from the power line.

It is not necessary to install a motor thermal overload relay when operating a single motor from a single AC drive. The AC drive has UL recognized electronic motor overload protection built into the drive software.

Note:

- 1. Disable the motor protection function (L1-01=0) when using an external motor thermal overload relay.
- 2. The relay should shut off main power on the input side of the main circuit when triggered.

General Precautions when Using Thermal Overload Relays

Consider the following application precautions when using motor thermal overload relays on the output of AC drives to prevent nuisance trips or overheat of the motor at low speeds:

- 1. Low speed motor operation
- 2. Use of multiple motors on a single AC drive
- **3.** Motor cable length
- **4.** Nuisance tripping resulting from high AC drive carrier frequency.

Low Speed Operation and Motor Thermal oL Relays

Generally, thermal relays are applied on general-purpose motors. When general-purpose motors are driven by AC drives, the motor current is approximately 5% to 10% greater than if driven by a commercial power supply. In addition, the cooling capacity of a motor with a shaft-driven fan decreases when operating at low speeds. Motor overheating may occur even when

the load current is within the motor rated value. A thermal relay cannot effectively protect the motor due to the reduction of cooling at low speeds. For this reason, apply the UL recognized electronic thermal overload protection function built into the drive whenever possible.

UL recognized electronic thermal overload function of the drive: Speed-dependent heat characteristics are simulated using data from standard motors and force-ventilated motors. The motor is protected from overload using this function.

Using a Single Drive to Operate Multiple Motors

Set parameter L1-01 to 0 to disable thermal overload protection for the drive.

Note: The UL recognized electronic thermal overload function cannot be applied when operating multiple motors with a single drive.

Long Motor Cables

When a high carrier frequency and long motor cables are used, nuisance tripping of the thermal relay may occur due to increased leakage current. To avoid this, reduce the carrier frequency or increase the tripping level of the thermal overload relay.

Nuisance Tripping Due to a High AC Drive Carrier Frequency

Current waveforms generated by high carrier frequency PWM drives tend to increase the temperature in overload relays. It may be necessary to increase the trip level setting when encountering nuisance triggering of the relay.

WARNING! Fire Hazard. Confirm an actual motor overload condition is not present prior to increasing the thermal oL trip setting. Check local electrical codes before making adjustments to motor thermal overload settings. Failure to comply could result in death or serious injury.

This Page Intentionally Blank

Appendix: A

Specifications

A .1	HEAVY DUTY AND NORMAL DUTY RATINGS	546
A.2	POWER RATINGS	547
A.3	DRIVE SPECIFICATIONS	556
A.4	DRIVE WATT LOSS DATA	558
A.5	DRIVE DERATING DATA	560

A.1 Heavy Duty and Normal Duty Ratings

The capacity of the drive is based on two types of load characteristics: Heavy Duty (HD) and Normal Duty (ND). Refer to the following table for the differences between HD and ND.

Table A.1 Selecting the Appropriate Load Rating

Setting Parameter C6-01	Rated Output Current	Overload Tolerance	Default Carrier Frequency
0: Heavy Duty	HD Rating varies by model	150% rated output current for 60 s	2 kHz
1: Normal Duty (default)	ND Rating varies by model	120% rated output current for 60 s varies by model	2 kHz, Swing PWM

<1> Refer to Power Ratings on page 547 for information on rating changes based on drive model.

- HD and ND: HD refers to applications requiring constant torque output, while ND refers to applications with variable torque needs. The drive allows the user to select HD or ND torque depending on the application. Fans, pumps, and blowers should use ND (C6-01 = 1), and other applications generally use HD (C6-01 = 0).
- **Swing PWM**: Swing PWM equivalent to a 2 kHz audible noise. This function turns the motor noise into a less obtrusive white noise.

Note:

Differences between HD ratings and ND ratings for the drive include rated input and output current, overload capacity, carrier frequency, and current limit. The default setting is for ND (C6-01=1).

A.2 Power Ratings

◆ Three-Phase 200 V Class Drive Models 2A0004 to 2A0030

Table A.2 Power Ratings (Three-Phase 200 V Class)

	Item		0.75							
	Drive Model		2A0004	2A0006	2A0008	2A0010	2A0012	2A0018	2A0021	2A0030
Maxi	mum Applicable Motor	ND Rating	0.75	1	2	3	3	5	7.5	10
	Capacity (HP) <1>	HD Rating	0.75	1	2	2	3	3	5	7.5
	I 4 C 4 (A) \$2	ND Rating	3.9	7.3	8.8	10.8	13.9	18.5	24	37
	Input Current (A) <2>	HD Rating	2.9	5.8	7	7.5	11	15.6	18.9	28
_	Rated Volt Rated Frequ		·							
Input	Allowable Voltage	Fluctuation	-15 to 10%							
	Allowable Frequency	y Fluctuation	±5%							
	Innut Down (kVA)	ND Rating	1.8	3.3	4.0	4.9	6.4	8.5	11	17
Input R	Input Power (kVA)	HD Rating	1.3	2.7	3.2	3.4	5.0	7.1	8.6	13
	Rated Output Capacity	ND Rating <5>	1.3	2.3	3	3.7	4.6	6.7	8	11.4
	(kVÅ) <4>	HD Rating <6>	1.2	2A0006 2A0008 2A0010 2A0012 2A0018 2A0021 1 2 3 3 5 7.5 1 2 2 3 3 5 7.3 8.8 10.8 13.9 18.5 24 5.8 7 7.5 11 15.6 18.9 Three-phase 200 to 240 Vac 50/60 Hz/270 to 340 Vdc ⁴³> -15 to 10% ±5% 3.3 4.0 4.9 6.4 8.5 11 2.7 3.2 3.4 5.0 7.1 8.6 2.3 3 3.7 4.6 6.7 8 1.9 2.6 3 4.2 5.3 6.7 6 8 9.6 12 17.5 21 5 6.9 8 11 14 17.5 ND Rating: 120% of rated output current for 60 s HD Rating: 150% of rated output current for 60 s	9.5					
	Botod Output Current (A)	ND Rating <5>	3.5	6	8	9.6	12	17.5	5 .5 24 .6 18.9 340 Vdc <3> 5 11 1 8.6 7 8 3 6.7 .5 21 4 17.5 for 60 s for 60 s and stop frequently Hz	30
	Rated Output Current (A)	HD Rating <6>	3.2	5	6.9	8	11	14	17.5	25
Output	Overload Tole	erance	(De	HI	O Rating: 1	50% of rate	ed output co	urrent for 6	0 s	tly)
	Carrier Freq	uency	ND Rating: 120% of rated output current for 60 s HD Rating: 150% of rated output current for 60 s (Derating may be required for applications that start and stop frequently) User adjustable between 1 and 15 kHz							
	Maximum Output	Voltage (V)		Three-	phase 200	to 240 V (p	roportiona	l to input v	oltage)	
	Maximum Output Fr	requency (Hz)				400 Hz (user-set)			

- <1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.
- <3> DC input is not available for UL standards.
- <4> Rated motor capacity is calculated with a rated output voltage of 220 V.
- <5> Carrier frequency is set to 2 kHz. Current derating is required in order to raise the carrier frequency.
- <6> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating..

◆ Three-Phase 200 V Class Drive Models 2A0040 to 2A0211

Table A.3 Power Ratings Continued (Three-Phase 200 V Class)

	Item	abio / to i ottoi i		<u> </u>			ication				
	Drive Model		2A0040	2A0056	2A0069	2A0081	2A0110	2A0138	50 60 75 40 50 60 136 164 200 111 136 164 0 340 Vdc <3> 62 75 91 51 62 75 53 64 80 44 55 69 <6> <7> <7> 138 169 211 115 145 180 <6> <7> <7> t for 60 s		
Maximum	1 Applicable Motor Capacity	ND Rating	15	20	25	30	40	50	60	75	
	(HP) <1>	HD Rating	10	15	20	25	30	40	50	60	
	Input Current (A) <2>	ND Rating	52	68	80	92	111	136	164	200	
	Input Current (A)	HD Rating	37	52	68	80	82	111	136	164	
	Rated Volta Rated Freque			Three-	phase 200	to 240 Vac	50/60 Hz/2	70 to 340 V	40 50 36 164 2 36 111 136 1 1 136 1 1 136 1 1 136 1 1 1 1		
Input	Allowable Voltage F	luctuation				-15 to	10%				
	Allowable Frequency Fluctuation ±5% ND Rating 24 31 37 42 51 62										
	Input Power (kVA)	ND Rating	24	31	37	42	51	62	75	91	
	input i owei (kvA)	HD Rating	17	24	31	37	37	51	50 60 40 50 136 164 111 136 0 to 340 Vdc 62 75 51 62 53 64 44 55 <6> <7> 138 169 115 145 <6> <7> rent for 60 s rent for 60 s tart and stop frequen User ac betwee 10	75	
	Rated Output Capacity	ND Rating <5>	15.2	21	26	31	42	53	64	80	
Input	(kVA) ⁴	HD Rating	12.6 <6>	17.9 <6>	23 <6>	29 <6>	32 <6>			69 <7>	
		ND Rating <5>	40	56	69	81	110	138	60 50 164 136 dc <3> 75 62 64 55 <7> 169 145 <7> User adj between 10 k	211	
	Rated Output Current (A)	HD Rating	33 <6>	47 <6>	60 <6>	75 <6>	85 <6>			180	
Output	Overload Toler	ance	(Σ	Н	D Rating: 1	50% of rate	ed output cu	irrent for 60	75 62 64 55 169 145 50 s top frequentl User adj between 10 k	ly)	
	Carrier Freque	ency		User ad	justable bet	ween 1 and	15 kHz		betwee		
	Maximum Output V	oltage (V)	Three-phase 200 to 240 Vac (proportional to input voltage)								
	Maximum Output Fre	quency (Hz)				400 Hz (user-set)				

<1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

<2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.

<3> DC input is not available for UL standards.

<4> Rated motor capacity is calculated with a rated output voltage of 220 V.

<5> Carrier frequency is set to 2 kHz. Current derating is required in order to raise the carrier frequency.

<6> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating.

<7> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

◆ Three-Phase 200 V Class Drive Models 2A0250 to 2A0415

Table A.4 Power Ratings Continued (Three-Phase 200 V Class)

	Item			Specif	ication						
	Drive Models		2A0250 2A0312 2A0360 2A041 100 125 150 175 75 100 125 150 271 324 394 471 200 271 324 394 Three-phase 200 to 240 Vac 50/60 Hz/270 to 340 Vdc -15 to 10% ±5% 124 148 180 215 91 124 148 180 95 119 137 158 82 108 132 158 46> 46> 45 46> 46> 45 250 312 360 415 215 283 346 415 46> 46> 45 46> 46> 45 Correcting may be required for applications that start and stop frequency to the properties of the properti			2A0415					
M	A liaskie Matau Canasitu (IID) </th <th>ND Rating</th> <th>100</th> <th>125</th> <th>150</th> <th>175</th>	ND Rating	100	125	150	175					
Maximun	n Applicable Motor Capacity (HP) <1>	HD Rating	75	100	125	150					
	1 4 C	ND Rating	271	324	394	471					
	Input Current (A) <2>	HD Rating	200	271	324	394					
	Rated Voltage Rated Frequency		Three-pha	se 200 to 240 Vac	50/60 Hz/270 to 3	340 Vdc <3>					
Input	Allowable Voltage Fluct	uation		-15 to	10%						
	Allowable Frequency Fluo	ctuation		±5%							
	Input Down (IVA)	ND Rating	124	148	180	215					
	Input Power (kVA)	HD Rating	91	124	148	180					
		ND Rating <5>	95	119	137	158					
	Rated Output Capacity (kVA) <	HD Rating									
		ND Rating <5>	250	312	360	415					
Output	Rated Output Current (A)	HD Rating				175 150 471 394 to 340 Vdc <3> 215 180 158 158 45> 415 415 415 45> ent for 60 s ent for 60 s rt and stop frequently) 0 kHz					
Juiput	Overload Toleranc	e	HD R	ating: 150% of rate	ed output current	for 60 s					
	Carrier Frequency	7	Ţ	User adjustable bet	ween 1 and 10 kF	łz					
	Maximum Output Volta	ge (V)	-15 to 10% ±5% 124 148 180 215 91 124 148 180 95 119 137 158 82 108 132 158 65 65 65 65 25 250 312 360 415 215 283 346 415 215 65 65 66 66 67 68 68 ND Rating: 120% of rated output current for 60 s HD Rating: 150% of rated output current for 60 s (Derating may be required for applications that start and stop frequently)				Three-phase 200 to 240 Vac (proportional to input voltage)				
	Maximum Output Freque		400 Hz (user-set)							

- <1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.
- <3> DC input is not available for UL standards.
- <4> Rated motor capacity is calculated with a rated output voltage of 220 V.
- <5> Carrier frequency is set to 2 kHz. Current derating is required in order to raise the carrier frequency.
- <6> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

◆ Three-Phase 400 V Class Drive Models 4A0002 to 4A0031

Table A.5 Power Ratings (Three-Phase 400 V Class)

	Item					S	pecification	n			
	Drive Models		4A0002	4A0004	4A0005	4A0007	4A0009	4A0011	4A0018	4A0023	4A0031
		ND Rating	0.75	2	3	3	5	7.5	10	15	20
Ca	pacity (HP) <1>	HD Rating	0.75	2	3	3	5	5	7.5	10	15
Maximum Applicable Motor Capacity (HP) Input Current (A) Rated V Rated Fre Allowable Volta Allowable Freque Input Power (kVA) Rated Output Capacity (kVA) Rated Output Current (A) Output	ND Rating	2.1	4.3	5.9	8.1	9.4	14	20	24	38	
	Input Current (A)	HD Rating	1.8	3.2	4.4	6	8.2	10.4	15	10 15 7.5 10 20 24 15 20 680 Vdc 18.3 22 13.7 18.3 13.3 17.5 11.3 13.7 17.5 23 14.8 18 for 60 s	29
	Rated Vo Rated Free	ltage Juency		Thr	ee-phase:	380 to 480	Vac 50/60) Hz/510 t	o 680 Vdc		
Input	Allowable Voltage	e Fluctuation					-15 to 10%)			
	Allowable Frequen	cy Fluctuation					±5%				
	Input Power (LVA)	ND Rating	1.9	3.9	5.4	7.4	8.6	12.8	10 15 20 24 3 3 4 5 5 6 6 8 1 4 for 60 s at and stop frequently)	35	
	Input I owel (KVA)	HD Rating	1.6	2.9	4.0	5.5	7.5	10	13.7	18.3	27
	Rated Output	ND Rating <5>	1.6	3.1	4.1	5.3	6.7	8.5	13.3	17.5	24
	Capacity (kVA) <4>	HD Rating <6>	1.4	2.6	3.7	4.2	5.5	7	11.3	13.7	18.3
	Rated Output Current	ND Rating <5>	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23	31
		HD Rating <6>	1.8	3.4	4.8	5.5	7.2	9.2	14.8	18	24
Output	Overload To	olerance		(Derating	HD Ratir	ng: 150% d	of rated out of rated out application	put currer	nt for 60 s	23)
	Carrier Fre	quency			Use	r adjustab	le between	1 and 15	kHz		
	Maximum Outpu	t Voltage (V)		Thre	ee-phase: 3	380 to 480	Vac (prop	ortional to	input volt	age)	
	Maximum Output l	Frequency (Hz)				400 Hz	(user-adju	ıstable)			

<1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

<2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring conditions, and power supply impedance.

<3> DC input is not available for UL standards.

<4> Rated motor capacity is calculated with a rated output voltage of 440 V.

<5> Carrier frequency is set to 2 kHz. Current derating is required in order to raise the carrier frequency.

<6> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating.

◆ Three-Phase 400 V Class Drive Models 4A0038 to 4A0165

Table A.6 Power Ratings Continued (Three-Phase 400 V Class)

	Item					Speci	fication					
	Drive Models		4A0038	4A0044	4A0058	4A0072	4A0088	4A0103	4A0139	4A0165		
Maxim	um Applicable Motor	ND Rating	25	30	40	50	60	75	100	125		
C	apacity (HP) <1>	HD Rating	20	25-30	25-30	40	50-60	50-60	75	100		
	Input Current (A) <2>	ND Rating	44	52	58	71	86	105	142	170		
	input Current (A)	HD Rating	39	44	43	58	71	86	105	142		
	Rated Volt Rated Frequ			Three-	phase: 380	to 480 Vac	50/60 Hz/5	10 to 680 V	to 680 Vdc <3>			
Input	Allowable Voltage	Fluctuation				-15 to	o 10%					
	Allowable Frequency	y Fluctuation				±:	5%					
Maximu Ca Input	Input Power (kVA)	ND Rating	40	48	53	65	79	96	130	155		
		HD Rating	36	40	39	53	65	79	96	130		
	Rated Output Capacity	ND Rating <5>	29	34	44	55	67	78	106	126		
	(kVA) 4>	HD Rating	24	30	34	46	57	69	85 <7>	114 <7>		
	P-4-10 4-4C4	ND Rating <5>	38	44	58	72	88	103	100 75 142 105 Vdc <3> 130 96 106 85 <7> 139 112 <7> 60 s 60 s stop frequently User adju between 10 kH	165		
	Rated Output Current (A)	HD Rating	31 <6>	39 <6>	45 <6>	60 <6>	75 <6>	91 < 6 >		150 <7>		
Output	Overload Tole	erance	(D	Н	D Rating: 1	50% of rat	ed output cu	irrent for 60) s	ly)		
	Carrier Freq	uency	10						n 1 and			
	Maximum Output	Voltage (V)		Three-1	phase: 380	to 480 Vac	(proportion	al to input v	oltage)			
	Maximum Output Fr	equency (Hz)				100 Hz (use	r-adjustable	e)				

- <1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring conditions, and power supply impedance.
- <3> DC input is not available for UL standards.
- <4> Rated motor capacity is calculated with a rated output voltage of 440 V.
- <5> Carrier frequency is set to 2 kHz. Current derating is required in order to raise the carrier frequency.
- <6> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating.
- <7> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

◆ Three-Phase 400 V Class Drive Models 4A0208 to 4A1200

Table A.7 Power Ratings Continued (Three-Phase 400 V Class)

	Item				<u> </u>	S	pecificatio	n .						
	Drive Models		4A0208	4A0250	4A0296	4A0362	4A0414	4A0515	4A0675	4A0930	4A1200			
Mayin	num Applicable Motor	ND Rating	150	200	250	300	350	400-450	500-550	750	1000			
C	Capacity (HP) <1>	HD Rating	125-150	150	200	250	300	350	400-450- 500	650	900			
	Input Current (A) <2>	ND Rating	207	248	300	346	410	465	657	922	1158			
		HD Rating	170	207	248	300	346	410	584	830	1031			
Input	Rated Volt Rated Frequ			Tł	nree-phase:	380 to 480	Vac 50/60	Hz/510 to	680 Vdc <	3>				
	Allowable Voltage	Fluctuation					-15 to 10%			750 1000 650 900 922 1158 830 1031 3> 843 1059 759 943 843 1059 617 831 <5> 45> 930 1200 810 1090 <5> 45> requently)				
Input Ra	Allowable Frequency	Fluctuation			200 250 300 350 400-450-500 650 9 300 346 410 465 657 922 11 248 300 346 410 584 830 10 Three-phase: 380 to 480 Vac 50/60 Hz/510 to 680 Vdc 3> -15 to 10% ±5% 274 316 375 425 601 843 10 227 274 316 375 534 759 9 274 316 375 425 601 843 10 198 232 282 343 461 617 8 -6 46 46 46 45 45 45 65 45 45 45 45 45 45 45 45 45 45 45 45 45									
	Input Power (kVA)	ND Rating	189	227	274	316	375	425	601 843 1	1059				
	Imput I ower (KVA)	HD Rating	155	189	227	274	316	375	534	0-550 750 0-450- 650 650 657 922 684 830 0 Vdc <3> 601 843 602 843 603 843 603 843 603 843 604 843 605 843 605 843 607 845 607	943			
	Rated Output Capacity	ND Rating <5>	189	227	274	316	375	425	601	843	1059			
	(kVA) <4>	HD Rating	137 <6>	165 <6>						750 650 922 830 3> 843 759 843 617 <5> 930 810 <5> equently) tween 1 and 0.95				
	D . 10	ND Rating <5>	208	250	296	362	414	515	675	930	1200			
	Rated Output Current (A)	HD Rating	180 <6>	216 <6>							1090			
Output	Overload Told	erance		(Derating	HD Rati	ng: 150% o	of rated out	put current	for 60 s	equently)				
	Carrier Frequ	uency	Us	er-adjustab	le between	1 and 10 k	Hz	User-ad	justable be	tween 1 an	d 5 kHz			
	Maximum Output	Voltage (V)	Th	ree-phase:	380 to 480	Vac (prope	ortional to i	nput voltag	ge)	0.7				
	Maximum Output Fr	equency (Hz)				400 Hz	(user-adju	stable)		750 1000 650 900 922 1153 830 103 843 1055 759 943 843 1055 617 831 <5> 930 1200 810 1090 <5> 45> 45> 45> 45> 45> 45> 45> 45> 45> 4				

<1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

<2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring conditions, and power supply impedance.

<3> DC input is not available for UL standards.

<4> Rated motor capacity is calculated with a rated output voltage of 440 V.

<5> Carrier frequency is set to 2 kHz. Current derating is required in order to raise the carrier frequency.

<6> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

<7> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

◆ Three-Phase 600 V Class Drive Models 5A0003 to 5A0032

Table A.8 Power Ratings (Three-Phase 600 V Class)

	Item					Sı	oecificatio	n			
	Drive Models		5A0003	5A0004	5A0006	5A0009	5A0011	5A0017	5A0022	5A0027	5A0032
Maximu	m Applicable Motor	ND Rating	2	3	5	7.5	10	15	20	25	30
Caj	pacity (HP) <1>	HD Rating	1	2	3	5	7.5	10	15	20	25
	Input Current (A)	ND Rating	3.6	5.1	8.3	12	16	23	31	38	45
	* <2> ` ´	HD Rating	1.9	3.6	5.1	8.3	12	16	23	31	38
	Rated Vo Rated Fred				Thr	ee-phase 5	00 to 600	Vac 50/60	Hz		
Input	-10 (-13) to +10/0										
Allowable Fre	Allowable Frequen	cy Fluctuation					±5%				
	Input Power (kVA)	ND Rating	4.1	5.8	9.5	14	18	26	35	43	51
	input rower (kvA)	HD Rating	2.2	4.1	5.8	9.5	14	18	26	25 20 38 31 43 35 27 22 27 22 27 22 equently)	43
	Rated Output	ND Rating <4>	2.7	3.9	6.1	9	11	17	22	27	32
	Capacity (kVA) <>>	HD Rating <5>	1.7	3.5	4.1	6.3	9.8	12	17	22	27
	Rated Output	ND Rating <4>	2.7	3.9	6.1	9	11	17	22	27	32
	Current (A)	HD Rating <5>	1.7	3.5	4.1	6.3	9.8	12.5	17	20 38 31 43 35 27 22 27 22 27 22 27 22 or equently)	27
Output	Overload To	olerance		(Derating	HD Ratir	ng: 120% o ng: 150% o quired for a	f rated out	put current	for 60 s	requently)	
	Carrier Fre	quency	Us	er adjustab	le between	2 and 15 k	Hz	User adjı	ustable bet	ween 2 and	d 10 kHz
	Maximum Outpu	t Voltage (V)		Thr	ee-phase 5	00 to 600	Vac (propo	rtional to i	nput volta	ge)	
	Maximum Output 1	Frequency (Hz)				400	Hz (user-s	set)			

<1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

- <3> Rated motor capacity is calculated with a rated output voltage of 575 V.
- <4> Carrier frequency is set to 2 kHz. Current derating is required to raise the carrier frequency.
- <5> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating.

<2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.

◆ Three-Phase 600 V Class Drive Models 5A0041 to 5A0099

Table A.9 Power Ratings Continued (Three-Phase 600 V Class)

	Item	-			Specification			
	Drive Models		5A0041	5A0052	5A0062	5A0077	5A0099	
Maximu	m Applicable Motor Capacity (HP)	ND Rating	40	50	60	75	100	
	<1>	HD Rating	25-30	40	50-60	50-60	75	
	Input Current (A) <2>	ND Rating	44	54	66	80	108	
	Input Current (A)	HD Rating	33	44	54	66	80	
	Rated Voltage Rated Frequency	7		Three-phas	se 500 to 600 Va	ac 50/60 Hz		
Input	Allowable Voltage Fluc	tuation		-	10 (-15) to +10°	⁄ ₀		
	Allowable Frequency Flu	ctuation			±5%			
	Input Power (kVA)	ND Rating	50	62	75	91	123	
	input i owei (kvA)	HD Rating	38	50	62	75	91	
		ND Rating <4>	41	52	62	77	99	
	Rated Output Capacity (kVA) <3>	HD Rating	32 <5>	41 <5>	52 <5>	62 <5>	77 <6>	
		ND Rating <4>	41	52	62	77	99	
	Rated Output Current (A)	HD Rating	32 <5>	41 <5>	52 <5>	62 <5>	77 <6>	
Output	Overload Toleran	ce	ND Rating: 120% of rated output current for 60 s HD Rating: 150% of rated output current for 60 s (Derating may be required for applications that start and stop frequent					
	Carrier Frequenc	у	User adjustable between 2 and 10 kHz User adjustable between 2 and 10 kHz User adjustable between 2 and 10 kHz					
	Maximum Output Volt	age (V)	Three-phase 500 to 600 Vac (proportional to input voltage)					
	Maximum Output Freque	ency (Hz)		4	400 Hz (user-set	:)		

<1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.

<3> Rated motor capacity is calculated with a rated output voltage of 575 V.

<4> Carrier frequency can be increased to 2 kHz while keeping this current derating. Higher carrier frequency settings require derating.

<5> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating.

<6> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

◆ Three-Phase 600 V Class Drive Models 5A0125 to 5A0242

Table A.10 Power Ratings Continued (Three-Phase 600 V Class)

150 125	5A0192 200	5A0242			
	200	250			
125		250			
	150	200			
158	228	263			
129	158	228			
hase 500 to	600 Vac 50/60 Hz				
-10 (-15) t	to +10%				
±5%	%				
181	261	301			
147	181	261			
144	191	241			
129	171	199			
145	192	242			
130	172	200			
50% of rated	d output current for	· 60 s			
djustable bet	ween 2 and 3kHz				
Three-phase 500 to 600 Vac (proportional to input voltage)					
400 Hz (u	ıser-set)				
	hase 500 to -10 (-15) ±56 181 147 144 129 145 130 20% of rate 50% of rated for application of the following states of 600 Vac (1)	129 158 hase 500 to 600 Vac 50/60 Hz -10 (-15) to +10% ±5% 181 261 147 181 144 191 129 171 145 192 130 172 20% of rated output current for 50% of rated output current for d for applications that start and djustable between 2 and 3kHz to 600 Vac (proportional to input 400 Hz (user-set)			

- <1> The motor capacity (HP) refers to a NEC rated 4-pole motor. The rated output current of the drive output amps should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.
- <3> Rated motor capacity is calculated with a rated output voltage of 575 V.
- <4> Carrier frequency can be increased to 2 kHz while keeping this current derating. Higher carrier frequency settings require derating.
- <5> Carrier frequency can be increased to 8 kHz while keeping this current derating. Higher carrier frequency settings require derating.
- <6> Carrier frequency can be increased to 5 kHz while keeping this current derating. Higher carrier frequency settings require derating.

A.3 Drive Specifications

Note:

- 1. Perform rotational Auto-Tuning to obtain the performance specifications given below.
- 2. For optimum performance life of the drive, install the drive in an environment that meets the required specifications.

	Item	Specification					
		The following control methods can be set using drive parameters:					
		V/f Control (V/f)					
		V/f Control with PG (V/f w/PG)					
		Open Loop Vector Control (OLV)					
	Control Method	Closed Loop Vector Control (CLV)					
		Open Loop Vector Control for PM (OLV/PM)					
		Advanced Open Loop Vector Control for PM (AOLV/PM)					
		Closed Loop Vector Control for PM (CLV/PM)					
		Note: PM motor control modes are not available on 600 V class drives, models 5A□□□□.					
	Frequency Control Range	0.01 to 400 Hz					
	Frequency Accuracy (Temperature Fluctuation)	Digital input: within $\pm 0.01\%$ of the max output frequency (-10 to +40 °C) Analog input: within $\pm 0.1\%$ of the max output frequency (25 °C ± 10 °C)					
	Frequency Setting Resolution	Digital inputs: 0.01 Hz Analog inputs: 1/2048 of the maximum output frequency setting (11 bit plus sign)					
	Output Frequency Resolution	0.001 Hz					
	Frequency Setting Signal	Main speed frequency reference: DC -10 to +10 V (20 k Ω), DC 0 to +10 V (20 k Ω), 4 to 20 mA (250 Ω), 0 to 20 mA (250 Ω) Main speed reference: Pulse train input (max. 32 kHz)					
	Starting Torque <2>	V/f, V/f w/PG: 150% at 3 Hz OLV: 200% at 0.3 Hz <1> CLV, AOLV/PM, CLV/PM: 200% at 0.0 r/min <1> OLV/PM: 100% at 3 Hz					
Control Character- istics	Speed Control Range <	V/f, V/f w/PG: 1:40 OLV: 1:200 CLV, CLV/PM: 1:1500 OLV/PM: 1:20 AOLV/PM: 1:100					
	Speed Control Accuracy <2>	OLV: ±0.2% (25 °C ±10 °C) CLV: ±0.02% (25 °C ±10 °C)					
	Speed Response <2>	OLV, OLV/PM, AOLV/PM: 10 Hz (25 °C ±10 °C (77 °F ±50 °F)) CLV, CLV/PM: 50 Hz (25 °C ±10 °C (77 °F ±50 °F))					
	Torque Limit	Parameters setting allow separate limits in four quadrants (available in OLV, CLV, AOLV/PM, CLV/PM)					
	Accel/Decel Time	0.0 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)					
	Braking Torque	Approx. 20% (approx. 125% when using braking resistor) <3> • Short-time decel torque <4>: over 100% for 0.4/0.75 kW motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors <5> (overexcitation braking/High Slip Braking: approx. 40%) • Continuous regenerative torque: approx. 20% <5> (approx. 125% with dynamic braking resistor option <3>: 10% ED, 10s)					
	Braking Transistor	Models 2A0004 to 2A0138, 4A0002 to 4A0072, and 5A0003 to 5A0052 have a built-in braking transistor.					
	V/f Characteristics	User-selected programs and V/f preset patterns possible					
	Main Control Functions	Torque Control, Droop Control, Speed/torque Control Switching, Feed Forward Control, Zero Servo Function, Momentary Power Loss Ride-Thru, Speed Search, Overtorque/Undertorque Detection, Torque Limit, 17 Step Speed (max), Accel/decel Switch, S-curve Accel/decel, 3-wire Sequence, Autotuning (rotational, stationary tuning), Dwell, Cooling Fan on/off Switch, Slip Compensation, Torque Compensation, Frequency Jump, Upper/lower Limits for Frequency Reference, DC Injection Braking at Start and Stop, Overexcitation Braking, High Slip Braking, PID Control (with sleep function), Energy Saving Control, MEMOBUS/Modbus Comm. (RS-422/RS-485 max, 115.2 kbps), Fault Restart, Application Presets, DriveWorksEZ (customized function), Removable Terminal Block with Parameter Backup Function, Online Tuning, KEB, Overexcitation Deceleration, Inertia (ASR) Tuning, Overvoltage Suppression, High Frequency Injection.					

	Item	Specification
	Motor Protection	Electronic thermal overload relay
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200% of Heavy Duty Rating
	Overload Protection	Drive stops after 60 s at 150% of rated Heavy Duty output current <6>
	Overvoltage Protection	200 V class: Stops when DC bus voltage exceeds approx. 410 V 400 V class: Stops when DC bus voltage exceeds approx. 820 V 600 V class: Stops when DC bus voltage exceeds approx. 1040 V
Protection Functions	Undervoltage Protection	200 V class: Stops when DC bus voltage falls below approx. 190 V 400 V class: Stops when DC bus voltage falls below approx. 380 V 600 V class: Stops when DC bus voltage falls below approx. 475 V
Functions	Momentary Power Loss Ride-Thru	Immediately stop after 15 ms or longer power loss <->. Continuous operation during power loss than 2 s (standard) <->.
	Heatsink Overheat Protection	Thermistor
	Braking Resistor Overheat Protection	Overheat input signal for braking resistor (Optional ERF-type, 3% ED)
	Stall Prevention	Stall Prevention is available during acceleration, deceleration, and during run.
	Ground Protection	Electronic circuit protection <9>
	DC Bus Charge LED	Remains lit until DC bus voltage falls below 50 V
	Area of Use	Indoors
	Ambient Temperature	IP20/NEMA Type 1 enclosure: -10 °C to +40 °C (14 °F to 104 °F), IP00 enclosure: -10 °C to +50 °C (14 °F to 122 °F)
	Humidity	95 RH% or less (no condensation)
Environment	Storage Temperature	-20 °C to +60 °C (short-term temperature during transportation)
	Altitude	Up to 1000 meters without derating, up to 3000 m with output current and voltage derating. <i>Refer to Altitude Derating on page 572</i> for details.
	Vibration/Shock	10 to 20 Hz: 9.8 m/s ² <10> 20 to 55 Hz: 5.9 m/s ² (2A0004 to 2A0211, 4A0002 to 4A0165, and 5A0003 to 5A0099) 2.0 m/s ² (2A0250 to 2A0415, 4A0208 to 4A1200, and 5A0125 to 5A0242)
	Standard	 UL508C IEC/EN 61800-3, IEC/EN 61800-5-1 Two Safe Disable inputs and one EDM output according to ISO/EN 13849-1 Cat. 3 PLd, IEC/EN 61508 SIL2 CSA <11>
I	Protection Design	IP00/Open Type enclosure, IP20/NEMA Type 1 enclosure 2
415 0 1 4	atrol modes in accordance with d	

- <1> Select control modes in accordance with drive capacity.
- <2> The accuracy of these values depends on motor characteristics, ambient conditions, and drive settings. Specifications may vary with different motors and with changing motor temperature. Contact Yaskawa for consultation.
- <3> Disable Stall Prevention during deceleration (L3-04 = 0) when using a regenerative converter, a regenerative unit, a braking resistor or the Braking Resistor Unit. The default setting for the Stall Prevention function will interfere with the braking resistor.
- <4> Instantaneous average deceleration torque refers to the torque required to decelerate the motor (uncoupled from the load) from the rated motor speed down to zero in the shortest time.
- <5> Actual specifications may vary depending on motor characteristics.
- <6> Overload protection may be triggered when operating with 150% of the rated output current if the output frequency is less than 6 Hz.
- <7> May be shorter due to load conditions and motor speed.
- <8> A separate Momentary Power Loss Ride-Thru Unit is required for models 2A0004 to 2A0056 and 4A0002 to 4A0031 if the application needs to continue running for up to 2 seconds during a momentary power loss.
- <9> Ground protection cannot be provided when the impedance of the ground fault path is too low, or when the drive is powered up while a ground fault is present at the output.
- <10> Models 4A0930 and 4A1200 are rated at 5.9 m/s².
- <11> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to Insulation coordination: class 1.
- <12> Removing the top protective cover or bottom conduit bracket from an IP20/NEMA Type 1 enclosure drive voids NEMA Type 1 protection while maintaining IP20 conformity. This is applicable to models 2A0004 to 2A0211, 4A0002 to 4A0165, and 5A0003 to 5A0242.

A.4 Drive Watt Loss Data

Table A.11 Watt Loss 200 V Class Three-Phase Models

		Norma	l Duty		Heavy Duty					
Drive Model	Rated Amps (A) ³³	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)	Rated Amps (A)	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)		
2A0004	3.5	18.4	47	66	3.2 <1>	14.8	44	59		
2A0006	6.0	31	51	82	5.0 <1>	24	48	72		
2A0008	8.0	43	52	95	6.9 <1>	35	49	84		
2A0010	9.6	57	58	115	8.0 <1>	43	52	95		
2A0012	12.0	77	64	141	11.0 <1>	64	58	122		
2A0018	17.5	101	67	168	14.0 <1>	77	60	137		
2A0021	21	138	83	222	17.5 < 1>	101	67	168		
2A0030	30	262	117	379	25 <1>	194	92	287		
2A0040	40	293	145	437	33 <1>	214	105	319		
2A0056	56	371	175	546	47 < 1 >	280	130	410		
2A0069	69	491	205	696	60 < <i>1</i> >	395	163	558		
2A0081	81	527	257	785	75 < 1 >	460	221	681		
2A0110	110	719	286	1005	85 < <i>1</i> >	510	211	721		
2A0138	138	842	312	1154	115 <1>	662	250	912		
2A0169	169	1014	380	1394	145 < 1 >	816	306	1122		
2A0211	211	1218	473	1691	180 <2>	976	378	1354		
2A0250	250	1764	594	2358	215 <2>	1514	466	1980		
2A0312	312	2020	665	2686	283 <2>	1936	588	2524		
2A0360	360	2698	894	3591	346 <2>	2564	783	3347		
2A0415	415	2672	954	3626	415 <3>	2672	954	3626		

<1> Value assumes the carrier frequency is set to 8 kHz or less.

Table A.12 Watt Loss 400 V Class Three-Phase Models

		Norma	al Duty		Heavy Duty					
Drive Model	Rated Amps (A) <3>	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)	Rated Amps (A)	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)		
4A0002	2.1	20	48	68	1.8 <1>	15.9	45	61		
4A0004	4.1	32	49	81	3.4 <1>	25	46	70		
4A0005	5.4	45	53	97	4.8 <1>	37	49	87		
4A0007	6.9	62	59	121	5.5 <1>	48	53	101		
4A0009	8.8	66	60	126	7.2 <1>	53	55	108		
4A0011	11.1	89	73	162	9.2 <1>	69	61	130		
4A0018	17.5	177	108	285	14.8 <1>	135	86	221		
4A0023	23	216	138	354	18.0 <1>	150	97	247		
4A0031	31	295	161	455	24 <1>	208	115	323		
4A0038	38	340	182	521	31 <1>	263	141	403		
4A0044	44	390	209	599	39 <1>	330	179	509		
4A0058	58	471	215	686	45 <1>	349	170	518		
4A0072	72	605	265	870	60 <1>	484	217	701		

<2> Value assumes the carrier frequency is set to 5 kHz or less.

<3> Value assumes the carrier frequency is set to 2 kHz.

		Norma	l Duty		Heavy Duty					
Drive Model	Rated Amps (A) <3>	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)	Rated Amps (A)	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)		
4A0088	88	684	308	993	75 <1>	563	254	817		
4A0103	103	848	357	1205	91 <1>	723	299	1022		
4A0139	139	1215	534	1749	112 <2>	908	416	1325		
4A0165	165	1557	668	2224	150 <2>	1340	580	1920		
4A0208	208	1800	607	2408	180 <2>	1771	541	2313		
4A0250	250	2379	803	3182	216 <2>	2360	715	3075		
4A0296	296	2448	905	3353	260 <2>	2391	787	3178		
4A0362	362	3168	1130	4298	304 <2>	3075	985	4060		
4A0414	414	3443	1295	4738	370 <2>	3578	1164	4742		
4A0515	515	4850	1668	6518	450 < 3 >	3972	1386	5358		
4A0675	675	4861	2037	6898	605 <3>	4191	1685	5875		
4A0930	930	8476	2952	11428	810 <3>	6912	2455	9367		
4A1200	1200	8572	3612	12184	1090 <3>	7626	3155	10781		

<1> Value assumes the carrier frequency is set to 8 kHz or less.

Table A.13 Watt Loss Three-Phase 600 V Class Three-Phase Models

		Norma	l Duty		Heavy Duty					
Drive Model	Rated Amps (A) ³	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)	Rated Amps (A)	Heatsink Loss (W)	Interior Unit Loss (W)	Total Loss (W)		
5A0003	2.7	23.3	21.5	44.8	1.7 <2>	28.9	19.8	48.7		
5A0004	3.9	33.6	27.5	61.1	3.5 <2>	54.3	27.6	81.9		
5A0006	6.1	43.7	28.1	71.8	4.1 <2>	53.0	27.0	80.0		
5A0009	9.0	68.9	43.4	112.3	6.3 <2>	78.7	36.4	115.1		
5A0011	11	88.0	56.1	144.0	9.8 <2>	110.9	49.5	160.3		
5A0017	17	146.7	96.6	243.2	12.5 <2>	144.7	67.5	212.2		
5A0022	22	178.3	99.4	277.7	17 <2>	203.8	81.1	284.8		
5A0027	27	227.2	132.1	359.3	22 <1>	267.2	113.8	381.1		
5A0032	32	279.9	141.6	421.5	27 <1>	332.9	132.2	465.1		
5A0041	41	330.8	136.2	467.0	32 <1>	405.9	127.6	533.5		
5A0052	52	427.8	166.2	594.0	41 <1>	527.2	161.4	688.5		
5A0062	62	791.2	279.0	1070.2	52 <1>	1271.5	335.0	1606.5		
5A0077	77	959.1	329.4	1288.6	62 <1>	1457.0	379.5	1836.5		
5A0099	99	1253.2	411.7	1664.9	77 <2>	1267.0	352.0	1619.0		
5A0125	125	1641	537	2178	99 <3>	1328	422	1750		
5A0145	145	1860	603	2463	130 <3>	1638	508	2146		
5A0192	192	2420	769	3189	172 <3>	2114	648	2762		
5A0242	242	3100	1131	4231	200 <3>	2526	896	3422		

<1> Value assumes the carrier frequency is set to 8 kHz or less.

<2> Value assumes the carrier frequency is set to 5 kHz or less.

<3> Value assumes the carrier frequency is set to 2 kHz.

<2> Value assumes the carrier frequency is set to 5 kHz or less.

<3> Value assumes the carrier frequency is set to 2 kHz.

A.5 Drive Derating Data

The drive can be operated at above the rated temperature, altitude, and default carrier frequency by derating the drive capacity.

Single-Phase Derating

A1000 drives are optimized and compatible for use with both three-phase and single-phase input power supplies. The A1000 output to the motor is fixed at three-phase.

A1000 output capacity to the motor is reduced or derated when single-phase input power is used.

Selection of larger A1000 models always results in greater output capacity to the motor when the A1000 is supplied with three-phase input power. Conversely, selection of larger A1000 models does not always yield greater output capacity when the A1000 is used with single-phase input power. Several factors affect the amount of derated drive output capacity when single-phase input power is supplied to the A1000, such as:

- single-phase input voltage level
- motor voltage rating
- amount of input impedance.

The tables in this section assist in A1000 model selection by considering factors that affect the amount of A1000 derating in single-phase input power applications.

The continuous output current listed in the tables allows for a 120% overload for 60 seconds.

Contact Yaskawa if assistance is needed in selecting A1000 drive models for heavy duty/single-phase applications with higher overload requirements.

Table A.14 240 V Single-Phase Input (-5% to +10%), 230 V Three-Phase Motor

	W	ithout Ad	ditional Im	pedance	With Additional Impedance (use either DC type or AC type)						
Drive Model	Output C	Output Capacity		gle Phase out Load	Yaskawa Reacto	Output Capacity		Single Phase Input Load			
	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	DC Type	AC Type	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	
2A0004	0.33	1.52	0.99	4.3	URX000043	URX000303	0.5	2.2	0.94	4.1	
2A0006	0.5	2.2	1.3	5.7	URX000043	URX000303	0.75	3.2	1.3	5.7	
2A0008	0.75	3.2	1.7	7.7	05P00620-0113	URX000307	1	4.2	1.6	7.2	
2A0010	0.75	3.2	1.8	7.7	05P00620-0113	URX000311	1	4.2	1.8	7.8	
2A0012	1	4.2	2.3	10	URX000048	URX000316	2	7.5	2.9	13	
2A0018	2	6.8	4.3	19	05P00620-0120	URX000319	3	9.6	4.3	19	
2A0021	2	6.8	4.3	19	05P00620-0120	URX000323	3	9.6	4.4	19	
2A0030	2	6.8	4.5	20	05P00620-0120	URX000323	3	9.6	4.4	19	
2A0040	3	9.6	6.2	27	05P00620-0124	URX000323	5	15.2	6.7	30	
2A0056	5	15.2	9.9	43	URX000059	URX000326	7.5	22	9.6	42	
2A0069	5	15.2	10	45	URX000063	URX000332	10	28	13	56	
2A0081	10	28	18	79	URX000072	URX000338	15	42	19	84	
2A0110	10	28	14	60			10	28	14	60	
2A0138	15	42	20	87			15	42	20	87	
2A0169	20	54	26	114			20	54	26	114	
2A0211	20	54	26	116	DC Link Choke	Do Not Use AC	20	54	26	116	
2A0250	25	68	32	143	Built-in	Reactor	25	68	32	143	
2A0312	30	80	39	170			30	80	39	170	
2A0360	40	104	51	224			40	104	51	224	
2A0415	50	130	63	275			50	130	63	275	

Table A.15 240 V Single-Phase Input (-5% to +10%), 208 V Three-Phase Motor

	W	ithout Ad	ditional Im			With Ac	dditional Ir er DC type	npedance or AC ty	e rpe)	
Drive Model	Output C	Output Capacity		gle Phase out Load	Yaskawa Reacto	r Part Number	Output C	apacity	Single Phase Input Load	
	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	DC Type	AC Type	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)
2A0004	0.33	1.7	0.99	4.3	URX000043	URX000303	0.5	2.4	0.94	4.1
2A0006	0.5	2.4	1.3	5.7	URX000043	URX000303	0.75	3.5	1.3	5.7
2A0008	0.75	3.5	1.7	7.7	05P00620-0113	URX000307	1	4.6	1.6	7.2
2A0010	0.75	3.5	1.8	7.7	05P00620-0113	URX000311	1	4.6	1.8	7.8
2A0012	1	4.6	2.3	10	05P00620-0115	URX000315	2	7.5	2.9	13
2A0018	2	7.5	4.3	19	05P00620-0120	URX000319	3	10.6	4.3	19
2A0021	2	7.5	4.3	19	05P00620-0120	URX000323	3	10.6	4.4	19
2A0030	2	7.5	4.5	20	05P00620-0120	URX000323	3	10.6	4.4	19
2A0040	3	10.6	6.2	27	05P00620-0124	URX000323	5	17	6.7	30
2A0056	5	17	9.9	43	URX000059	URX000326	7.5	24	9.6	42
2A0069	5	17	10	45	URX000063	URX000332	10	31	13	56
2A0081	10	31	18	79	URX000072	URX000339	15	46	19	84
2A0110	10	31	14	60		URX000340	15	46	17	76
2A0138	15	46	20	87		URX000343	15	46	18	77
2A0169	20	59	26	114		URX000342	20	59	23	102
2A0211	20	59	26	116	DC Link Choke	URX000344	25	75	29	129
2A0250	25	75	32	143	Built-in	URX000347	30	88	35	156
2A0312	30	88	39	170		URX000350	40	114	47	204
2A0360	40	114	51	224		URX000353	50	143	57	252
2A0415	50	143	63	275		URX000356	60	169	69	301

Table A.16 480 V Single-Phase Input (-5% to +10%), 460 V Three-Phase Motor

	w	ithout Ad	ditional Im	pedance	With Additional Impedance (use either DC type or AC type)						
Drive Model	Output Capacity			gle Phase out Load	Yaskawa Reacto	Output C	apacity	Single Phase Input Load			
	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	DC Type	AC Type	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	
4A0002	0.33	0.76	1.1	2.4	URX000041	URX000295	0.5	1.1	0.98	2.1	
4A0004	0.75	1.6	1.9	4.2	URX000041	URX000299	1	2.1	1.7	3.8	
4A0005	1	2.1	2.3	5.1	05P00620-0110	URX000303	1.5	3	2.5	5.5	
4A0007	1	2.1	2.5	5.6	05P00652-0213	URX000308	2	3.4	3	6.7	
4A0009	2	3.4	4.6	10	URX000048	URX000312	3	4.8	4.3	9.5	
4A0011	2	3.4	4.6	10	URX000053	URX000316	3	4.8	4.7	10	
4A0018	2	3.4	4.4	9.7	URX000052	URX000316	3	4.8	4.6	10	
4A0023	3	4.8	6.3	14	URX000052	URX000316	5	7.6	7	15	
4A0031	5	7.6	10	22	URX000055	URX000324	7.5	11	9.9	22	
4A0038	7.5	11	14	31	05P00620-0123	URX000327	10	14	14	31	
4A0044	7.5	11	14	31	URX000061	URX000327	10	14	13	28	

	W	ithout Ad	ditional Im	pedance	With Additional Impedance (use either DC type or AC type)						
Drive Model	Output Capacity		Single Phase Input Load		Yaskawa Reacto	Output C	apacity	Single Phase Input Load			
	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	DC Type	AC Type	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	
4A0058	10	14	14	30		URX000332	15	21	19	41	
4A0072	15	21	20	43		Do Not Use AC	15	21	20	43	
4A0088	15	21	20	44		Reactor	15	21	20	44	
4A0103	15	21	20	45		URX000335	20	27	25	54	
4A0139	30	40	38	84		URX000341	30	40	36	80	
4A0165	30	40	39	85		URX000341	30	40	37	81	
4A0208	50	65	62	136	DC Link Choke Built-in	URX000347	50	65	59	130	
4A0250	60	77	74	162	Built in	URX000347	60	77	70	154	
4A0296	60	77	75	165		URX000350	75	96	87	192	
4A0362	75	96	93	205		URX000353	100	124	115	251	
4A0414	100	124	122	267		URX000356	125	156	143	314	
4A0515	100	124	125	275		URX000353	100	124	116	255	
4A0675	125	156	157	345		Do Not Use	125	156	157	345	

Table A.17 480 V Single-Phase Input (-5% to +10%), 400 V Three-Phase Motor

	W		ditional Im	pedance		With Ac	dditional Ir er DC type	npedance			
Drive Model	Output C	Output Capacity		gle Phase out Load	Yaskawa Reacto	Yaskawa Reactor Part Number		Output Capacity		Single Phase Input Load	
	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	DC Type	AC Type	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	
4A0002	0.33	0.88	1.1	2.4	URX000041	URX000295	0.5	1.26	0.98	2.1	
4A0004	0.75	1.8	1.9	4.2	URX000041	URX000299	1	2.4	1.7	3.8	
4A0005	1	2.4	2.3	5.1	05P00620-0110	URX000303	1.5	3.4	2.5	5.5	
4A0007	1	2.4	2.5	5.6	05P00652-0213	URX000308	2	3.9	3	6.7	
4A0009	2	3.9	4.6	10	URX000048	URX000312	3	5.5	4.3	9.5	
4A0011	2	3.9	4.6	10	URX000053	URX000316	3	5.5	4.7	10	
4A0018	2	3.9	4.4	9.7	URX000052	URX000316	3	5.5	4.6	10	
4A0023	3	5.5	6.3	14	URX000052	URX000316	5	8.7	7	15	
4A0031	5	8.7	10	22	URX000055	URX000324	7.5	12.7	9.9	22	
4A0038	7.5	12.7	14	31	05P00620-0123	URX000327	10	16	14	31	
4A0044	7.5	12.7	14	31	URX000061	URX000327	10	16	13	28	
4A0058	10	16	14	30		URX000332	15	24	19	41	
4A0072	15	24	20	43		URX000336	20	31	24	52	
4A0088	15	24	20	44		URX000336	20	31	24	52	
4A0103	15	24	20	45		URX000335	20	31	25	54	
4A0139	30	46	38	84		URX000341	30	46	36	80	
4A0165	30	46	39	85		URX000341	30	46	37	81	
4A0208	50	75	62	136	DC Link Choke Built-in	URX000347	50	75	59	130	
4A0250	60	89	74	162	Zuni m	URX000347	60	89	70	154	
4A0296	60	89	75	165		URX000350	75	110	87	192	
4A0362	75	110	93	205		URX000353	100	143	115	251	
4A0414	100	143	122	267		URX000356	125	179	143	314	
4A0515	100	143	125	275		URX000353	100	143	116	255	
4A0675	125	179	157	345		URX000360	150	207	169	371	

Table A.18 600 V Single-Phase Input (-5% to +10%), 575 V Three-Phase Motor

	W		ditional Im			With Ac	dditional Ir er DC type	npedanc	e rpe)	
Drive Model	Output C	Output Capacity		gle Phase out Load	Yaskawa Reacto	r Part Number	Output Capacity		Single Phase Input Load	
	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)	DC Type	AC Type	Motor Power (HP)	Motor FLA	Power (kVA)	Continuous Output Current (A)
5A0003	1	1.7	2	3.5	05P00620-0110	URX000303	1.5	2.4	2.6	4.6
5A0004	1.5	2.4	2.7	4.8	URX000044	URX000306	2	2.7	2.9	5
5A0006	2	2.7	4	7	05P00652-0213	URX000308	3	3.9	4.3	7.6
5A0009	3	3.9	5.4	9.5	URX000049	URX000313	5	6.1	6.5	11
5A0011	2	2.7	4.1	7.1	05P00652-0213	URX000308	3	3.9	4.4	7.7
5A0017	5	6.1	9.1	16	URX000048	URX000316	5	6.1	7.1	12
5A0022	5	6.1	9.2	16	URX000053	URX000320	7.5	9	10	18
5A0027	7.5	9	14	24	URX000055	URX000324	10	11	13	23
5A0032	7.5	9	14	24	URX000055	URX000324	10	11	13	23
5A0041	10	11	14	24		URX000326	15	17	18	32
5A0052	15	17	19	34		URX000326	15	17	19	32
5A0062	20	22	27	47		URX000335	25	27	31	54
5A0077	25	27	32	57		URX000338	30	32	36	64
5A0099	30	32	38	66	DC Link Choke Built-in	URX000338	30	32	37	64
5A0125	40	41	49	86	Dunt-in	URX000344	50	52	58	102
5A0145	40	41	49	86		URX000344	50	52	58	102
5A0192	60	62	74	130		URX000347	75	77	87	152
5A0242	75	77	91	159		URX000347	75	77	87	152

■ Rated Current Depending on Carrier Frequency

The table below shows the drive output current depending on the carrier frequency settings.

Normal Duty Rating (ND)

The 2 kHz values shown for ND in *Table A.21* are equal to the drive rated current shown on the drive nameplate. Increasing the carrier frequency above 2 kHz will reduce the ND rated output current of the drive as shown in *Table A.21*.

Heavy Duty Rating (HD)

A carrier frequency setting of 8 kHz or lower is equal to the drive rated current shown on the drive nameplate. The factory default setting for carrier frequency in HD mode is 2 kHz. Increasing the carrier frequency above 8 kHz will reduce the HD rated output current of the drive as shown in the following tables.

Use the data in the following tables to linearly calculate output current values for carrier frequencies not listed.

Refer to *Table A.22* when using AOLV/PM control mode.

Table A.19 Three-Phase 200 V Class Carrier Frequency and Current Derating

		Thi	ree-Phase 200 V Cla	ass						
		Rated Current [A]								
Drive Model	N	ormal Duty Rating (I	ND)	He	eavy Duty Rating (H	ID)				
	2 kHz	8 kHz	15 kHz	2 kHz	8 kHz	15 kHz				
2A0004	3.5	3.2	2.56	3.2	3.2	2.56				
2A0006	6	5	4	5	5	4				
2A0008	8	6.9	5.5	6.9	6.9	5.5				
2A0010	9.6	8	6.4	8	8	6.4				
2A0012	12	11	8.8	11	11	8.8				
2A0018	17.5	14	11.2	14	14	11.2				
2A0021	21	17.5	14	17.5	17.5	14				
2A0030	30	25	20	25	25	20				

	Three-Phase 200 V Class									
			Rated C	urrent [A]						
Drive Model	N	ormal Duty Rating (N	ND)	He	eavy Duty Rating (H	ID)				
	2 kHz	8 kHz	2 kHz	8 kHz	15 kHz					
2A0040	40	33	26.4	33	33	26.4				
2A0056	56	47	37.6	47	47	37.6				
2A0069	69	60	48	60	60	48				
2A0081	81	75	53	75	75	53				
2A0110	110	85	60	85	85	60				
2A0138	138	115	81	115	115	81				

	Three-Phase 200 V Class									
		Rated Current [A]								
Drive Model	No	ormal Duty Rating (N	ND)	He	eavy Duty Rating (H	ID)				
	2 kHz	5 kHz	10 kHz	2 kHz	5 kHz	10 kHz				
2A0169	169	145	116	145	145	116				
2A0211	211	180	144	180	180	144				
2A0250	250	215	172	215	215	172				
2A0312	312	283	226	283	283	226				
2A0360	360	346	277	346	346	277				
2A0415	415	415	332	415	415	332				

Table A.20 Three-Phase 400 V Class Carrier Frequency and Current Derating

		Th	ree-Phase 400 V Cl	ass						
	Rated Current [A]									
Drive Model	N	ormal Duty Rating (ND)	Н	leavy Duty Rating (F	ID)				
	2 kHz	8 kHz	15 kHz	2 kHz	8 kHz	15 kHz				
4A0002	2.1	1.8	1.1	1.8	1.8	1.1				
4A0004	4.1	3.4	2	3.4	3.4	2				
4A0005	5.4	4.8	2.9	4.8	4.8	2.9				
4A0007	6.9	5.5	3.3	5.5	5.5	3.3				
4A0009	8.8	7.2	4.3	7.2	7.2	4.3				
4A0011	11.1	9.2	5.5	9.2	9.2	5.5				
4A0018	17.5	14.8	8.9	14.8	14.8	8.9				
4A0023	23	18	10.8	18	18	10.8				
4A0031	31	24	14.4	24	24	14.4				
4A0038	38	31	18.6	31	31	18.6				
4A0044	44	39	23.4	39	39	23.4				
4A0058	58	45	27	45	45	27				
4A0072	72	60	36	60	60	36				
4A0088	88	75	45	75	75	45				
4A0103	103	91	55	91	91	55				

	Three-Phase 400 V Class									
		Rated Current [A]								
Drive Model	N	ormal Duty Rating (N	ND)	Н	Heavy Duty Rating (HD)					
	2 kHz	5 kHz	10 kHz	2 kHz	5 kHz	10 kHz				
4A0139	139	112	78	112	112	78				
4A0165	165	150	105	150	150	105				
4A0208	208	180	126	180	180	126				
4A0250	250	216	151	216	216	151				
4A0296	296	260	182	260	260	182				

	Three-Phase 400 V Class										
		Rated Current [A]									
Drive Model	No	ormal Duty Rating (N	ND)	He	eavy Duty Rating (H	ID)					
	2 kHz	5 kHz	10 kHz	2 kHz	5 kHz	10 kHz					
4A0362	362	304	213	304	304	213					
4A0414	414	370	259	370	370	259					
4A0515	515	397	_	450	375	_					
4A0675	675	528	_	605	504	_					
4A0930	930	716	_	810	675	_					
4A1200	1200	937	_	1090	908	_					

Table A.21 Three-Phase 600 V Class Carrier Frequency and Current Derating

			Three	-Phase 600 V	Class			
				Rated C	urrent [A]			
Drive Model		Normal Duty	/ Rating (ND)			Heavy Duty	Rating (HD)	
	2 kHz	8 kHz	10 kHz	15 kHz	2 kHz	8 kHz	10 kHz	15 kHz
5A0003	2.7	2.2	2.0	1.3	1.7	1.7	1.5	1.0
5A0004	3.9	3.4	3.1	2.1	3.5	3.5	3.1	2.1
5A0006	6.1	4.9	4.3	2.9	4.1	4.1	3.6	2.5
5A0009	9	7.5	6.6	4.5	6.3	6.3	5.6	3.8
5A0011	11	9.3	8.2	5.6	9.8	9.8	8.7	5.9
5A0017	17	13.3	11.8	_	12.5	12.5	11.1	_
5A0022	22	17.0	15.1	_	17	17	15.1	_
5A0027	27	22.0	19.5	_	22	22	19.5	_
5A0032	32	27.3	24.4	_	27	27	23.9	_

	Three-Phase 600 V Class										
	Rated Current [A]										
Drive Model		Normal Duty Rating (ND) Heavy Duty Rating (HD)									
	2 kHz	2 kHz 5 kHz 8 kHz 10 kHz 2 kHz 5 kHz 8 kHz 10									
5A0041	41.0	39.7	33.5	29.4	32.0	32.0	32.0	28.3			
5A0052	52.0	50.3	42.5	37.3	41.0	41.0	41.0	36.2			
5A0062	62.0	61.3	49.7	41.9	52.0	52.0	52.0	43.8			
5A0077	77.0	76.2	61.7	52.0	62.0	62.0	62.0	52.2			
5A0099	99.0	80.0	55.1	-	77.0	77.0	53.9	-			

	Three-Phase 600 V Class								
	rrent [A]								
Drive Model	Normal Dut	y Rating (ND)	Heavy Duty	Rating (HD)					
	2 kHz	3 kHz	2 kHz	3 kHz					
5A0125	125.0	93.0	99.0	82.0					
5A0145	145.0	108.0	130.0	108.0					
5A0192	192.0	148.0	172.0	161.0					
5A0242	242.0	187.0	200.0	187.0					

Table A.22 Three-Phase 200 V Class Carrier Frequency and Current Derating (AOLV/PM)

Three-Phase 200 V Class										
Drive Model		Rated Current [A]								
	No	ormal Duty Rating (N	ND)	Heavy Duty Rating (HD)						
	2 kHz	4 kHz	12 kHz	2 kHz	4 kHz	12 kHz				
2A0004	3.5	3.5	2.3	3.2	3.2	2.3				
2A0006	6	5.6	3.5	5	5	3.6				

Three-Phase 200 V Class						
			Rated C	urrent [A]		
Drive Model	N	ormal Duty Rating (I	ND)	Н	eavy Duty Rating (H	ID)
	2 kHz	4 kHz	12 kHz	2 kHz	4 kHz	12 kHz
2A0008	8	7.4	4.9	6.9	6.9	4.9
2A0010	9.6	8.8	5.6	8	8	5.7
2A0012	12	11.6	7.9	11	11	7.9
2A0018	17.5	15.9	9.6	14	14	10
2A0021	21	19.6	12.1	17.5	17.5	12.5
2A0030	30	27.5	17.5	25	25	17.9
2A0040	40	36.7	23.4	33	33	23.6
2A0056	56	51	33	47	47	33.6
2A0069	69	64	43	60	60	43
2A0081	81	80	43	75	75	43
2A0110	110	99	55	85	85	49
2A0138	138	124	66	115	115	66

	Three-Phase 200 V Class					
			Rated C	urrent [A]		
Drive Model	N	Normal Duty Rating (ND)		Heavy Duty Rating (HD)		ID)
	2 kHz	4 kHz	10 kHz	2 kHz	4 kHz	10 kHz
2A0169	169	146	78	145	139	87
2A0211	211	182	96	180	173	108
2A0250	250	217	116	215	206	129
2A0312	312	275	165	283	272	170
2A0360	360	324	217	346	332	208
2A0415	415	379	273	415	398	249

Table A.23 Three-Phase 400 V Class Carrier Frequency and Current Derating (AOLV/PM)

	Three-Phase 400 V Class						
	Rated Current [A]						
Drive Model	N	Normal Duty Rating (ND)			Heavy Duty Rating (HD)		
	2 kHz	4 kHz	12 kHz	2 kHz	4 kHz	12 kHz	
4A0002	2.1	2	0.8	1.8	1.8	0.8	
4A0004	4.1	3.8	1.5	3.4	3.4	1.5	
4A0005	5.4	5.3	2.1	4.8	4.8	2.1	
4A0007	6.9	6.1	2.4	5.5	5.5	2.4	
4A0009	8.8	8	3.1	7.2	7.2	3.1	
4A0011	11.1	10.3	3.9	9.2	9.2	3.9	
4A0018	17.5	16.5	6.3	14.8	14.8	6.3	
4A0023	23	20.1	7.7	18	18	7.7	
4A0031	30.9	26.7	10.3	24	24	10.3	
4A0038	38	34.5	13.3	31	31	13.3	
4A0044	44	41.6	17.3	39	39	16.7	
4A0058	58	50	19	45	45	19	
4A0072	72	67	26	60	60	26	
4A0088	88	83	32	75	75	32	
4A0103	103	100	39	91	91	39	

Three-Phase 400 V Class						
			Rated C	urrent [A]		
Drive Model	N	ormal Duty Rating (I	ND)	Heavy Duty Rating (HD)		
	2 kHz	4 kHz	10 kHz	2 kHz	4 kHz	10 kHz
4A0139	139	113	35	112	105	45
4A0165	165	139	62	150	141	60
4A0208	208	173	67	180	169	72
4A0250	250	208	81	216	203	86
4A0296	296	247	101	260	244	104
4A0362	362	298	106	304	286	122
4A0414	414	348	148	370	348	148
4A0515	515	338	_	450	338	_
4A0675	675	454	_	605	454	_
4A0930	930	609		810	608	_
4A1200	1200	807	_	1090	818	_

Carrier Frequency Derating

Derate the drive according to *Figure A.1* to *Figure A.10* as the carrier frequency increases above the factory default setting.

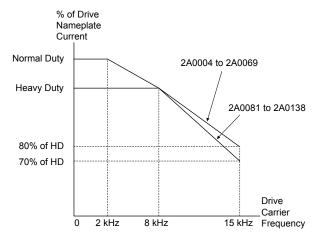


Figure A.1 Carrier Frequency Derating (Models 2A0004 to 2A0138)

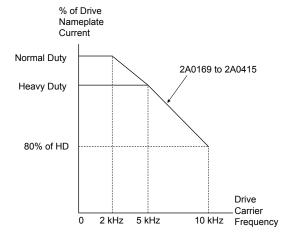


Figure A.2 Carrier Frequency Derating (Models 2A0169 to 2A0415)

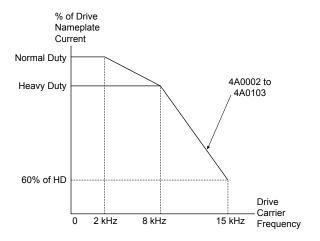


Figure A.3 Carrier Frequency Derating (Models 4A0002 to 4A0103)

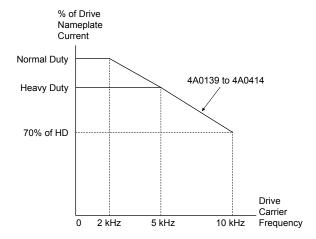


Figure A.4 Carrier Frequency Derating (Models 4A0139 to 4A0414)

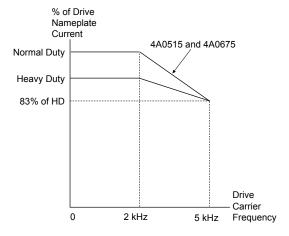


Figure A.5 Carrier Frequency Derating (Models 4A0515 and 4A0675)

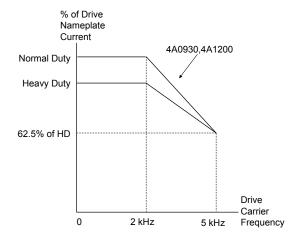


Figure A.6 Carrier Frequency Derating (Models 4A0930 and 4A1200)

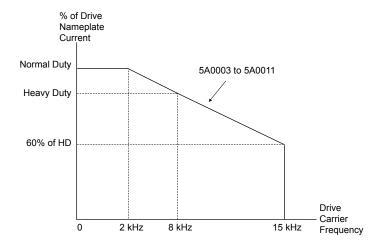


Figure A.7 Carrier Frequency Derating (Models 5A0003 to 5A0011)

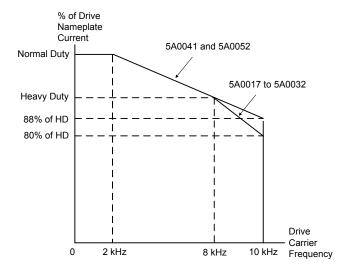


Figure A.8 Carrier Frequency Derating (Models 5A0017 to 5A0052)

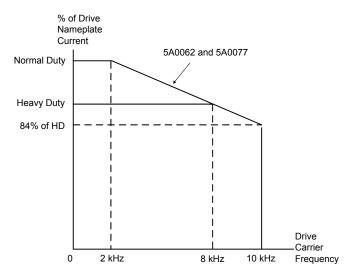


Figure A.9 Carrier Frequency Derating (Models 5A0062 and 5A0077)

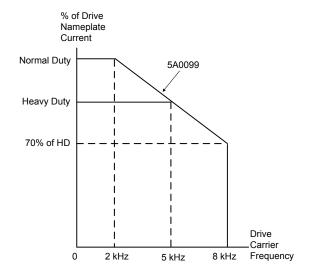


Figure A.10 Carrier Frequency Derating (Model 5A0099)

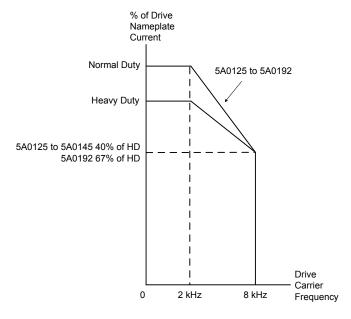


Figure A.11 Carrier Frequency Derating (Models 5A0125 to 5A0192)

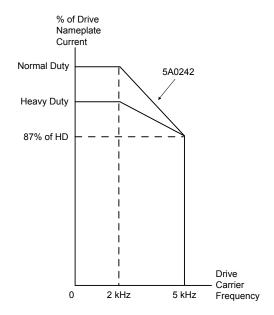


Figure A.12 Carrier Frequency Derating (Model 5A0242)

◆ Temperature Derating

To ensure the maximum performance life, the drive output current must be derated as shown in *Figure A.13* when the drive is installed in areas with high ambient temperature or if drives are mounted side-by-side in a cabinet. In order to ensure reliable drive overload protection, set parameters L8-12 and L8-35 according to the installation conditions.

■ Parameter Settings

No.	Name	Description	Range	Def.
L8-12	Ambient Temperature Setting	Adjust the drive overload (oL2) protection level when the drive is installed in an environment that exceeds its ambient temperature rating.	-10 to +50	+40 °C
L8-35		0: IP00/Open-Chassis Enclosure 1: Side-by-Side Mounting 2: IP20/NEMA Type 1 Enclosure 3: Finless Drive or External Heatsink Installation	0 to 3	<1>

<1> Default setting is determined by drive model.

Setting 0: (Models 2A0250 to 2A0415 and 4A0208 to 4A1200)

Setting 2: (Models 2A0004 to 2A0211, 4A0002 to 4A0165, and 5A0003 to 5A0242).

Setting 0: IP00/Open-Chassis Enclosure

Drive operation between -10 °C and +50 °C allows 100% continuous current without derating.

Setting 1: Side-by-Side Mounting

Drive operation between -10 °C and +30 °C allows 100% continuous current without derating. Operation between +30 °C and +50 °C requires output current derating.

Setting 2: IP20/NEMA Type 1 Enclosure

Drive operation between -10 °C and +40 °C allows 100% continuous current without derating. Operation between +40 °C and +50 °C requires output current derating.

Setting 3: External Heatsink Installation, Finless Drive

Drive operation between -10 °C and +40 °C allows 100% continuous current without derating. Operation between +40 °C and +50 °C requires output current derating.

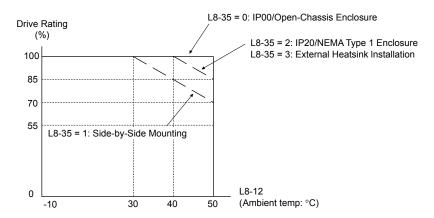


Figure A.13 Ambient Temperature and Installation Method Derating

Altitude Derating

The drive standard ratings are valid for installation altitudes up to 1000 m. For installations from 1000 m to 3000 m, the drive rated voltage and the rated output current must be derated for 0.2% per 100 m.

Appendix: B

Parameter List

This appendix contains a full listing of all parameters and settings available in the drive.

B.1	UNDERSTANDING PARAMETER DESCRIPTIONS	574
B.2	PARAMETER GROUPS	575
B.3	A: INITIALIZATION PARAMETERS	578
B.4	B: APPLICATION	580
B.5	C: TUNING	590
B.6	D: REFERENCES	597
B.7	E: MOTOR PARAMETERS	603
B.8	F: OPTIONS	610
B.9	H PARAMETERS: MULTI-FUNCTION TERMINALS	620
B.10	L: PROTECTION FUNCTION	635
B.11	N: SPECIAL ADJUSTMENT	646
B.12	O: OPERATOR-RELATED SETTINGS	652
B.13	DRIVEWORKSEZ PARAMETERS	655
B.14	T: MOTOR TUNING	656
B.15	U: MONITORS	661
B.16	CONTROL MODE DEPENDENT PARAMETER DEFAULT VALUES	671
B.17	V/F PATTERN DEFAULT VALUES	675
B.18	DEFAULTS BY DRIVE MODEL AND DUTY RATING ND/HD	677
B.19	PARAMETERS CHANGED BY MOTOR CODE SELECTION (FOR PM	
	MOTORS)	694

B.1 Understanding Parameter Descriptions

Control Modes, Symbols, and Terms

The table below lists terms and symbols used in this section to indicate which parameters are available in which control modes.

Note: Refer to Control Mode Selection on page 32 for detailed instructions on each control mode.

Table B.1 Symbols and Icons Used in Parameter Descriptions

Symbol	Description
All Modes	Parameter is available in all control modes.
V/f	Parameter is available when operating the drive with V/f Control.
V/f w PG	Parameter is available when operating the drive with V/f with PG Control.
OLV	Parameter is available when operating the drive with Open Loop Vector.
CLV	Parameter is available when operating the drive with Closed Loop Vector.
OLV/PM	Parameter is available when operating the drive with Open Loop Vector for PM motors. <1>
AOLV/PM	Parameter is available when operating the drive with Advanced Open Loop Vector for PM motors. <1>
CLV/PM	Parameter is available when operating the drive with Closed Loop Vector for PM motors. <1>
	Parameter is NOT available when operating the drive in the control mode.
RUN	Parameter can be changed during run.
Motor 2	Refers to a second motor when the drive is operating two motors. Switch between these motors using the multifunction input terminals.

<1> OLV/PM AOLV/PM PM motor control modes are not available on 600 V class drives, models 5A \(\sigma\) \(\sigma\).

B.2 Parameter Groups

Table B.2 Parameter Groups

Parameter Group	Name	Page
A1 <1>	Initialization Parameters	578
A2	User Parameters	579
b1 <1>	Operation Mode Selection	
b2 <1>	DC Injection Braking and Short Circuit Braking	581
b3 <1>	Speed Search	582
b4 <1>	Timer Function	584
b5 <1>	PID Control	585
b6	Dwell Function	587
b7	Droop Control	588
b8	Energy Saving	588
b9	Zero Servo	589
C1 <1>	Acceleration and Deceleration Times	590
C2	S-Curve Characteristics	<i>591</i>
C3 <1>	Slip Compensation	<i>591</i>
C4	Torque Compensation	<i>592</i>
C5 <1>	Automatic Speed Regulator (ASR)	<i>593</i>
C6 <1>	Carrier Frequency	595
d1	Frequency Reference	597
d2	Frequency Upper/Lower Limits	599
d3	Jump Frequency	<i>599</i>
d4	Frequency Reference Hold and Up/Down 2 Function	599
d5	Torque Control	600
d6	Field Weakening and Field Forcing	<i>601</i>
d7	Offset Frequency	<i>601</i>
E1	V/f Pattern for Motor 1	603
E2 <1>	Motor 1 Parameters	605
E3	V/f Pattern for Motor 2	606
E4 <1>	Motor 2 Parameters	<i>607</i>
E5 <1>	PM Motor Settings	608
F1 <1>	PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3)	610
F2	Analog Input Card (AI-A3)	613
F3	Digital Input Card (DI-A3)	613
F4	Analog Monitor Card (AO-A3)	613
F5	Digital Output Card (DO-A3)	614
F6 <1>	Communication Option Card (SI-C3, SI-S3, SI-N3, SI-P3, SI-T3, SI-EP3, SI-ES3, SI-B3, SI-W3)	615
F7 <1>	Communication Option Card (SI-EN3, SI-EM3, SI-EP3)	618

Parameter Group	Name	Page
H1	Multi-Function Digital Inputs	620
H2 <1>	Multi-Function Digital Outputs	625
H3 <1>	Multi-Function Analog Inputs	629
H4	Multi-Function Analog Outputs	632
H5 <1>	MEMOBUS/Modbus Serial Communication	633
Н6	Pulse Train Input/Output	634
L1 <1>	Motor Protection	635
L2	Momentary Power Loss Ride-Thru	637
L3 <1>	Stall Prevention	638
L4	Speed Detection	640
L5	Fault Restart	640
L6	Torque Detection	641
L7	Torque Limit	642
L8 <1>	Drive Protection	643
L9 <1>	Drive Protection 2	645
n1	Hunting Prevention	646
n2	Speed Feedback Detection Control (AFR) Tuning	646
n3	High Slip Braking (HSB) and Overexcitation Braking	647
n5	Feed Forward Control	648
n6	Online Tuning	648
n8 <1>	PM Motor Control Tuning	648
o1 <1>	Digital Operator Display Selection	652
o2	Digital Operator Keypad Functions	653
о3	Copy Function	654
o4	Maintenance Monitor Settings	654
q	DriveWorksEZ Parameters	655
r	DriveWorksEZ Connection Parameters	655
T1 <1>	Induction Motor Auto-Tuning	656
T2 <1>	PM Motor Auto-Tuning	658
Т3	ASR and Inertia Tuning	660
U1 <1>	Operation Status Monitors	661
U2 <1>	Fault Trace	663
U3	Fault History	665
U4 <1>	Maintenance Monitors	665
U5	PID Monitors	668
U6 <1>	Operation Status Monitors	668
U8	DriveWorksEZ Monitors	670

<1> Specifications differ for models 4A0930 and 4A1200. Refer to Parameter Differences for Drive Models 4A0930 and 4A1200 on page 576 for details.

◆ Parameter Differences for Drive Models 4A0930 and 4A1200

Table B.3 Overview of 4A0930 and 4A1200 Parameter Differences by Parameter Group

Parameter Group	Name	Differences
Al	Initialization Parameters	Setting range differs for A1-00. <i>Refer to A1: Initialization on page 578</i> for details.
b1	Operation Mode Selection	b1-21 is not available.
b2	DC Injection Braking and Short Circuit Braking	b2-02, b2-03, and b2-04 are not available in OLV/PM control mode.
b3	Speed Search	 b3-04 is available in V/f and OLV control modes. <i>Refer to b3: Speed Search on page 582</i> for details. b3-07, b3-12, and b3-26 are available. b3-29 and b3-33 are not available.
b4	Timer Function	b4-03 to b4-08 are not available.
b5	PID Control	 Setting range of b5-01 is 0 to 4. Cannot change b5-10 or b5-19 while operating the drive.
C1	Acceleration and Deceleration Times	
C3	Slip Compensation	 C3-05 is available in OLV, CLV, AOLV/PM, and CLV/PM control modes. <i>Refer to C3: Slip Compensation on page 591</i> for details. C3-16 to C3-18 are available.
C5	Automatic Speed Regulator (ASR)	C5-39 is not available.
C6	Carrier Frequency	 The setting range of C6-02 is 1, 2, or F The setting range of C6-03 and C6-04 is 1.0 to 5.0 Hz. <i>Refer to C6: Carrier Frequency on page 595</i> for details. C6-09 is not available.
E2	Motor 1 Parameters	Setting units differ for E2-05. <i>Refer to E2: Motor 1 Parameters on page 605</i> for details.
E4	Motor 2 Parameters	Setting units differ for E4-05. <i>Refer to E4: Motor 2 Parameters on page 607</i> for details.
E5	PM Motor Settings	Depends on the E5-25 setting. <i>Refer to E5: PM Motor Settings on page 608</i> for details.
F1	PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3)	F1-50 to F1-53 are not available.
F6	Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3)	LonWorks, PROFINET, and BACnet option cards are not available.
F7	Communication Option Card (SI-EM3, SI-EN3, SI-EP3)	Modbus TCP/IP, EtherNet/IP, and EtherCAT option cards are not available.
H2	Multi-Function Digital Outputs	 H2-07 to H2-10 are not available H2-□□ cannot be set to D, 4E, 4F, 62, or 63.
Н3	Multi-Function Digital Inputs	$H3-\square\square = 17$ is available.
Н5	MEMOBUS/Modbus Serial Communication	H5-17 and H5-18 are not available.
L1	Motor Protection	 L1-08 and L1-09 are not available. L1-15 to L1-20 are available.
L3	Stall Prevention	 Refer to L3: Stall Prevention on page 638 for details. L3-04, L3-34, and L3-35 are not available.
L8	Drive Protection	 L8-01 and L8-55 are not available. Setting range differs for L8-27 and L8-29. <i>Refer to L8: Drive Protection on page 643</i> for details. L8-78 is available.
L9	Drive Protection 2	L9-03 is not available.
n8	PM Motor Control Timing	n8-11 to n8-21, n8-36 to n8-39, and n8-72 are not available.
01	Operator Related Settings	o1-05 is not available.
02	Digital Operator Keypad Functions	o2-19 is not available.
T1	Induction Motor Auto-Tuning	The setting range of T1-01 is 0 to 4, 8, or 9.
T2	PM Motor Auto-Tuning	The setting range of T2-01 is 0 to 11.
U1	Operation Status Monitors	 Setting units differ for U1-03. <i>Refer to U1: Operation Status Monitors on page 661</i> for details. U1-29 is available.
U2	Fault Trace	 Setting units differ for U2-05. <i>Refer to U2: Fault Trace on page 663</i> for details. U2-27 and U2-28 are available.

Parameter Group	Name	Differences
U4		 The setting unit for U4-13 is 1 A. <i>Refer to U4: Maintenance Monitors on page 665</i> for details. U4-18 is not displayed for some codes U4-32, U4-37, U4-38, and U4-39 are available.
U6	Control Monitors	Modbus TCP/IP, EtherNet/IP, and EtherCAT parameters are not displayed. Refer to the instruction manual for the option card for more details on a specific option card.

B.3 A: Initialization Parameters

The A parameter group creates the operating environment for the drive. This includes the parameter Access Level, Motor Control Method, Password, User Parameters and more.

◆ A1: Initialization

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
A1-00 (0100) •••RUN <1>	Language Selection	Select Language 0: English 1: ニホンゴ (Japanese) 2: Deutsch 3: Français 4: Italiano 5: Español 6: Portuguêse 7: 中文 8: Czech 9: Russian 10: Turkish 11: Polish 12: Greek	All Modes 0: English 1: Japanese 2: German 3: French 4: Italian 5: Spanish 6: Portuguese 7: Chinese 8: Czech 9: Russian 10: Turkish 11: Polish 12: Greek Note: Settings 8 to 12 can only be selected from an LCD operator with version REV: F or later. The version is listed on the back of the operator.	Default: 0 Range: 0 to 12	224
A1-01 (0101) ORUN	Access Level Selection	Access Level 0: Operation Only 1: User Parameters 2: Advanced Level	All Modes 0: View and set A1-01 and A1-04. U□-□□ parameters can also be viewed. 1: User Parameters (access to a set of parameters selected by the user, A2-01 to A2-32) 2: Advanced Access (access to view and set all parameters)	Default: 2 Range: 0 to 2	224
A1-02 (0102) 	Control Method Selection	Control Method 0: V/f Control 1: V/f with PG 2: Open Loop Vector 3: Closed Loop Vect 5: PM OpenLoop Vect 6: PM AdvOpLoopVect 7: PM ClosedLoopVct	All Modes 0: V/f Control 1: V/f Control with PG 2: Open Loop Vector Control 3: Closed Loop Vector Control 5: Open Loop Vector Control for PM 6: Advanced Open Loop Vector Control for PM 7: Closed Loop Vector Control for PM	Default: 2 Range: 0 to 3; 5 to 7	225
A1-03 (0103)	Initialize Parameters	Init Parameters 0: No Initialize 1110: User Initialize 2220: 2-Wire Initial 3330: 3-Wire Initial 5550: Term->Cntrl Int	All Modes 0: No initialization 1110: User Initialize (parameter values must be stored using parameter o2-03) 2220: 2-Wire initialization 3330: 3-Wire initialization 5550: oPE04 error reset	Default: 0 Range: 0 to 3330; 5550	225
A1-04 (0104)	Password	Enter Password	When the value set into A1-04 does not match the value set into A1-05, parameters A1-01 through A1-03, A1-06, A1-07, and A2-01 through A2-32 cannot be changed.	Default: 0000 Min.: 0000 Max.: 9999	226
A1-05 (0105)	Password Setting	Select Password	All Modes When the value set into A1-04 does not match the value set into A1-05, parameters A1-01 through A1-03, A1-06, A1-07, and A2-01 through A2-32 cannot be changed.	Default: 0000 Min.: 0000 Max.: 9999	226
A1-06 (0127)	Application Preset	Application Sel 0: General 1: Pump 2: Conveyor 3: Exhaust Fan 4: Supply Fan 5: Compressor	All Modes 0: General-purpose 1: Water supply pump 2: Conveyor 3: Exhaust fan 4: HVAC fan 5: Air compressor	Default: 0 Range: 0 to 5	229
A1-07 (0128)	DriveWorksEZ Function Selection	DWEZ Func Sel 0: Disabled 1: Enabled 2: Terminal Control	All Modes 0: DWEZ Disabled 1: DWEZ Enabled 2: Digital input (enabled when H1-□□ = 9F)	Default: 0 Range: 0 to 2	229

- <1> Parameter setting value is not reset to the default value when the drive is initialized.
- <2> Setting range is 0 to 7 in models 4A0930 and 4A1200.
- <3> Default setting value is determined by he Application Preset selected in parameter A1-06.

◆ A2: User Parameters

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
A2-01 to A2-32 (0106 to 0125)	User Parameters 1 to 32	User Param 1 - 32	Recently edited parameters are listed here. The user can also	Default: <i> Range: b1-01 to o4-13</i>	229
A2-33 (0126)	User Parameter Automatic Selection	User Parms Sel 0: Disabled 1: Enabled	All Modes 0: Parameters A2-01 to A2-32 are reserved for the user to create a list of User Parameters. 1: Save history of recently viewed parameters. Recently edited parameters will be saved to A2-17 through A2-32 for quicker access.	Default: 1 <2>	229

- <1> Default setting value is determined by the Application Preset selected in parameter A1-06.
- Oefault setting value is determined by parameter A1-06. Default is 0 when A1-06 = 0, and 1 when A1-06 \neq 0.

B.4 b: Application

Application parameters configure the source of the Run command, DC Injection Braking, Speed Search, timer functions, PID control, the Dwell function, Energy Savings, and a variety of other application-related settings.

◆ b1: Operation Mode Selection

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b1-01 (0180)	Frequency Reference Selection 1	Ref Source 1 0: Operator 1: Analog Input 2: Serial Com 3: Option PCB 4: Pulse Input	All Modes 0: Digital operator 1: Analog input terminals 2: MEMOBUS/Modbus communications 3: Option PCB 4: Pulse input (terminal RP)	Default: 1 Range: 0 to 4	231
b1-02 (0181)	Run Command Selection 1	Run Source 1 0: Operator 1: Digital Inputs 2: Communication 3: Option PCB	All Modes 0: Digital operator 1: Digital input terminals 2: MEMOBUS/Modbus communications 3: Option PCB	Default: 1 Range: 0 to 3	232
b1-03 (0182)	Stopping Method Selection	Stopping Method 0: Ramp to Stop 1: Coast to Stop 2: DCInj to Stop 3: Coast w/Timer	All Modes 0: Ramp to stop 1: Coast to stop 2: DC Injection Braking to stop 3: Coast with timer	Default: 0 Range: 0 to 3	233
b1-04 (0183)	Reverse Operation Selection	Reverse Oper 0: Reverse Enabled 1: Reverse Disabled	All Modes 0: Reverse enabled. 1: Reverse disabled.	Default: 0 Range: 0, 1	236
b1-05 (0184)	Action Selection below Minimum Output Frequency	Zero-Speed Oper 0: RUN at Freq Ref 1: STOP 2: RUN at Min Freq RUN at Zero PRM	OLV/PM AOLV/PM CLV/PM O: Operates according to frequency reference (E1-09 is disabled). 1: Output shuts off (coast to stop if less than E1-09). 2: Operates according to E1-09 (frequency reference set to E1-09). 3: Zero speed (frequency reference becomes zero when less than E1-09).	Default: 0 Range: 0 to 3	236
b1-06 (0185)	Digital Input Reading	Cntl Input Scans 0: 1 Scan 1: 2 Scans	O: Input status is read once and processed immediately (for quicker response) 1: Input is read twice and processed only if the status is the same in both readings (robust against noisy signals)	Default: 1 Range: 0, 1	237
b1-07 (0186)	LOCAL/REMOTE Run Selection	LOC/REM Dur Run 0: Cycle Extrn RUN 1: Accept Extrn RUN	O: An external Run command must be cycled at the new source in order to be activated. 1: An external Run command at the new source is accepted immediately.	Default: 0 Range: 0, 1	238
b1-08 (0187)	Run Command Selection in Programming Mode	RUN dur PRG Mode 0: Run Disabled@PRG 1: Run Enabled@PRG 2: Prg only @ Stop	O: Run command is not accepted while in Programming Mode. 1: Run command is accepted while in Programming Mode. 2: Prohibit entering Programming Mode during run.	Default: 0 Range: 0 to 2	238
b1-14 (01C3)	Phase Order Selection	Rotation Sel 0: Standard 1: SwitchPhaseOrder	OLV/PM AOLV/PM CLV/PM 0: Standard 1: Switch phase order (reverses the direction of the motor)	Default: 0 Range: 0, 1	238

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b1-15 (01C4)	Frequency Reference Selection 2	Ref Source 2 0: Operator 1: Analog Input 2: Serial Com 3: Option PCB 4: Pulse Input	All Modes Enabled when an input terminal set for "External reference" (H1-□□ = 2) closes. 0: Digital operator 1: Terminals (analog input terminals) 2: MEMOBUS/Modbus communications 3: Option card 4: Pulse train input	Default: 0 Range: 0 to 4	238
b1-16 (01C5)	Run Command Selection 2	Run Source 2 0: Operator 1: Digital Inputs 2: Communication 3: Option PCB	All Modes Enabled when a terminal set for "External reference" (H1-□□ = 2) closes. 0: Digital operator 1: Digital input terminals 2: MEMOBUS/Modbus communications 3: Option card	Default: 0 Range: 0 to 3	239
b1-17 (01C6)	Run Command at Power Up	Run Cmd @ Pwr On 0: Cycle Ext Run 1: Accept Ext Run	O: Disregarded. A new Run command must be issued after power up. 1: Allowed. Motor will start immediately after power up if a Run command is already enabled.	Default: 0 Range: 0, 1	239
b1-21 (0748) <2>	Start Condition Selection at Closed Loop Vector Control	PG Start Sel 0: RejectRunCmd 1: AcceptRunCmd	V/f V/f w PG OLV OLV/PM AOLV/PM CLV/PM Selects a condition to start CLV control. There is normally no need to change this parameter from the default value. 0: Run command is not accepted when b2-01 ≤ motor speed < E1-09 1: Run command is accepted when b2-01 ≤ motor speed < E1-09 Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	239

<1> Setting range is 0, 1, 3 in CLV, OLV/PM, AOLV/PM, and CLV/PM control modes.

b2: DC Injection Braking and Short Circuit Braking

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b2-01 (0189)	DC Injection Braking Start Frequency	DCInj Start Freq	All Modes Sets the frequency at which DC Injection Braking starts when "Ramp to stop" (b1-03 = 0) is selected.	Default: Min.: 0.0 Hz Max.: 10.0 Hz	239
b2-02 (018A)	DC Injection Braking Current	DCInj Current	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the DC Injection Braking current as a percentage of the drive rated current. Note: This parameter is not available in AOLV/PM in models 4A0930 and 4A1200.	Default: 50% Min.: 0 Max.: 100	240
b2-03 (018B)	DC Injection Braking Time at Start	DCInj Time@Start	Sets DC Injection Braking (Zero Speed Control when in CLV and CLV/PM) time at start. Disabled when set to 0.00 seconds. Note: This parameter is not available in AOLV/PM in models 4A0930 and 4A1200.	Default: 0.00 s Min.: 0.00 Max.: 10.00	240
b2-04 (018C)	DC Injection Braking Time at Stop	DCInj Time@Stop	Sets DC Injection Braking (Zero Speed Control when in CLV and CLV/PM) time at stop. Note: This parameter is not available in AOLV/PM in models 4A0930 and 4A1200.	Default: <1> Min.: 0.00 s Max.: 10.00 s	241

<2> Available in drive software versions PRG: 1018 and later.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b2-08 (0190)	Magnetic Flux Compensation Value	Field Comp	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the magnetic flux compensation as a percentage of the noload current value (E2-03).	Default: 0% Min.: 0 Max.: 1000	241
b2-12 (01BA)	Short Circuit Brake Time at Start	SC Brake T@Start	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time for Short Circuit Braking operation at start. <2>	Default: 0.00 s Min.: 0.00 Max.: 25.50	241
b2-13 (01BB)	Short Circuit Brake Time at Stop	SC Brake T@Stop	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the Short Circuit Braking operation time at stop. <2>	Default: 0.50 s Min.: 0.00 Max.: 25.50	241
b2-18 (0177)	Short Circuit Braking Current	Shrt Cir Brk I	OLV/PM AOLV/PM CLV/PM Determines the current level for Short Circuit Braking. Set as a percentage of the motor rated current.	Default: 100.0% Min.: 0.0 Max.: 200.0	242

<1> Default setting is determined by parameter A1-02, Control Method Selection.

♦ b3: Speed Search

No. (Addr Hex.)	Name	LCD Display	Description	Values	Page
b3-01 (0191)	Speed Search Selection at Start	SpdSrch at Start 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: <1> Range: 0, 1	245
b3-02 (0192)	Speed Search Deactivation Current	SpdSrch DeactCur	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current level at which the speed is assumed to be detected and Speed Search is ended. Set as a percentage of the drive rated current.	Default: <1> Min.: 0% Max.: 200%	245
b3-03 (0193)	Speed Search Deceleration Time	SpdSrch Dec Time	V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets output frequency reduction time during Speed Search.	Default: 2.0 s Min.: 0.1 Max.: 10.0	245
b3-04 (0194)	V/f Gain during Speed Search	SpdSrch V/f	OLV/PM AOLV/PM CLV/PM Determines how much to lower the V/f ratio during Speed Search. Output voltage during Speed Search equals the V/f setting multiplied by b3-04. Note: Available control mode for parameter b3-04 varies by drive model: Models 2A0004 to 2A0415, 4A0002 to 4A0675, and 5A0003 to 5A0242: Available when A1-02 = 0 Models 4A0930 and 4A1200: Available when A1-02 = 0, 2	Default: <2> Min.: 10% Max.: 100%	245
b3-05 (0195)	Speed Search Delay Time	Search Delay	When using an external contactor on the output side, b3-05 delays executing Speed Search after a momentary power loss to allow time for the contactor to close.	Default: 0.2 s Min.: 0.0 Max.: 100.0	245
b3-06 (0196)	Output Current 1 during Speed Search	Srch Im Lvl1	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current injected to the motor at the beginning of Speed Estimation Speed Search. Set as a coefficient for the motor rated current.	Default: <2> Min.: 0.0 Max.: 2.0	246

<2> A coasting motor may require a braking resistor circuit to bring the motor to a stop in the required time.

No. (Addr Hex.)	Name	LCD Display	Description	Values	Page
b3-07 (0197)	Output Current 2 during Speed Search (Speed Estimation Type)	Srch Im Lvl2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the amount of output current during Speed Estimation Speed Search as a coefficient for the no-load current. Note: This parameter is only available in models 4A0930 and 4A1200.	Default: <2> Min.: 0.0 Max.: 5.0	246
b3-08 (0198)	Current Control Gain during Speed Search (Speed Estimation Type)	Srch ACR P Gain	OLV/PM AOLV/PM CLV/PM Sets the proportional gain for the current controller during Speed Search. There is normally no need to change this parameter from the default setting.	Default: <3> Min.: 0.00 Max.: 6.00	246
b3-10 (019A)	Speed Search Detection Compensation Gain	Srch Detect Comp	OLV/PM AOLV/PM CLV/PM Sets the gain which is applied to the speed detected by Speed Estimation Speed Search before the motor is reaccelerated. Increase this setting if ov occurs when performing Speed Search after a relatively long period of baseblock.	Default: 1.05 Min.: 1.00 Max.: 1.20	246
b3-12 (019C)	Minimum Current Detection Level during Speed Search	Srch I Deadband	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the minimum current detection level during Speed Search. Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 6.0 Min.: 2.0 Max.: 10.0	246
b3-14 (019E)	Bi-Directional Speed Search Selection	Bidir Search Sel 0: Disabled 1: Enabled	OLV/PM AOLV/PM CLV/PM O: Disabled (uses the direction of the frequency reference) 1: Enabled (drive detects which way the motor is rotating)	Default: Range: 0, 1	246
b3-17 (01F0)	Speed Search Restart Current Level	SrchRestart Lvl	OLV/PM AOLV/PM CLV/PM Sets the Speed Search restart current level as a percentage of the drive rated current.	Default: 150% Min.: 0 Max.: 200	247
b3-18 (01F1)	Speed Search Restart Detection Time	SrchRestart Time	OLV/PM AOLV/PM CLV/PM Sets the time to detect Speed Search restart.	Default: 0.10 s Min.: 0.00 Max.: 1.00	247
b3-19 (01F2)	Number of Speed Search Restarts	Num of SrchRestr	V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of times the drive can attempt to restart when performing Speed Search.	Default: 3 Min.: 0 Max.: 10	247
b3-24 (01C0)	Speed Search Method Selection	SpdSrch Method 0: CurrentDetection 1: Speed Estimation	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Current Detection 1: Speed Estimation	Default: 0 Range: 0, 1	247
b3-25 (01C8)	Speed Search Wait Time	SpdSrch WaitTime	OLV/PM CLV/PM Sets the time the drive must wait between each Speed Search restart attempt.	Default: 0.5 s Min.: 0.0 Max.: 30.0	247
b3-26 (01C7)	Direction Determining Level	Spd Search Meth	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the level that determines the direction of motor rotation. Note: This parameter is only available in models 4A0930 and 4A1200.	Default: <2> Min.: 40 Max.: 60000	247

B.4 b: Application

No. (Addr Hex.)	Name	LCD Display	Description	Values	Page
b3-27 (01C9)	Start Speed Search Select	SPD Search By AI 0: start from 0 1: start SPD	V/f W/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects a condition to activate Speed Search Selection at Start (b3-01) or External Speed Search Command 1 or 2 from the multi-function input. 0: Triggered when a Run command is issued (normal). 1: Triggered when an external baseblock is released.	Default: 0 Range: 0, 1	247
b3-29 (077C)	Speed Search Induced Voltage Level	SpdSrch Ind VIvl	OLVPM AOLVPM CLV/PM Performs Speed Search when the motor induced voltage exceeds the set level. There is normally no need to change this parameter from the default value, but if changes are necessary, try lowering this value in small increments. When set too low, the drive will not perform Speed Search. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 10% Min.: 0 Max.: 10	248
b3-33 (0B3F) <5>	Speed Search Selection when Run Command is Given during Uv	SpdSrch Start UV 0: Disabled 1: Enabled	All Modes Activates and deactivates Speed Search at start in accordance with whether a Run command was issued during an undervoltage (Uv) condition. Function is active when a momentary power loss (L2-01 = 1 or 2), Speed Search at start (b3-01 = 1), and coasting to a stop (b1-03 = 1) are enabled. 0: Disabled 1: Enabled Note: This parameter is not available in models 4A0930 and 4A1200.	Range: 0, 1	248

- <1> Default setting is determined by parameter A1-02, Control Method Selection.
- <2> Default setting is determined by parameter o2-04, Drive Model Selection.
- <3> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.
- <4> Available in drive software versions PRG: 1018 and later.
- <5> Available in drive software versions PRG: 1019 and later.

♦ b4: Timer Function

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b4-01 (01A3)	Timer Function On- Delay Time	Delay-ON Timer		Default: 0.0 s Min.: 0.0 Max.: 3000.0	248
b4-02 (01A4)	Timer Function Off- Delay Time	Delay-OFF Timer	The output is triggered by a digital input programmed to $H1-\Box\Box=18$).	Default: 0.0 s Min.: 0.0 Max.: 3000.0	248

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b4-03 (0B30) <1>	H2-01 ON Delay Time	H2-01 ON Delay	All Modes Sets the length of the delay time for contact outputs to open or close for the related functions set in H2-\(\sigma\).		
b4-04 (0B31) <1>	H2-01 OFF Delay Time	H2-01 OFF Delay	Note: This parameter is not available in models 4A0930 and 4A1200.		
b4-05 (0B32) <1>	H2-02 ON Delay Time	H2-02 ON Delay		Default: 0 ms Min.: 0	248
b4-06 (0B33) <1>	H2-02 OFF Delay Time	H2-02 OFF Delay		Max.: 65535	240
b4-07 (0B34) <1>	H2-03 ON Delay Time	H2-03 ON Delay			
b4-08 (0B35) <1>	H2-03 OFF Delay Time	H2-03 OFF Delay			

<1> Available in drive software versions PRG: 1019 and later.

♦ b5: PID Control

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b5-01 (01A5)	PID Function Setting	PID Mode 0: Disabled 1: Enabled D=Fdbk 2: Enabled D=Fdfwd 3: Fref+PID D=Fdfwd 4: Fref+PID D=Fdfwd 5: Enabled D=Fdfwd 6: Enabled D=Fdfwd 7: Fref+PID D=Fdbk2 8: Fref +PIDD=Fdfwd2	O: Disabled 1: Enabled (PID output becomes output frequency reference, deviation D controlled) 2: Enabled (PID output becomes output frequency reference, feedback D controlled) 3: Enabled (PID output added to frequency reference, deviation D controlled) 4: Enabled (PID output added to frequency reference, feedback D controlled) 5: Mode compatible with setting 1 of similar products from a previous product line 6: Mode compatible with setting 2 of similar products from a previous product line 7: Mode compatible with setting 3 of similar products from a previous product line 8: Mode compatible with setting 4 of similar products from a previous product line Note: 1. If the drive is replaced with Varispeed F7 drive or a similar product from a previous product line, use settings 5 to 8 instead of settings 1 to 4. 2. Settings 5 to 8 are not available in models 4A0930 and 4A1200.	Default: 0 <1> Range: 0 to 8 <2>	252
b5-02 (01A6) ◆RUN	Proportional Gain Setting (P)	PID Gain	All Modes Sets the proportional gain of the PID controller.	Default: 1.00 Min.: 0.00 Max.: 25.00	252
b5-03 (01A7) ◆RUN	Integral Time Setting (I)	PID I Time	All Modes Sets the integral time for the PID controller.	Default: 1.0 s Min.: 0.0 Max.: 360.0	252
b5-04 (01A8) ◆ RUN	Integral Limit Setting	PID I Limit	All Modes Sets the maximum output possible from the integrator as a percentage of the maximum output frequency.	Default: 100.0% Min.: 0.0 Max.: 100.0	252
b5-05 (01A9) ◆RUN	Derivative Time (D)	PID D Time	All Modes Sets D control derivative time.	Default: 0.00 s Min.: 0.00 Max.: 10.00	252

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b5-06 (01AA) ♣ RUN	PID Output Limit	PID Limit	All Modes Sets the maximum output possible from the entire PID controller as a percentage of the maximum output frequency.	Default: 100.0% Min.: 0.0 Max.: 100.0	253
b5-07 (01AB) •◆RUN	PID Offset Adjustment	PID Offset	All Modes Applies an offset to the PID controller output. Set as a percentage of the maximum output frequency.	Default: 0.0% Min.: -100.0 Max.: 100.0	253
b5-08 (01AC) •◆RUN	PID Primary Delay Time Constant	PID Delay Time	All Modes Sets a low pass filter time constant on the output of the PID controller.	Default: 0.00 s Min.: 0.00 Max.: 10.00	253
b5-09 (01AD)	PID Output Level Selection	Output Level Sel 0: Normal Character 1: Rev Character	All Modes 0: Normal output (direct acting) 1: Reverse output (reverse acting)	Default: 0 Range: 0, 1	253
b5-10 (01AE) ◆RUN	PID Output Gain Setting	Output Gain	All Modes Sets the gain applied to the PID output. Note: Parameter setting cannot be changed when the drive is operating the motor in models 4A0930 and 4A1200.	Default: 1.00 Min.: 0.00 Max.: 25.00	253
b5-11 (01AF)	PID Output Reverse Selection	Output Rev Sel 0: 0 limit 1: Reverse	O: Negative PID output triggers zero limit. 1: Rotation direction reverses with negative PID output. Note: When using setting 1, make sure reverse operation is permitted by b1-04.	Default: 0 Range: 0, 1	253
b5-12 (01B0)	PID Feedback Loss Detection Selection	Fb loss Det Sel 0: Disabled 1: Alarm @ PID Enbl 2: Fault @ PID Enbl 3: DO Only@PID Enbl 4: Alarm @ PID Enbl 5: Fault @ PID Enbl	All Modes 0: No fault. Digital output only. 1: Fault detection. Alarm output, drive continues operation. 2: Fault detection. Fault output, drive output is shut off. 3: No fault. Digital output only. No fault detection when PID control is disabled. 4: Fault detection. Alarm is triggered and drive continues to run. Fault detection even when PID is disabled. 5: Fault detection. Drive output shuts off. No fault detection when PID control is disabled.	Default: 0 Range: 0 to 5	254
b5-13 (01B1)	PID Feedback Loss Detection Level	Fb loss Det Lvl	All Modes Sets the PID feedback loss detection level as a percentage of the maximum output frequency.	Default: 0% Min.: 0 Max.: 100	254
b5-14 (01B2)	PID Feedback Loss Detection Time	Fb loss Det Time	All Modes Sets a delay time for PID feedback loss.	Default: 1.0 s Min.: 0.0 Max.: 25.5	255
b5-15 (01B3)	PID Sleep Function Start Level	PID Sleep Level	All Modes Sets the frequency level that triggers the sleep function.	Default: <3> Min.: 0.0 Hz Max.: 400.0 Hz	255
b5-16 (01B4)	PID Sleep Delay Time	PID Sleep Time	All Modes Sets a delay time before the sleep function is triggered.	Default: 0.0 s Min.: 0.0 Max.: 25.5	255
b5-17 (01B5)	PID Accel/Decel Time	PID Acc/Dec Time	All Modes Sets the acceleration and deceleration time to PID setpoint.	Default: 0.0 s Min.: 0.0 Max.: 6000.0	256
b5-18 (01DC)	PID Setpoint Selection	PID Setpoint Sel 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	256
b5-19 (01DD) [*] ◆RUN	PID Setpoint Value	PID Setpoint	All Modes Sets the PID target value when b5-18 = 1. Set as a percentage of the maximum output frequency. Note: Parameter setting cannot be changed when the drive is operating the motor in models 4A0930 and 4A1200.	Default: 0.00% Min.: 0.00 Max.: 100.00	256

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b5-20 (01E2)	PID Setpoint Scaling	PID Disp Scaling 0: 0.01Hz units 1: 0.01% units 2: r/min 3: User Units	All Modes Sets the units for setting/display b5-19. 0: 0.01 Hz units 1: 0.01% units (100% = max output frequency) 2: r/min (number of motor poles must entered) 3: User-set (set scaling to b5-38 and b5-39)	Default: 1 Range: 0 to 3	256
b5-34 (019F) ◆RUN	PID Output Lower Limit	PID Out Low Lim	All Modes Sets the minimum output possible from the PID controller as a percentage of the maximum output frequency.	Default: 0.00% Min.: -100.00 Max.: 100.00	256
b5-35 (01A0)	PID Input Limit	PID Input Limit	All Modes Limits the PID control input (deviation signal) as a percentage of the maximum output frequency. Acts as a bipolar limit.	Default: 1000.0% Min.: 0.0 Max.: 1000.0	257
b5-36 (01A1)	PID Feedback High Detection Level	Fb High Det Lvl	All Modes Sets the PID feedback high detection level as a percentage of the maximum output frequency.	Default: 100% Min.: 0 Max.: 100	255
b5-37 (01A2)	PID Feedback High Detection Time	Fb High Dly Time	All Modes Sets the PID feedback high level detection delay time.	Default: 1.0 s Min.: 0.0 Max.: 25.5	255
b5-38 (01FE)	PID Setpoint User Display	PID UsrDspMaxVal	All Modes Sets the display value of U5-01 and U5-04 when the maximum frequency is output.	Default: ⁴ Min.: 1 Max.: 60000	257
b5-39 (01FF)	PID Setpoint Display Digits	PID UsrDspDigits 0: No Dec (XXXXX) 1: 1 Dec (XXXXX) 2: 2 Dec (XXX.XX) 3: 3 Dec (XXX.XXX)	All Modes 0: No decimal places 1: One decimal place 2: Two decimal places 3: Three decimal places	Default: Range: 0 to 3	257
b5-40 (017F)	Frequency Reference Monitor Content during PID	Fref Mon Sel@PID 0: Fref Mon w PID 1: Fref Mon w/o PID	O: Display the frequency reference (U1-01) after PID compensation has been added. 1: Display the frequency reference (U1-01) before PID compensation has been added.	Default: 0 Range: 0, 1	257
b5-47 <5> (017D)	Reverse Operation Selection 2 by PID Output	Output Rev Sel2 0: 0 limit 1: Reverse	Reverse operation selection when b5-01 = 3 or 4. 0: Zero limit when PID output is a negative value. 1: Reverse operation when PID output is a negative value (Zero limit if the reverse operation is prohibited by b1-04).	Default: 1 Range: 0, 1	257

- 1> Default setting is determined by parameter o2-04, Drive Model Selection.
- Settings 5 to 8 are available in drive software versions PRG: 1019 and later.
- <3> Default setting is determined by parameter A1-02, Control Method Selection.
- <4> Default setting is determined by parameter b5-20, PID Setpoint Scaling.
- <5> Available in drive software versions PRG: 1015 and later.

♦ b6: Dwell Function

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b6-01 (01B6)	Dwell Reference at Start	Dwell Ref @Start	All Modes	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	259
b6-02 (01B7)	Dwell Time at Start	Dwell Time@Start	1 3	Default: 0.0 s Min.: 0.0 Max.: 10.0	259

B.4 b: Application

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b6-03 (01B8)	Dwell Reference at Stop	Dwell Ref @Stop	Parameters b6-03 and b6-04 set the frequency to hold and the time to maintain that frequency at stop.	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	259
b6-04 (01B9)	Dwell Time at Stop	Dwell Time @Stop	unic to maintain that nequency at stop.	Default: 0.0 s Min.: 0.0 Max.: 10.0	259

♦ b7: Droop Control

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b7-01 (01CA)	Droop Control Gain	DROOP Quantity	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the speed reduction gain applied at a torque reference of 100%. Set as a percentage of motor base speed.	Default: 0.0% Min.: 0.0 Max.: 100.0	259
b7-02 (01CB) ◆RUN	Droop Control Delay Time	DROOP Delay Time	OLV/PM ADLV/PM CLV/PM Adjusts the responsiveness of Droop Control.	Default: 0.05 s Min.: 0.03 Max.: 2.00	260
b7-03 (017E) <1>	Droop Control Limit Selection	Droop Limit Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	260

<1> Available in drive software versions PRG: 1015 and later.

♦ b8: Energy Saving

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b8-01 (01CC)	Energy Saving Control Selection	Energy Save Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: <1> Range: 0, 1	260
b8-02 (01CD) ◆RUN	Energy Saving Gain	Energy Save Gain	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain used for Energy Saving.	Default: <1> Min.: 0.0 Max.: 10.0	260
b8-03 (01CE) •◆RUN	Energy Saving Control Filter Time Constant	Energy Save F.T	OLV/PM AOLV/PM CLV/PM Sets a time constant for Energy Saving.	Default: <2> Min.: 0.00 s Max.: 10.00 s	261
b8-04 (01CF)	Energy Saving Coefficient Value	Energy Save COEF	OLV CLV OLV/PM AOLV/PM CLV/PM Determines the level of maximum motor efficiency. Setting range is 0.0 to 2000.0 for drives 3.7 kW and smaller. The display resolution depends on the rated output power of the drive after the Drive Duty has been set in parameter C6-01. Refer to Model Number and Nameplate Check on page 35.	Default: <3> <4> Min.: 0.00 Max.: 655.00	261
b8-05 (01D0)	Power Detection Filter Time	kW Filter Time	OLV/PM AOLV/PM CLV/PM Sets a time constant filter for output power detection.	Default: 20 ms Min.: 0 Max.: 2000	261
b8-06 (01D1)	Search Operation Voltage Limit	Search V Limit	OLV/PM AOLV/PM CLV/PM Sets the limit for the voltage search operation as a percentage of the motor rated voltage.	Default: 0% Min.: 0 Max.: 100	261

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b8-16 (01F8) <5>	Energy Saving Parameter (Ki) for PM Motors	PM Enrgy Save Ki	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Coefficient to adjust torque linearity. Set to the Ki value on the motor nameplate. When parameter E5-01, Motor Code Selection (for PM Motors), is set to 1 □ □ □ or 2 □ □ □, the automatically calculated value will be set. This set value cannot be changed.	Default: 1.00 Min.: 0.00 Max.: 3.00 <6>	261
b8-17 (01F9) <5>	Energy Saving Parameter (Kt) for PM Motors	PM Enrgy Save Kt	OLV CLV OLV/PM AOLV/PM CLV/PM Coefficient to adjust torque linearity. Set to the Kt value on the motor nameplate. When parameter E5-01, Motor Code Selection (for PM Motors), is set to 1 \(\ldots \document{\text{l}} \document{\text{o}} \document{\text{o}} \document{\text{l}} \document{\text{o}}	Default: 1.00 Min.: 0.00 Max.: 3.00 <6>	261

- Default setting is determined by parameter A1-02, Control Method Selection.
- Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection. <2>
- Default setting is determined by parameters o2-04, Drive Model Selection, and C6-01, Drive Duty Selection. <3>
- <4> Parameter value changes automatically if E2-11 is manually changed or changed by Auto-Tuning.
- Available in drive software versions PRG: 1015 and later. <5>
- The maximum value is 2.00 in drive software versions PRG: 1018 and earlier.

b9: Zero Servo

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
b9-01 (01DA)	Zero Servo Gain	Zero Servo Gain	OLV/PM AOLV/PM CLV/PM Sets the position loop gain for the Zero Servo function.	Default: 5 Min.: 0 Max.: 100	262
b9-02 (01DB)	Zero Servo Completion Width	Zero Servo Count	OLV/PM AOLV/PM CLV/PM Sets the range to trigger an output terminal set for "Zero Servo Complete" during Zero Servo operation.	Default: 10 Min.: 0 Max.: 16383	262

B.5 C: Tuning

C parameters are used to adjust the acceleration and deceleration times, S-curves, torque compensation, and carrier frequency selections.

◆ C1: Acceleration and Deceleration Times

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C1-01 (0200)	Acceleration Time 1	Accel Time 1	All Modes Sets the time to accelerate from 0 to maximum frequency.	Default: 10.0 s Min.: 0.0	263
C1-02 (0201)	Deceleration Time 1	Decel Time 1	All Modes Sets the time to decelerate from maximum frequency to 0.	Max.: 6000.0	263
C1-03 (0202)	Acceleration Time 2	Accel Time 2	All Modes Sets the time to accelerate from 0 to maximum frequency.	Default: 10.0 s Min.: 0.0	263
C1-04 (0203)	Deceleration Time 2	Decel Time 2	All Modes Sets the time to decelerate from maximum frequency to 0.	Max.: 6000.0	263
C1-05 (0204)	Acceleration Time 3 (Motor 2 Accel Time 1)	Accel Time 3	All Modes Sets the time to accelerate from 0 to maximum frequency.	Default: 10.0 s Min.: 0.0	263
C1-06 (0205)	Deceleration Time 3 (Motor 2 Decel Time 1)	Decel Time 3	All Modes Sets the time to decelerate from maximum frequency to 0.	Max.: 6000.0	263
C1-07 (0206) •⊕RUN	Acceleration Time 4 (Motor 2 Accel Time 2)	Accel Time 4	All Modes Sets the time to accelerate from 0 to maximum frequency.	Default: 10.0 s Min.: 0.0	263
C1-08 (0207) •⊕RUN	Deceleration Time 4 (Motor 2 Decel Time 2)	Decel Time 4	All Modes Sets the time to decelerate from maximum frequency to 0.	Max.: 6000.0 	263
C1-09 (0208)	Fast Stop Time	Fast Stop Time	Sets the time for the Fast Stop function. Note: Parameter setting cannot be changed when the drive is operating the motor in models 4A0930 and 4A1200.	Default: 10.0 s Min.: 0.0 Max.: 6000.0 	264
C1-10 (0209)	Accel/Decel Time Setting Units	Acc/Dec Units 0: 0.01 Seconds 1: 0.1 Seconds	All Modes 0: 0.01 s (0.00 to 600.00 s) 1: 0.1 s (0.0 to 6000.0 s)	Default: 1 Range: 0, 1	265
C1-11 (020A)	Accel/Decel Time Switching Frequency	Acc/Dec SW Freq	All Modes Sets the frequency to switch between accel/decel time settings	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	264

<1> Setting range value is determined by parameter C1-10, Accel/Decel Time Setting Units. When C1-10 = 0 (units of 0.01 seconds), the setting range becomes 0.00 to 600.00 seconds.

◆ C2: S-Curve Characteristics

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C2-01 (020B)	S-Curve Characteristic at Accel Start	SCrv Acc @ Start	The S-curve can be controlled at the four points shown below. Bun Command ON OFF	Default: 0.20 s Min.: 0.00 Max.: 10.00	265
C2-02 (020C)	S-Curve Characteristic at Accel End	SCrv Acc @ End	Run Command Olympia Frequency D C2-02 C2-03 M	Default: 0.20 s Min.: 0.00 Max.: 10.00	265
C2-03 (020D)	S-Curve Characteristic at Decel Start	SCrv Dec @ Start	C2-01 C2-04 Time	Default: 0.20 s Min.: 0.00 Max.: 10.00	265
C2-04 (020E)	S-Curve Characteristic at Decel End	SCrv Dec @ End		Default: 0.00 s Min.: 0.00 Max.: 10.00	265

<1> Default setting is determined by parameter A1-02, Control Method Selection.

◆ C3: Slip Compensation

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C3-01 (020F)	Slip Compensation Gain	Slip Comp Gain	V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for the motor slip compensation function used for motor 1.	Default: Min.: 0.0 Max.: 2.5	265
C3-02 (0210)	Slip Compensation Primary Delay Time	Slip Comp Time	V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Adjusts the slip compensation function delay time used for motor 1.	Default: <1> Min.: 0 ms Max.: 10000 ms	266
C3-03 (0211)	Slip Compensation Limit	Slip Comp Limit	OLV/PM AOLV/PM CLV/PM Sets an upper limit for the slip compensation function as a percentage of motor rated slip for motor 1 (E2-02).	Default: 200% Min.: 0 Max.: 250	266
C3-04 (0212)	Slip Compensation Selection during Regeneration	Slip Comp Regen	V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. 1: Enabled above 6 Hz. 2: Enabled whenever slip compensation is possible.	Default: 0 Range: 0 to 2	266
C3-05 (0213)	Output Voltage Limit Operation Selection	Output V Lim Sel	V/f V/f w PG OLV OLV/PM AOLV/PM CLV/PM 0: Disabled. 1: Enabled. Automatically decreases motor flux when output voltage saturation is reached. Note: The available control modes for parameter C3-05 vary by drive model:	Default: 0 Range: 0, 1	267
C3-16 (0261)	Output Voltage Limit Operation Start Level (Percentage Modulation)	Output V Lim Sta	V/f V/f w PG OLV OLV/PM AOLV/PM CLV/PM Sets the output voltage limit operation start level (percentage modulation) when C3-05 is enabled. Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 85.0% Min.: 70.0 Max.: 90.0	267

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C3-17 (0262)	Maximum Output Voltage Limit Level (Percentage Modulation)	Output V Lim Max	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the output voltage limit operation determined by C3-18 (percentage modulation) when C3-05 is enabled. Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 90.0% Min.: 85.0 Max.: 100.0	267
C3-18 (0263)	Output Voltage Limit Level	Output V Lim lev	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the maximum percentage of output voltage reduction when C3-05 is enabled. Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 90.0% Min.: 30.0 Max.: 100.0	267
C3-21 (033E) •◆RUN	Motor 2 Slip Compensation Gain	SlpCmp Gain Mtr2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the slip compensation gain used for motor 2.	Default: <2> Min.: 0.0 Max.: 2.5	267
C3-22 (0241) ◆ RUN	Motor 2 Slip Compensation Primary Delay Time	Slip Comp Time 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the slip compensation delay time used for motor 2.	Default: <2> Min.: 0 ms Max.: 10000 ms	267
C3-23 (0242)	Motor 2 Slip Compensation Limit	Silp Comp Limit2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the upper limit for the slip compensation function for motor 2. Set as a percentage of the motor rated slip (E4-02).	Default: 200% Min.: 0 Max.: 250	268
C3-24 (0243)	Motor 2 Slip Compensation Selection During Regeneration	RegenSlpComp2 0: Disabled 1: Above 6 Hz 2: Lowst possbl spd	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. 1: Enabled above 6 Hz. 2: Enabled whenever slip compensation is possible.	Default: 0 Range: 0 to 2	268

<1> Default setting is determined by parameter A1-02, Control Method Selection.

◆ C4: Torque Compensation

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C4-01 (0215)	Torque Compensation Gain	Torq Comp Gain	OLV/PM AOLV/PM CLV/PM Sets the gain for the automatic torque (voltage) boost function and helps to produce better starting torque. Used for motor 1.	Default: Min.: 0.00 Max.: 2.50	268
C4-02 (0216)	Torque Compensation Primary Delay Time 1	Torq Comp Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the torque compensation filter time.	Default: <2> Min.: 0 ms Max.: 60000 ms	269
C4-03 (0217)	Torque Compensation at Forward Start	F TorqCmp@start	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets torque compensation at forward start as a percentage of motor torque.	Default: 0.0% Min.: 0.0 Max.: 200.0	269
C4-04 (0218)	Torque Compensation at Reverse Start	R TorqCmp@start	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets torque compensation at reverse start as a percentage of motor torque.	Default: 0.0% Min.: -200.0 Max.: 0.0	269
C4-05 (0219)	Torque Compensation Time Constant	TorqCmp Delay T	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant for torque compensation at forward start and reverse start (C4-03 and C4-04).	Default: 10 ms Min.: 0 Max.: 200	269

<2> Default setting is determined by parameter E3-01, Motor 2 Control Mode Selection.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C4-06 (021A)	Torque Compensation Primary Delay Time 2	Start Torq Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the torque compensation time 2.	Default: 150 ms Min.: 0 Max.: 10000	269
C4-07 (0341)	Motor 2 Torque Compensation Gain	TrqCmp Gain Mtr2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the torque compensation gain used for motor 2.	Default: 1.00 Min.: 0.00 Max.: 2.50	269

<1> Default setting is determined by parameter A1-02, Control Method Selection.

C5: Automatic Speed Regulator (ASR)

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C5-01 (021B)	ASR Proportional Gain 1	ASR P Gain 1	OLV/PM AOLV/PM CLV/PM Sets the proportional gain of the speed control loop (ASR).	Default: <1> Min.: 0.00 Max.: 300.00 <2>	272
C5-02 (021C)	ASR Integral Time 1	ASR I Time 1	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the integral time of the speed control loop (ASR).	Default: <1> Min.: 0.000 s Max.: 10.000 s	272
C5-03 (021D)	ASR Proportional Gain 2	ASR P Gain 2	OLV/PM AOLV/PM CLV/PM Sets the speed control gain 2 of the speed control loop (ASR).	Default: <1> Min.: 0.00 Max.: 300.00 <2>	272
C5-04 (021E)	ASR Integral Time 2	ASR I Time 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the integral time 2 of the speed control loop (ASR).	Default: <1> Min.: 0.000 s Max.: 10.000 s	272
C5-05 (021F)	ASR Limit	ASR Limit	OLV/PM AOLV/PM CLV/PM Sets the upper limit for the speed control loop (ASR) as a percentage of the maximum output frequency (E1-04).	Default: 5.0% Min.: 0.0 Max.: 20.0	273
C5-06 (0220)	ASR Primary Delay Time Constant	ASR Delay Time	OLV/PM AOLV/PM CLV/PM Sets the filter time constant for the time from the speed loop to the torque command output.	Default: Min.: 0.000 s Max.: 0.500 s	273
C5-07 (0221)	ASR Gain Switching Frequency	ASR Gain Switch	OLV/PM AOLV/PM CLV/PM Sets the frequency for switching between proportional gain 1, 2 and integral time 1, 2.	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	273
C5-08 (0222)	ASR Integral Limit	ASR I Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the ASR integral upper limit as a percentage of rated load torque.	Default: 400% Min.: 0 Max.: 400	273
C5-12 (0386)	Integral Operation during Accel/Decel	Acc/Dec I Sel	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. Integral functions are enabled only during constant speed. 1: Enabled. Integral functions are always enabled, during accel/decel and during constant speed.	Default: 0 Range: 0, 1	273
C5-17 (0276)	Motor Inertia	Motor Inertia	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor inertia. This value is automatically set during ASR or Inertia Auto-Tuning.	Default: <3> <4> Min.: 0.0001 kgm² Max.: 600.00 kgm²	273

<2> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C5-18 (0277)	Load Inertia Ratio	Load Inertia	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the ratio between the motor and load inertia. This value is automatically set during ASR or Inertia Auto-Tuning.	Default: 1.0 Min.: 0.0 Max.: 6000.0	273
C5-21 (0356)	Motor 2 ASR Proportional Gain 1	ASR P Gain1 Mtr2	OLV/PM AOLV/PM CLV/PM Sets the proportional gain of the speed control loop (ASR) for motor 2.	Default: <5> Min.: 0.00 Max.: 300.00	274
C5-22 (0357)	Motor 2 ASR Integral Time 1	ASR I Time1 Mtr2	OLV/PM AOLV/PM CLV/PM Sets the integral time of the speed control loop (ASR) for motor 2.	Default: <5> Min.: 0.000 s Max.: 10.000 s	274
C5-23 (0358)	Motor 2 ASR Proportional Gain 2	ASR P Gain2 Mtr2	OLV/PM AOLV/PM CLV/PM Sets the speed control gain 2 of the speed control loop (ASR) for motor 2.	Default: <5> Min.: 0.00 Max.: 300.00 <2>	274
C5-24 (0359) ◆RUN	Motor 2 ASR Integral Time 2	ASR I Time2 Mtr2	OLV/PM AOLV/PM CLV/PM Sets the integral time 2 of the speed control loop (ASR) for motor 2.	Default: <5> Min.: 0.000 s Max.: 10.000 s	274
C5-25 (035A)	Motor 2 ASR Limit	ASR Limit Mtr2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the upper limit for the speed control loop (ASR) for motor 2 as a percentage of the maximum output frequency (E3-04).	Default: 5.0% Min.: 0.0 Max.: 20.0	274
C5-26 (035B)	Motor 2 ASR Primary Delay Time Constant	ASR Dly Time 2	OLV/PM AOLV/PM CLV/PM Sets the filter time constant for the time from the speed loop to the torque command output used for motor 2.	Default: <5> Min.: 0.000 s Max.: 0.500 s	274
C5-27 (035C)	Motor 2 ASR Gain Switching Frequency	ASRGainSwitch2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the frequency for motor 2 used to switch between proportional gain 1 and 2, and between the integral time 1 and 2.	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	274
C5-28 (035D)	Motor 2 ASR Integral Limit	ASR I limit 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the ASR integral upper limit for motor 2 as a percentage of rated load torque.	Default: 400% Min.: 0 Max.: 400	274
C5-32 (0361)	Integral Operation during Accel/Decel for Motor 2	Acc/Dec I Sel 2 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. Integral functions for motor 2 are enabled only during constant speed. 1: Enabled. Integral functions are always enabled for motor 2, during accel/decel and during constant speed.	Default: 0 Range: 0, 1	274
C5-37 (0278)	Motor 2 Inertia	Motor Inertia 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the inertia of motor 2 alone without the load. This value is automatically set during ASR or Inertia Auto-Tuning.	Default: <3> <4> Min.: 0.0001 kgm² Max.: 600.00 kgm²	275
C5-38 (0279)	Motor 2 Load Inertia Ratio	Load Inertia 2	OLV/PM AOLV/PM CLV/PM Sets the ratio between the motor 2 and machine inertia. This value is automatically set during ASR or Inertia Auto-Tuning.	Default: 1.0 Min.: 0.0 Max.: 6000.0	275

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C5-39 (030D)	ASR Primary Delay Time Constant 2	ASR Delay Time 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the filter time constant in seconds for the time from the speed loop to the torque reference output when the Power KEB Ride-Thru is enabled (L2-29 = 1). Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0.000 s Min.: 0.000 Max.: 0.500	275

- <1> Default setting is determined by parameter A1-02, Control Method Selection.
- <2> The setting range is 1.00 to 300.00 in CLV and AOLV/PM control modes.
- <3> Default setting is dependent on parameter E5-01, Motor Code Selection.
- <4> Default setting is dependent on parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <5> Default setting is determined by parameter E3-01, Motor 2 Control Mode Selection.

C6: Carrier Frequency

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C6-01 (0223)	Drive Duty Selection	Heavy/NormalDuty 0: Heavy Duty 1: Normal Duty	All Modes 0: Heavy Duty (HD) Overload capability: 150% of drive rated Heavy Duty current for 60 s Default Carrier Frequency: 2 kHz 1: Normal Duty (ND) Overload capability: 120% of drive rated Normal Duty current for 60 s Default Carrier Frequency: 2 kHz Swing PWM	Default: 1 Range: 0, 1	275
C6-02 (0224)	Carrier Frequency Selection	CarrierFreq Sel 1: Fc=2.0 kHz 2: Fc=5.0 kHz 3: Fc=8.0 kHz 4: Fc=10.0 kHz 5: Fc=12.5 kHz 6: Fc=15.0 kHz 7: Swing PWM1 8: Swing PWM2 9: Swing PWM3 A: Swing PWM4 F: Program	All Modes 1: 2.0 kHz 2: 5.0 kHz (4.0 kHz) 3: 8.0 kHz (6.0 kHz) 4: 10.0 kHz (8.0 kHz) 5: 12.5 kHz (10.0 kHz) 6: 15.0 kHz (12.0 kHz) 7: Swing PWM1 (Audible sound 1) 8: Swing PWM2 (Audible sound 2) 9: Swing PWM3 (Audible sound 3) A: Swing PWM4 (Audible sound 4) B to E: No setting possible F: User-defined (determined by C6-03 through C6-05) Note: 1. The available settings are 1, 2, and F for models 4A0930 and 4A1200. 2. The value in parenthesis indicates the carrier frequency for AOLV/PM.	Default: Range: 1 to 9; A, F	276

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
C6-03 (0225)	Carrier Frequency Upper Limit	CarrierFreq Max	Note: C6-04 and C6-05 are available only in V/f and	Default: <2> Min.: 1.0 kHz Max.: 15.0 kHz	276
C6-04 (0226)	Carrier Frequency Lower Limit	CarrierFreq Min	V/f w/PG control modes. Determines the upper and lower limits for the carrier frequency. In OLV, C6-03 determines the upper limit of the carrier frequency.	Default: <2> Min.: 1.0 kHz Max.: 15.0 kHz	276
C6-05 (0227)	Carrier Frequency Proportional Gain	CarrierFreq Gain	Carrier Frequency C6-03 C6-04 Output Frequency × (C6-05) × K E1-04 Max Output Frequency Max Output Frequency Note: The setting range is 1.0 to 5.0 kHz for models 4A0515 to 4A1200.	Default: <2> Min.: 0 Max.: 99	276
C6-09 (022B)	Carrier Frequency during Rotational Auto- Tuning	Carrier in tune 0: Fc = 5kHz 1: Fc = C6-03	OLV OLV/PM AOLV/PM CLV/PM 0: Carrier Frequency = 5 kHz. In PM control modes, this value is 2 kHz. 1: Setting value for C6-03. In PM control modes, this value is the carrier frequency set in C6-02. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	277

<1> Default setting value is determined by parameters A1-02, Control Method Selection, C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

<2> Default setting value is determined by parameter C6-02, Carrier Frequency Selection.

B.6 d: References

Reference parameters set the various frequency reference values during operation.

♦ d1: Frequency Reference

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d1-01 (0280) ◆RUN	Frequency Reference 1	Reference 1	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-02 (0281) ◆RUN	Frequency Reference 2	Reference 2	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00	278
d1-03 (0282) [*] ◆RUN	Frequency Reference 3	Reference 3	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-04 (0283) *◆RUN	Frequency Reference 4	Reference 4	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-05 (0284) *◆RUN	Frequency Reference 5	Reference 5	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-06 (0285) *◆RUN	Frequency Reference 6	Reference 6	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-07 (0286) *◆RUN	Frequency Reference 7	Reference 7	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-08 (0287) ◆RUN	Frequency Reference 8	Reference 8	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00	278

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d1-09 (0288)	Frequency Reference 9	Reference 9	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-10 (028B)	Frequency Reference 10	Reference 10	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-11 (028C)	Frequency Reference 11	Reference 11	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-12 (028D)	Frequency Reference 12	Reference 12	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-13 (028E)	Frequency Reference 13	Reference 13	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-14 (028F)	Frequency Reference 14	Reference 14	All Modes Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-15 (0290)	Frequency Reference 15	Reference 15	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-16 (0291)	Frequency Reference 16	Reference 16	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03. Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7.	Default: 0.00 Hz Min.: 0.00 Max.: 400.00 <1>	278
d1-17 (0292) *◆RUN	Jog Frequency Reference	Jog Reference	All Modes Sets the Jog frequency reference. Setting units are determined by parameter o1-03.	Default: 6.00 Hz Min.: 0.00 Max.: 400.00 <1>	278

<1> Range upper limit is determined by parameters d2-01, Frequency Reference Upper Limit, and E1-04, Maximum Output Frequency.

<2> The value of o1-03 is changed to 1 and the unit is also changed to a percentage (%) when the control mode is set to CLV/PM or AOLV/PM.

◆ d2: Frequency Upper/Lower Limits

No. (Addr. Hex.)	Name	LCD Display	Description	Setting	Page
d2-01 (0289)	Frequency Reference Upper Limit	Ref Upper Limit	All Modes Sets the frequency reference upper limit as a percentage of the maximum output frequency.	Default: 100.0% Min.: 0.0 Max.: 110.0	280
d2-02 (028A)	Frequency Reference Lower Limit	Ref Lower Limit	All Modes Sets the frequency reference lower limit as a percentage of the maximum output frequency.	Default: 0.0% Min.: 0.0 Max.: 110.0	280
d2-03 (0293)	Master Speed Reference Lower Limit	Ref1 Lower Limit	All Modes Sets the lower limit for frequency references from analog inputs as a percentage of the maximum output frequency.	Default: 0.0% Min.: 0.0 Max.: 110.0	281

◆ d3: Jump Frequency

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d3-01 (0294)	Jump Frequency 1	Jump Freq 1	All Modes Eliminates problems with resonant vibration of the motor/machine by avoiding continuous operation in predefined frequency ranges. The drive accelerates and decelerates the motor through the prohibited frequency ranges. Setting 0.0 disables this function. Parameters must be set so that $d3-01 \ge d3-02 \ge d3-03$.	Default: <1> <2> Min.: 0.0 <2> Max.: 400.0 <2>	281
d3-02 (0295)	Jump Frequency 2	Jump Freq 2	All Modes Eliminates problems with resonant vibration of the motor/machine by avoiding continuous operation in predefined frequency ranges. The drive accelerates and decelerates the motor through the prohibited frequency ranges. Setting 0.0 disables this function. Parameters must be set so that $d3-01 \ge d3-02 \ge d3-03$.	Default: <1> <2> Min.: 0.0 <2> Max.: 400.0 <2>	281
d3-03 (0296)	Jump Frequency 3	Jump Freq 3	Eliminates problems with resonant vibration of the motor/machine by avoiding continuous operation in predefined frequency ranges. The drive accelerates and decelerates the motor through the prohibited frequency ranges. Setting 0.0 disables this function. Parameters must be set so that $d3-01 \ge d3-02 \ge d3-03$.	Default: <1> <2> Min.: 0.0 <2> Max.: 400.0 <2>	281
d3-04 (0297)	Jump Frequency Width	Jump Bandwidth	All Modes Sets the dead-band width around each selected prohibited frequency reference point.	Default: <1> <3> Min.: 0.0 <3> Max.: 20.0 <3>	281

- <1> Default setting is determined by parameter A1-02, Control Mode Setting.
- Oefault setting is 0.0% and setting range is 0.0 to 100.0% in AOLV/PM or CLV/PM.
- <3> Default setting is 1.0% and setting range is 0.0 to 40.0% in AOLV/PM and CLV/PM.

◆ d4: Frequency Reference Hold and Up/Down 2 Function

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d4-01 (0298)	Fraguancy Vataranca		O: Disabled. Drive starts from zero when the power is switched on. 1: Enabled. At power up, the drive starts the motor at the Hold frequency that was saved.	Default: 0 Range: 0, 1	282
d4-03 (02AA)	Frequency Reference Bias Step (Up/Down 2)	Up/Dn 2 Step Lvl	All Modes Sets the bias added to the frequency reference when the Up 2 and Down 2 digital inputs are enabled (H1-\(\pi\) = 75, 76).	Default: 0.00 Hz Min.: 0.00 Max.: 99.99	284

B.6 d: References

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d4-04 (02AB) ◆RUN	Frequency Reference Bias Accel/Decel (Up/ Down 2)	Up/Dn 2 Ramp Sel 0: Sel Acc/Dec Time 1: Acc/Dec Time 4	All Modes 0: Use selected accel/decel time. 1: Use accel/decel time 4 (C1-07 and C1-08).	Default: 0 Range: 0, 1	285
d4-05 (02AC) ◆RUN	Frequency Reference Bias Operation Mode Selection (Up/Down 2)	Up/Dn 2 Bias Sel 0: Hold Bias Value 1: Reset Bias Value	O: Bias value is held if no input Up 2 or Down 2 is active. 1: When the Up 2 reference and Down 2 reference are both on or both off, the applied bias becomes 0. The specified accel/decel times are used for acceleration or deceleration.	Default: 0 Range: 0, 1	285
d4-06 (02AD)	Frequency Reference Bias (Up/Down 2)	Up/Dn 2 Bias Lvl	All Modes The Up/Down 2 bias value is saved in d4-06 when the frequency reference is not input by the digital operator. Set as a percentage of the maximum output frequency.	Default: 0.0% Min.: -99.9 Max.: 100.0	285
d4-07 (02AE)	Analog Frequency Reference Fluctuation Limit (Up/Down 2)	Up/Dn 2 FluctLim	Limits how much the frequency reference is allowed to change while an input terminal set for Up 2 or Down 2 is enabled. If the frequency reference changes for more than the set value, then the bias value is held and the drive accelerates or decelerates to the frequency reference. Set as a percentage of the maximum output frequency.	Default: 1.0% Min.: 0.1 Max.: 100.0	286
d4-08 (02AF) •◆RUN	Frequency Reference Bias Upper Limit (Up/ Down 2)	Up/Dn 2 UpperLim	All Modes Sets the upper limit for the bias and the value that can be saved in d4-06. Set as a percentage of the maximum output frequency.	Default: 100.0% Min.: 0.0 Max.: 100.0	286
d4-09 (02B0) ◆ RUN	Frequency Reference Bias Lower Limit (Up/ Down 2)	Up/Dn 2 LowerLim	All Modes Sets the lower limit for the bias and the value that can be saved in d4-06. Set as a percentage of the maximum output frequency.	Default: 0.0% Min.: -99.9 Max.: 0.0	286
d4-10 (02B6)	Up/Down Frequency Reference Limit Selection	Up/Dn LowLim Sel 0: D2-02 or Analog 1: D2-02 Only	O: The lower limit is determined by d2-02 or an analog input. 1: The lower limit is determined by d2-02.	Default: 0 Range: 0, 1	286

♦ d5: Torque Control

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d5-01 (029A)	Torque Control Selection	Torq Control Sel 0: Speed Control 1: Torque Control	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Speed Control 1: Torque Control Set to 0 when using a digital input to switch between Speed and Torque Control (H1-□□ = 71).	Default: 0 Range: 0, 1	290
d5-02 (029B)	Torque Reference Delay Time	Tq Ref Dly Time	OLV OLV/PM AOLV/PM CLV/PM Sets a delay time for the torque reference signal. Used to suppress effects by noisy or fluctuating torque reference signals.	Default: 0 ms Min.: 0 Max.: 1000	290
d5-03 (029C)	Speed Limit Selection	Speed Limit Sel 1: Fref Limit 2: Speed Limit Sel	OLV/PM AOLV/PM CLV/PM 1: Limit set by the frequency reference in b1-01. 2: Limit set by d5-04.	Default: 1 Range: 1, 2	290
d5-04 (029D)	Speed Limit	Speed Limit Val	OLV OLV/PM AOLV/PM CLV/PM Sets the speed limit during Torque Control as a percentage of the maximum output frequency. Enabled when d5-03 = 2. A negative setting sets a limit in the opposite direction of the Run command.	Default: 0% Min.: -120 Max.: 120	291

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
d5-05 (029E)	Speed Limit Bias	Speed Limit Bias	V/f V/f w PG OLV CLV/PM OLV/PM AOLV/PM CLV/PM Sets the speed limit bias as a percentage of the maximum output frequency. The bias is applied to the specified speed limit and can adjust the margin for the speed limit.	Default: 10% Min.: 0 Max.: 120	291
d5-06 (029F)	Speed/Torque Control Switchover Time	Spd/Trq Sw Timer	V/f V/f w PG OLV CLV/PM Sets the delay time for switching between Speed and Torque Control using an input terminal (H1-□□ = 71). Reference values are held during this switch delay time.	Default: 0 ms Min.: 0 Max.: 1000	291
d5-08 (02B5)	Unidirectional Speed Limit Bias	UnidirSpdLimBias 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	291

d6: Field Weakening and Field Forcing

No. (Addr Hex.)	Name	LCD Display	Description	Values	Page
d6-01 (02A0)	Field Weakening Level	Field-Weak Lvl	OLV OLV/PM AOLV/PM CLV/PM Sets the drive output voltage for the Field Weakening function as a percentage of the maximum output voltage. Enabled when a multi-function input is set for Field Weakening (H1-□□ = 63).	Default: 80% Min.: 0 Max.: 100	291
d6-02 (02A1)	Field Weakening Frequency Limit	Fiel-Weak Freq	OLV OLV/PM AOLV/PM CLV/PM Sets the lower limit of the frequency range where Field Weakening control is valid. The Field Weakening command is valid only at frequencies above this setting and only when the output frequency matches the frequency reference (speed agree).	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	291
d6-03 (02A2)	Field Forcing Selection	Field Force Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	292
d6-06 (02A5)	Field Forcing Limit	FieldForce Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the upper limit of the excitation current command during magnetic field forcing. A setting of 100% is equal to motor noload current. Disabled only during DC Injection Braking.	Default: 400% Min.: 100 Max.: 400	292

♦ d7: Offset Frequency

No. (Addr. Hex)	Name	LCD Display	Description	Setting	Page
d7-01 (02B2) •◆RUN	Offset Frequency 1	Offset Freq 1		Default: 0.0% Min.: -100.0 Max.: 100.0	292
d7-02 (02B3) ◆RUN	Offset Frequency 2	Offset Freq 2		Default: 0.0% Min.: -100.0 Max.: 100.0	292

B.6 d: References

No. (Addr. Hex)	Name	LCD Display	Description	Setting	Page
d7-03 (02B4)	Offset Frequency 3	Offset Freq 3		Default: 0.0% Min.: -100.0 Max.: 100.0	292

B.7 E: Motor Parameters

◆ E1: V/f Pattern for Motor 1

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E1-01 (0300)	Input Voltage Setting	Input Voltage	All Modes This parameter must be set to the power supply voltage. WARNING! Electrical Shock Hazard. Drive input voltage (not motor voltage) must be set in E1-01 for the protective features of the drive to function properly. Failure to do so may result in equipment damage and/or death or personal injury.	Min · 155	293
E1-03 (0302)	V/f Pattern Selection	V/F Selection 0: 50 Hz 1: 60 Hz Saturation 2: 50 Hz Saturation 3: 72 Hz 4: 50 Hz VT1 5: 50 Hz VT2 6: 60 Hz VT1 7: 60 Hz VT2 8: 50 Hz HST1 9: 50 Hz HST1 B: 60 Hz HST1 B: 60 Hz HST2 C: 90 Hz D: 120 Hz E: 180 Hz F: Custom V/F	OLV/PM AOLV/PM CLV/PM 0: 50 Hz, Constant torque 1 1: 60 Hz, Constant torque 2 2: 60 Hz, Constant torque 3 (50 Hz base) 3: 72 Hz, Constant torque 4 (60 Hz base) 4: 50 Hz, Variable torque 1 5: 50 Hz, Variable torque 2 6: 60 Hz, Variable torque 2 7: 60 Hz, Variable torque 2 8: 50 Hz, High starting torque 1 9: 50 Hz, High starting torque 1 9: 50 Hz, High starting torque 2 A: 60 Hz, High starting torque 3 B: 60 Hz, High starting torque 3 B: 60 Hz, High starting torque 4 C: 90 Hz (60 Hz base) D: 120 Hz (60 Hz base) E: 180 Hz (60 Hz base) F: Custom V/f, E1-04 through E1-13 settings define the V/f pattern	Default: F <2> Range: 0 to 9; A to F <3>	293

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E1-04 (0303)	Maximum Output Frequency	Max Frequency	All Modes Parameters E1-04 and E1-06 to E1-13 can only be changed when E1-03 is set to F.	Default: <4> <5> Min.: 40.0 Max.: 400.0 <6>	296
E1-05 (0304)	Maximum Voltage	Max Voltage	To set linear V/f characteristics, set the same values for E1-07 and E1-09. In this case, the setting for E1-08 will be disregarded. Ensure that the five frequencies are set according to the following rules to prevent triggering an oPE10 fault:	Default: <1> <5> Min.: 0.0 V Max.: 255.0 V <1>	296
E1-06 (0305)	Base Frequency	Base Frequency	E1-09 \leq E1-07 \leq E1-06 \leq E1-11 \leq E1-04 Setting E1-11 to 0 disables both E1-11 and E1-12 and the above conditions do not apply. Output Voltage (V)	Default: <4> <5> Min.: 0.0 Max.: E1-04 <6>	296
E1-07 (0306)	Middle Output Frequency	Mid Frequency A	E1-05 E1-12	Default: <4> Min.: 0.0 Max.: E1-04	296
E1-08 (0307)	Middle Output Frequency Voltage	Mid Voltage A	E1-13	Default: <1> Min.: 0.0 V Max.: 255.0 V <1>	296
E1-09 (0308)	Minimum Output Frequency	Min Frequency	E1-10	Default: <4> <5> Min.: 0.0 Max.: E1-04 <6>	296
E1-10 (0309)	Minimum Output Frequency Voltage	Min Voltage	E1-09 E1-07 E1-06 E1-11 E1-04 Frequency (Hz) Note: Some parameters may not be available	Default: <1> Min.: 0.0 V Max.: 255.0 V <1>	296
E1-11 (030A) <8>	Middle Output Frequency 2	Mid Frequency B	depending on the control mode.	Default: 0.0 Hz Min.: 0.0 Max.: E1-04	296
E1-12 (030B)	Middle Output Frequency Voltage 2	Mid Voltage B	E1-11, E1-12, and E1-13 are available only in the following control modes: V/f Control, V/f with PG, Open Loop Vector, Closed Loop Vector.	Default: 0.0 V Min.: 0.0 Max.: 255.0 V	296
E1-13 (030C)	Base Voltage	Base Voltage		Default: 0.0 V <7> Min.: 0.0 Max.: 255.0 V <1>	296

- <1> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- <2> Parameter setting value is not reset to the default value when the drive is initialized.
- <3> The setting value is F in OLV modes.
- <4> Default setting is determined by parameters A1-02, Control Method Selection, C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <5> Default setting is determined by parameter E5-01, Motor Code Selection.
- <6> In OLV/PM, setting range varies according to the motor code entered to E5-01. The setting range is 0.0 to 400.0 Hz when E5-01 is set to FFFF.
- <7> When E1-13, Base Voltage, is set to 0.0, output voltage is controlled with E1-05, Maximum Voltage, = E1-13. When Auto-Tuning is performed, E1-05 and E1-13 are automatically set to the same value.
- <8> Parameter ignored when E1-11 (Motor 1 Mid Output Frequency 2) and E1-12 (Motor 1 Mid Output Frequency Voltage 2) are set to 0.0.

◆ E2: Motor 1 Parameters

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E2-01 (030E)	Motor Rated Current	Motor Rated FLA	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor nameplate full load current in amps. Automatically set during Auto-Tuning.	Default: Min.: 10% of drive rated current Max.: 200% of drive rated current	297
E2-02 (030F)	Motor Rated Slip	Motor Rated Slip	V/f W/F W PG OLV OLV/PM AOLV/PM CLV/PM Sets the motor rated slip. Automatically set during Auto-Tuning.	Default: Min.: 0.00 Hz Max.: 20.00 Hz	297
E2-03 (0310)	Motor No-Load Current	No-Load Current	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the no-load current for the motor. Automatically set during Auto-Tuning.	Default: Min.: 0 A Max.: E2-01	298
E2-04 (0311)	Number of Motor Poles	Number of Poles	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of motor poles. Automatically set during Auto-Tuning.	Default: 4 Min.: 2 Max.: 48	298
E2-05 (0312)	Motor Line-to-Line Resistance	Term Resistance	V/f W/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the phase-to-phase motor resistance. Automatically set during Auto-Tuning. Note: The units are expressed in mΩ in models 4A0930 and 4A1200.	Default: <1> Min.: 0.000 Ω Max.: 65.000 Ω	298
E2-06 (0313)	Motor Leakage Inductance	Leak Inductance	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the voltage drop due to motor leakage inductance as a percentage of motor rated voltage. Automatically set during Auto-Tuning.	Default: <1> Min.: 0.0% Max.: 40.0%	298
E2-07 (0314)	Motor Iron-Core Saturation Coefficient 1	Saturation Comp1	OLV/PM AOLV/PM CLV/PM Sets the motor iron saturation coefficient at 50% of magnetic flux. Automatically set during Auto-Tuning.	Default: 0.50 Min.: 0.00 Max.: 0.50	298
E2-08 (0315)	Motor Iron-Core Saturation Coefficient 2	Saturation Comp2	OLV/PM AOLV/PM CLV/PM Sets the motor iron saturation coefficient at 75% of magnetic flux. Automatically set during Auto-Tuning.	Default: 0.75 Min.: E2-07 Max.: 0.75	299
E2-09 (0316)	Motor Mechanical Loss	Mechanical Loss	OLV/PM AOLV/PM CLV/PM Sets the motor mechanical loss as a percentage of motor rated power (kW).	Default: 0.0% Min.: 0.0 Max.: 10.0	299
E2-10 (0317)	Motor Iron Loss for Torque Compensation	Motor Iron Loss	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor iron loss.	Default: <1> Min.: 0 W Max.: 65535 W	299
E2-11 (0318)	Motor Rated Power	Mtr Rated Power	OLV/PM AOLV/PM CLV/PM Sets the motor rated power in kilowatts (1 HP = 0.746 kW). Automatically set during Auto-Tuning.	Default: <1> Min.: 0.00 kW Max.: 650.00 kW	299

<1> Default setting is dependent on parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

<2> Display is in the following units: 2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units. 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units. 4A0930 and 4A1200: 1 A units.

E3: V/f Pattern for Motor 2

These parameters are hidden when a PM motor control mode has been selected for motor 1 (A1-02 = 5, 6, 7).

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E3-01 (0319)	Motor 2 Control Mode Selection	Mot 1 Contr Meth 0: V/f Control 1: V/f with PG 2: Open Loop Vector 3: Closed Loop Vect	OLV CLV OLV/PM AOLV/PM CLV/PM 0: V/f Control 1: V/f Control with PG 2: Open Loop Vector Control 3: Closed Loop Vector Control	Default: 0 Range: 0 to 3	300
E3-04 (031A)	Motor 2 Maximum Output Frequency	Max Frequency	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM To set linear V/f characteristics, set the same values for E3-07	Default: <1> Min.: 40.0 Max.: 400.0	300
E3-05 (031B)	Motor 2 Maximum Voltage	Max Voltage	and E3-09. In this case, the setting for E3-08 will be disregarded. Ensure	Default: <1> <4> Min.: 0.0 V Max.: 255.0 V <2>	300
E3-06 (031C)	Motor 2 Base Frequency	Base Frequency	Setting E3-11 to 0 disables both E3-11 and E3-12 and the above conditions do not apply. Output Voltage (V)	Default: <1> Min.: 0.0 Max.: E3-04	300
E3-07 (031D)	Motor 2 Mid Output Frequency	Mid Frequency A	E3-05 E3-12	Default: <1> Min: 0.0 Max: E3-04	300
E3-08 (031E)	Motor 2 Mid Output Frequency Voltage	Mid Voltage B	E3-13	Default: Min: 0.0 V Max: 255.0 V <2>	300
E3-09 (031F)	Motor 2 Minimum Output Frequency	Min Frequency	E3-10	Default: Min.: 0.0 Max.: E3-04	300
E3-10 (0320)	Motor 2 Minimum Output Frequency Voltage	Min Voltage	E3-09 E3-07 E3-06 E3-11 E3-04 Frequency (Hz) Note: E3-07 and E3-08 are only available in the	Default: <1> Min: 0.0 V Max: 255.0 V	300
E3-11 (0345)	Motor 2 Mid Output Frequency 2	Mid Frequency B	following control modes: V/f, V/f w/PG and OLV.	Default: 0.0 Hz Min.: 0.0 Max.: E3-04	300
E3-12 (0346) <3>	Motor 2 Mid Output Frequency Voltage 2	Mid Voltage B		Default: 0.0 V Min.: 0.0 Max.: 255.0 <2>	300
E3-13 (0347) <4>	Motor 2 Base Voltage	Base Voltage		Default: 0.0 V Min.: 0.0 Max.: 255.0 <2>	300

<1> Default setting is determined by parameter E3-01, Motor 2 Control Mode Selection. The value shown here is for V/f Control (0).

<2> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

<3> Ignored when E3-11, Motor 2 Mid Output Frequency 2, and E3-12, Motor 2 Mid Output Frequency Voltage 2, are set to 0.

When E3-13, Motor 2 Base Voltage, is set to 0.0, output voltage is controlled with E3-05, Motor 2 Maximum Voltage, = E3-13. When Auto-Tuning is performed, E3-05 and E3-13 are automatically set to the same value.

◆ E4: Motor 2 Parameters

These parameters are hidden when a PM motor control mode has been selected for motor 1 (A1-02 = 5, 6, 7).

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E4-01 (0321)	Motor 2 Rated Current	Motor Rated FLA	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the full load current for motor 2. Automatically set during Auto-Tuning.	Default: Min.: 10% of Mine: 10% of drive rated current Max.: 200% of drive rated current	301
E4-02 (0322)	Motor 2 Rated Slip	Motor Rated Slip	V/f W/F OLV CLV OLV/PM AOLV/PM CLV/PM Sets the rated slip for motor 2. Automatically set during Auto-Tuning.	Default: Min.: 0.00 Hz Max.: 20.00 Hz	301
E4-03 (0323)	Motor 2 Rated No-Load Current	No-Load Current	V/f W/F WPG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the no-load current for motor 2. Automatically set during Auto-Tuning.	Default: <1> Min.: 0 A Max.: E4-01 <2>	302
E4-04 (0324)	Motor 2 Motor Poles	Number of Poles	V/f W/F OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of poles of motor 2. Automatically set during Auto-Tuning.	Default: 4 Min.: 2 Max.: 48	302
E4-05 (0325)	Motor 2 Line-to-Line Resistance	Term Resistance	V/f wPG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the phase-to-phase resistance for motor 2. Automatically set during Auto-Tuning. Note: The units are expressed in mΩ in models 4A0930 and 4A1200.	Default: <1> Min.: 0.000 Ω Max.: 65.000 Ω	302
E4-06 (0326)	Motor 2 Leakage Inductance	Leak Inductance	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the voltage drop for motor 2 due to motor leakage inductance as a percentage of rated voltage. Automatically set during Auto-Tuning.	Default: <1> Min: 0.0% Max: 40.0%	302
E4-07 (0343)	Motor 2 Motor Iron- Core Saturation Coefficient 1	Saturation Comp1	OLV/PM AOLV/PM CLV/PM Set to the motor iron saturation coefficient at 50% of magnetic flux for motor 2. Automatically set during Auto-Tuning.	Default: 0.50 Min.: 0.00 Max.: 0.50	302
E4-08 (0344)	Motor 2 Motor Iron- Core Saturation Coefficient 2	Saturation Comp2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Set to the motor iron saturation coefficient at 75% of magnetic flux for motor 2. This value is automatically set during Auto-Tuning.	Default: 0.75 Min.: E4-07 Max.: 0.75	302
E4-09 (033F)	Motor 2 Mechanical Loss	Mechanical Loss	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor mechanical loss for motor 2 as a percentage of motor rated power (kW). There is normally no need to change this parameter from the default value.	Default: 0.0% Min.: 0.0 Max.: 10.0	302
E4-10 (0340)	Motor 2 Iron Loss	Motor Iron Loss	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor iron loss.	Default: Min.: 0 W Max.: 65535 W	303
E4-11 (0327)	Motor 2 Rated Power	Mtr Rated Power	OLV/PM AOLV/PM CLV/PM Sets the motor rated capacity in kW. Automatically set during Auto-Tuning.	Default: <1> Min.: 0.00 kW Max.: 650.00 kW	303

<1> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

<2> Display is in the following units:

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units. 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

◆ E5: PM Motor Settings

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E5-01 (0329) <1>	Motor Code Selection (for PM Motors)	PM Mtr Code Sel	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Enter the Yaskawa motor code for the PM motor being used. Various motor parameters are automatically set based on the value of this parameter. Settings that were changed manually will be overwritten by the defaults of the selected motor code. Note: 1. Set to FFFF when using a non-Yaskawa PM motor or a special motor. 2. If an alarm or hunting occurs despite using a motor code, enter the value indicated on the nameplate. Refer to Auto-Tuning for Permanent Magnet Motors on page 202 for details.	Min.: 0000 Max.: FFFF <3>	303
E5-02 (032A) <1>	Motor Rated Power (for PM Motors)	PM Mtr Capacity	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the rated capacity of the motor.	Default: <4> Min.: 0.10 kW Max.: 650.00 kW	304
E5-03 (032B) <1>	Motor Rated Current (for PM Motors)	PM Mtr Rated FLA	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated current.	Default: ⁴ Min: 10% of drive rated current Max: 200% of drive rated current ⁵	304
E5-04 (032C) <1>	Number of Motor Poles (for PM Motors)	PM Motor Poles	OLV/PM AOLV/PM CLV/PM Sets the number of motor poles.	Default: ⁴ Min.: 2 Max.: 48	304
E5-05 (032D) <1>	Motor Stator Resistance (for PM Motors)	PM Mtr Arm Ohms	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Set the resistance for each motor phase.	Default: ⁴ Min.: 0.000 Ω Max.: 65.000 Ω	304
E5-06 (032E) <1>	Motor d-Axis Inductance (for PM Motors)	PM Mtr d Induct	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the d-Axis inductance for the PM motor.	Default: 4> Min.: 0.00 mH Max.: 300.00 mH	304
E5-07 (032F) <1>	Motor q-Axis Inductance (for PM Motors)	PM Mtr q Induct	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the q-Axis inductance for the PM motor.	Default: 4> Min.: 0.00 mH Max.: 600.00 mH	304
E5-09 (0331) <1>	Motor Induction Voltage Constant 1 (for PM Motors)	PM Mtr Ind V 1	OLV/PM AOLV/PM CLV/PM Sets the induced phase peak voltage in units of 0.1 mV/(rad/s) [electrical angle]. Set this parameter when using a Yaskawa SSR1-Series PM motor with derated torque, or a Yaskawa SST4-Series motor with constant torque. Set E5-24 to 0 when setting this parameter.	Default: <4> Min.: 0.0 mV/ (rad/s) Max.: 2000.0 mV/ (rad/s)	305
E5-11 (0333)	Encoder Z Pulse Offset (for PM Motors)	Enc Z-Pulse Offs	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the offset between the rotor magnetic axis and the Z Pulse of an incremental encoder during Z Pulse offset tuning.	Default: 0.0 deg Min.: -180 Max.: 180	305

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
E5-24 (0353) <1>	Motor Induction Voltage Constant 2 (for PM Motors)	PM Mtr Ind V 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the induced phase-to-phase rms voltage in units of 0.1 mV/ (r/min) [mechanical angle]. Set this parameter when using a Yaskawa SMRA-Series SPM motor.	Default: Min.: 0.0 mV/ (r/min) Max.: 6500.0 mV/ (r/min)	305
E5-25 (035E)	Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors)	RotPolarityInvrs 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Switches polarity for initial polarity estimation. 0: Disabled 1: Enabled There is normally no need to change this parameter from the default value. If "Sd = 1" is listed on the nameplate or in a test report for a Yaskawa motor, this parameter should be set to 1. Note: Available control mode varies by drive model: 2A0004 to 2A0415 and 4A0002 to 4A0675: Available when A1-02 = 6, 7 4A0930 and 4A1200: Available when A1-02 = 5, 6, or 7.	Default: 0 Range: 0, 1	305

- <1> Setting value is not reset to the default when drive is initialized.
- <2> Default setting is determined by parameters A1-02, Control Method Selection, o2-04, Drive Model Selection, and C6-01, Drive Duty Selection.
- <3> Selections may vary depending on the motor code entered to E5-01.
- <4> Default setting is determined by parameter E5-01, Motor Code Selection.
- <5> Display is in the following units: 2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units. 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units. 4A0930 and 4A1200: 1 A units.

B.8 F: Options

F parameters program the drive for PG feedback from the motor and to function with option cards.

◆ F1: PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3)

Parameters F1-01, F1-05, F1-06, F1-12, F1-13, and F1-18 through F1-21 include "PG 1" in the parameter name and are used to set up a PG option card plugged into option port CN5-C of the drive.

Parameters F1-31 through F1-37 include "PG 2" in the parameter name and are used to set up a PG option card plugged into option port CN5-B of the drive.

Other parameters in the F1 group are used to set operation for PG options plugged into port CN5-C and CN5-B.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F1-01 (0380)	PG 1 Pulses Per Revolution	PG1 Pulses/Rev	V/f V/f WPG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of PG (pulse generator or encoder) pulses. Sets the number of pulses per motor revolution. Note: Setting range is 0 to 15000 ppr when A1-02 = 7 (CLV/PM control mode).	Default: 1024 ppr Min.: 1 Max.: 60000	306
F1-02 (0381)	Operation Selection at PG Open Circuit (PGo)	PG Fdbk Loss Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only 4: Not Detect	OLV/PM AOLV/PM CLV/PM 0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02. 1: Coast to stop. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. 3: Alarm only. 4: No alarm display Note: Depending on motor speed and load conditions, an error such as ov or oC may occur.	Default: 1 Range: 0 to 4	306
F1-03 (0382)	Operation Selection at Overspeed (oS)	PG Overspeed Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	OLV OLV/PM AOLV/PM CLV/PM O: Ramp to stop. Decelerate to stop using the deceleration time in C1-02. 1: Coast to stop. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. 3: Alarm only. Note: In AOLV/PM, the motor will coast to a stop (F1-03 = 1). The setting for F1-03 cannot be changed to 0, 2, or 3.	Default: 1 Range: 0 to 3	306
F1-04 (0383)	Operation Selection at Deviation	PG Deviation Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02. 1: Coast to stop. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. 3: Alarm only.	Default: 3 Range: 0 to 3	307
F1-05 (0384)	PG 1 Rotation Selection	PG1 Rotation Sel 0: Fwd = C.C.W 1: Fwd = C.W.	OLV/PM AOLV/PM CLV/PM 0: Pulse A leads 1: Pulse B leads	Default: Range: 0, 1	307
F1-06 (0385)	PG 1 Division Rate for PG Pulse Monitor	PG1 Output Ratio	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the division ratio for the pulse monitor used of the PG option card installed to port CN5-C. When setting for a three-digit number "xyz", the division ratio becomes = $[(1 + x) / yz]$. If only using the A pulse for one-track input, the input ratio will be 1:1 regardless of F1-06 setting.		307

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F1-08 (0387)	Overspeed Detection Level	PG Overspd Level	OLV/PM AOLV/PM CLV/PM Sets the overspeed detection level as a percentage of the maximum output frequency.	Default: 115% Min.: 0 Max.: 120	306
F1-09 (0388)	Overspeed Detection Delay Time	PG Overspd Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM	Default: <1> Min.: 0.0 s Max.: 2.0 s	306
F1-10 (0389)	Excessive Speed Deviation Detection Level	PG Deviate Level	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the speed deviation detection level as a percentage of the maximum output frequency.	Default: 10% Min.: 0 Max.: 50	307
F1-11 (038A)	Excessive Speed Deviation Detection Delay Time	PG Deviate Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time in seconds for a speed deviation situation to trigger a fault (dEv).	Default: 0.5 s Min.: 0.0 Max.: 10.0	307
F1-12 (038B)	PG 1 Gear Teeth 1	PG1 Gear Teeth1	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-12 or F1-13 are set to 0.	Default: 0 Min.: 0 Max.: 1000	307
F1-13 (038C)	PG 1 Gear Teeth 2	PG1 Gear Teeth2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-12 or F1-13 are set to 0.	Default: 0 Min.: 0 Max.: 1000	307
F1-14 (038D)	PG Open-Circuit Detection Time	PGO Detect Time	OLV/PM AOLV/PM CLV/PM Sets the time required to trigger a PG Open fault (PGo).	Default: 2.0 s Min.: 0.0 Max.: 10.0	306
F1-18 (03AD)	dv3 Detection Selection	DV3 Det Sel	OLV/PM AOLV/PM CLV/PM O: Disabled n: Number of dv3 occurrences that must be detected to trigger a dv3 fault.	Default: 10 Min.: 0 Max.: 10	308
F1-19 (03AE)	dv4 Detection Selection	DV4 Det Sel	OLV/PM AOLV/PM CLV/PM O: Disabled n: Number of pulses that the A and B pulse are reversed that triggers dv4 detection.	Default: 128 Min.: 0 Max.: 5000	308
F1-20 (03B4)	PG Option Card Disconnect Detection 1	PGCardDisconDet1 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	308
F1-21 (03BC)	PG 1 Signal Selection	PG1 Signal Sel 1 0: A Phase Det 1: A,B Phase Det	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: A pulse detection 1: AB pulse detection	Default: 0 Range: 0, 1	308
F1-30 (03AA)	PG Card Option Port for Motor 2 Selection	Mtr2 PG Port Sel 0: Port CN5-C 1: Port CN5-B	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: CN5-C 1: CN5-B	Default: 1 Range: 0, 1	308
F1-31 (03B0)	PG 2 Pulses Per Revolution	PG2 Pulses/Rev	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of pulses for a PG option card connected to port CN5-B.	Default: 1024 ppr Min.: 1 Max.: 60000	306

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F1-32 (03B1)	PG 2 Rotation Selection	PG2 Rotation Sel 0: Fwd = C.C.W 1: Fwd = C.W.	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Pulse A leads 1: Pulse B leads	Default: 0 Range: 0, 1	307
F1-33 (03B2)	PG 2 Gear Teeth 1	PG2 Gear Teeth1	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-33 or F1-34 are set to 0.	Default: 0 Min.: 0 Max.: 1000	307
F1-34 (03B3)	PG 2 Gear Teeth 2	PG2 Gear Teeth2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-33 or F1-34 are set to 0.	Default: 0 Min.: 0 Max.: 1000	307
F1-35 (03BE)	PG 2 Division Rate for Pulse Monitor	PG2 Output Ratio	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the division ratio for the pulse monitor used of the PG option card 2 installed to port CN5-B. When setting for a three-digit number "xyz", the division ratio becomes = $[(1 + x) / yz]$.	Default: 1 Min.: 1 Max.: 132	307
F1-36 (03B5)	PG Option Card Disconnect Detection 2	PGCardDisconDet1 0: Disabled 1: Enabled	V/f V/f w PG OLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	308
F1-37 (03BD)	PG 2 Signal Selection	PG2 Signal Sel 0: A Phase Det 1: A,B Phase Det	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: A pulse detection 1: AB pulse detection	Default: 0 Range: 0, 1	308
F1-50 (03D2) <2>	Encoder Selection	Encoder Select 0: EnDat Sin/Cos 1: EnDat SerialOnly 2: Hiperface	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects the encoder connected the PG-F3 option. 0: EnDat 2.1/01, 2.2/01 Serial Communication + Sin/Cos 1: EnDat 2.2/22 Serial Communication 2: Hiperface Note: 1. Parameter is not available in models 4A0930 and 4A1200. 2. The use of EnDat2.2/22 encoders requires a PG-F3 option with software version 0102 or later. To identify the PG-F3 software version refer to the PG-F3 label in the field designated "C/N" (S + four digit number).		309
F1-51 (03D3)	PGoH Detection Level	PGOH Det Level	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the level for detecting PG Hardware Fault (PGoH). Available when F1-20 = 1 Note: Parameter is not available in models 4A0930 and 4A1200.	Default: 80% Min.: 1 Max.: 100	309
F1-52 (03D4) <2>	Communication Speed of Serial Encoder Selection	Ser Enc Comm Spd 0: 1M/9600bps 1: 500k/19200bps 2: 1M/38400bps 3: 1M/38400bps	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects the communication speed between the PG-F3 option and serial encoder. 0: 1M bps/9600 bps (EnDat 2.2/22 / Hiperface) 1: 500k bps/19200 bps (EnDat 2.2/22 / Hiperface) 2: 1M bps/38400 bps (EnDat 2.2/22 / Hiperface) 3: 1M bps/38400 bps (EnDat 2.2/22 / Hiperface) Note: Parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0 to 3	309

<1> Default setting is determined by parameter A1-02, Control Method Selection.

<2> Available in drive software versions PRG: 1018 and later.

◆ F2: Analog Input Card (Al-A3)

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F2-01 (038F)	Analog Input Option Card Operation Selection	AI Function Sel 0: 3ch Individual 1: 3ch Addition	1. 7 1 4.1 4.0 14.0	Default: 0 Range: 0, 1	309
F2-02 (0368)	Analog Input Option Card Gain	AI Input Gain		Default: 100.0% Min.: -999.9 Max.: 999.9	310
F2-03 (0369)	Analog Input Option Card Bias	AI Input Bias	Sets the bias for the input signal to the analog card.	Default: 0.0% Min.: -999.9 Max.: 999.9	310

◆ F3: Digital Input Card (DI-A3)

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F3-01 (0390)	Digital Input Option Card Input Selection	DI Function Sel 0: BCD 1% 1: BCD 0.1% 2: BCD 0.01% 3: BCD 1 Hz 4: BCD 0.1 Hz 5: BCD 0.01 Hz 6: BCD(5DG) 0.01 Hz 7: Binary	All Modes 0: BCD, 1% units 1: BCD, 0.1% units 2: BCD, 0.01% units 3: BCD, 1 Hz units 4: BCD, 0.1 Hz units 5: BCD, 0.01 Hz units 6: BCD customized setting (5-digit), 0.02 Hz units 7: Binary input The unit and the setting range are determined by F3-03. F3-03 = 0: 255/100% (-255 to +255) F3-03 = 1: 40961/100% (-4095 to +4095) F3-03 = 2: 30000/100% (-33000 to +33000) When the digital operator units are set to be displayed in Hz or user-set units (01-03 = 2 or 3), the units for F3-01 are determined by parameter o1-03.	Default: 0 Range: 0 to 7	310
F3-03 (03B9)	Digital Input Option DI- A3 Data Length Selection	Data length Sel 0: 8bit 1: 12bit 2: 16bit	All Modes 0: 8 bit 1: 12 bit 2: 16 bit	Default: 2 Range: 0 to 2	310

◆ F4: Analog Monitor Card (AO-A3)

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F4-01 (0391)	Terminal V1 Monitor Selection	AO Ch1 Select	All Modes Sets the monitor signal for output from terminal V1. Set this parameter to the last three digits of the desired U□-□□ monitor. Some U parameters are available only in certain control modes.	Default: 102 Range: 000 to 999	311
F4-02 (0392)	Terminal V1 Monitor Gain	AO Ch1 Gain	All Modes Sets the gain for voltage output via terminal V1.	Default: 100.0% Min.: -999.9 Max.: 999.9	311
F4-03 (0393)	Terminal V2 Monitor Selection	AO Ch2 Select	All Modes Sets the monitor signal for output from terminal V2. Set this parameter to the last three digits of the desired U□-□□ monitor. Some U parameters are available only in certain control modes.	Default: 103 Range: 000 to 999	311
F4-04 (0394)	Terminal V2 Monitor Gain	AO Ch2 Gain	All Modes Sets the gain for voltage output via terminal V2.	Default: 50.0% Min.: -999.9 Max.: 999.9	311

B.8 F: Options

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F4-05 (0395)	Terminal V1 Monitor Bias	AO Ch1 Bias	All Modes Sets the amount of bias added to the voltage output via terminal V1.	Default: 0.0% Min.: -999.9 Max.: 999.9	311
F4-06 (0396)	Terminal V2 Monitor Bias	AO Ch2 Bias	All Modes Sets the amount of bias added to the voltage output via terminal V2.	Default: 0.0% Min.: -999.9 Max.: 999.9	311
F4-07 (0397)	Terminal V1 Signal Level	AO Opt Level Ch1 0: 0-10 VDC 1: -10 +10 VDC	All Modes 0: 0 to 10 V 1: -10 to 10 V	Default: 0 Range: 0, 1	311
F4-08 (0398)	Terminal V2 Signal Level	AO Opt Level Ch2 0: 0-10 VDC 1: -10 +10 VDC	All Modes 0: 0 to 10 V 1: -10 to 10 V	Default: 0 Range: 0, 1	311

◆ F5: Digital Output Card (DO-A3)

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F5-01 (0399)	Terminal P1-PC Output Selection	DO Ch1 Select	All Modes Sets the function for contact output terminals M1-M2, M3-M4,	Default: 2 Range: 0 to 192	312
F5-02 (039A)	Terminal P2-PC Output Selection	DO Ch2 Select	and photocoupler output terminals P1 through P6.	Default: 4 Range: 0 to 192	312
F5-03 (039B)	Terminal P3-PC Output Selection	DO Ch3 Select		Default: 6 Range: 0 to 192	312
F5-04 (039C)	Terminal P4-PC Output Selection	DO Ch4 Select		Default: 37 Range: 0 to 192	312
F5-05 (039D)	Terminal P5-PC Output Selection	DO Ch5 Select		Default: F Range: 0 to 192	312
F5-06 (039E)	Terminal P6-PC Output Selection	DO Ch6 Select		Default: F Range: 0 to 192	312
F5-07 (039F)	Terminal M1-M2 Output Selection	DO Ch7 Select		Default: 0 Range: 0 to 192	312
F5-08 (03A0)	Terminal M3-M4 Output Selection	DO Ch8 Select		Default: 1 Range: 0 to 192	312
F5-09 (03A1)	DO-A3 Output Mode Selection	DO Function Sel	All Modes 0: Output terminals are each assigned separate output functions. 1: Binary code output. 2: Use output terminal functions selected by parameters F5-01 through F5-08.	Default: 0 Range: 0 to 2	312

F6: Communication Option Card (SI-B3, SI-C3, SI-ES3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3)

Parameters F6-01 through F6-03 and F6-06 through F6-08 are used for CC-Link, CANopen, DeviceNet, EtherCAT, PROFINET, BACnet, LonWorks, PROFIBUS-DP, MECHATROLINK-II, and MECHATROLINK-III options. Other parameters in the F6 group are used for communication-protocol-specific settings. For more details on a specific option card, refer to the instruction manual for the option.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F6-01 (03A2)	Communications Error Operation Selection	Comm Bus Flt Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	All Modes 0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02. 1: Coast to stop. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. 3: Alarm only.	Default: 1 Range: 0 to 3	313
F6-02 (03A3)	External Fault from Comm. Option Detection Selection	EF0 Detection 0: Always Detected 1: Only During Run	All Modes 0: Always detected. 1: Detection during run only.	Default: 0 Range: 0, 1	313
F6-03 (03A4)	External Fault from Comm. Option Operation Selection	EF0 Fault Action 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	All Modes 0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02. 1: Coast to stop. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. 3: Alarm only.	Default: 1 Range: 0 to 3	313
F6-04 (03A5)	bUS Error Detection Time	BUS Err Det Time	All Modes Sets the delay time for error detection if a bus error occurs.	Default: 2.0 s Min.: 0.0 Max.: 5.0	314
F6-06 (03A7)	Torque Reference/ Torque Limit Selection from Comm. Option	Torq Ref/Lmt Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. Torque reference/limit from option board disabled. 1: Enabled. Torque reference/limit from option board enabled.	Default: 0 Range: 0, 1	313
F6-07 (03A8)	Multi-Step Speed Enable/Disable Selection when NefRef/ ComRef is Selected	Fref PrioritySel 0: Net/Com REF 1: MultiStep Speed	All Modes 0: Multi-step reference disabled (same as F7) 1: Multi-step reference enabled (same as V7)	Default: 0 Range: 0, 1	313
F6-08 (036A) <1>	Reset Communication Parameters	Com Prm Init Sel 0: Init Com Prms 1: No Init Com Prms	O: Communication-related parameters (F6-□□/F7-□□) are not reset when the drive is initialized using A1-03. 1: Reset all communication-related parameters (F6-□□/F7-□□) when the drive is initialized using A1-03.	Default: 0 Range: 0, 1	314
F6-10 (03B6)	CC-Link Node Address	CC-Link Node Add	All Modes Sets the node address if a CC-Link option is installed.	Default: 0 Min.: 0 Max.: 64	314
F6-11 (03B7)	CC-Link Communication Speed	CC-Link Baud 0: 156 kbps 1: 625 kbps 2: 2.5 Mbps 3: 5 Mbps 4: 10 Mbps	All Modes 0: 156 Kbps 1: 625 Kbps 2: 2.5 Mbps 3: 5 Mbps 4: 10 Mbps	Default: 0 Range: 0 to 4	314
F6-14 (03BB)	CC-Link bUS Error Auto Reset	Bus Err Auto Rst 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	314
F6-20 (036B)	MECHATROLINK Station Address	Station Address	All Modes Sets the station address when the MECHATROLINK option has been installed.	Default: 21 Min.: 20 <2> Max.: 3F <2>	314
F6-21 (036C)	MECHATROLINK Frame Size	Frame length	All Modes 0: 32-byte <3> 1: 17-byte <3>	Default: 0 Range: 0, 1	315

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F6-22 (036D)	MECHATROLINK Link Speed	Link Speed 0: 10MHz 1: 4MHz	All Modes 0: 10 Mbps 1: 4 Mbps	Default: 0 Range: 0, 1	315
F6-23 (036E)	MECHATROLINK Monitor Selection (E)	Mon E register	All Modes Sets the MECHATROLINK monitor (E).	Default: 0 Min.: 0 Max.: FFFF	315
F6-24 (036F)	MECHATROLINK Monitor Selection (F)	Mon F register	All Modes Sets the MECHATROLINK monitor (F).	Default: 0 Min.: 0 Max.: FFFF	315
F6-25 (03C9)	Operation Selection at MECHATROLINK Watchdog Timer Error (E5)	SI-T WDTErr Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	All Modes 0: Ramp to stop. Decelerate using the deceleration time in C1-02. 1: Coast to stop 2: Fast stop. Decelerate using the deceleration time in C1-09. 3: Alarm only	Default: 1 Range: 0 to 3	315
F6-26 (03CA)	MECHATROLINK bUS Errors Detected	Num of SI-T BUS	All Modes Sets the number of option communication errors (bUS).	Default: 2 Min.: 2 Max.: 10	315
F6-30 (03CB)	PROFIBUS-DP Node Address	PB Node Address	All Modes Sets the node address.	Default: 0 Min.: 0 Max.: 125	316
F6-31 (03CC)	PROFIBUS-DP Clear Mode Selection	PB Clear Select 0: Reset to Zero 1: Hold Prev Value	O: Resets drive operation with a Clear mode command. 1: Maintains the previous operation state when Clear mode command is given.	Default: 0 Range: 0, 1	316
F6-32 (03CD)	PROFIBUS-DP Data Format Selection	PB Map Select 0: PPO Type 1: Conventional	All Modes 0: PPO Type 1: Conventional	Default: 0 Range: 0, 1	316
F6-35 (03D0)	CANopen Node ID Selection	CO Node Address	All Modes Sets the node address.	Default: 0 Min.: 0 Max.: 126	316
F6-36 (03D1)	CANopen Communication Speed	CO Baud Rate 0: Auto Detect 1: 10 kbps 2: 20 kbps 3: 50 kbps 4: 125 kbps 5: 250 kbps 6: 500 kbps 7: 800 kbps 8: 1Mbps	All Modes 0: Auto-detection 1: 10 kbps 2: 20 kbps 3: 50 kbps 4: 125 kbps 5: 250 kbps 6: 500 kbps 7: 800 kbps 8: 1 Mbps	Default: 6 Range: 0 to 8	316
F6-40 (03D5)	CompoNet Node Address	CN Node Adress	All Modes Reserved.	-	_
F6-41 (03D6)	CompoNet Communication Speed	CN Baud Rate	All Modes Reserved.	-	_
F6-45 (02FB)	BACnet Node Address	BAC Node Address	All Modes Sets BACnet physical node address.	Default: 1 Min.: 0 Max.: 127	317
F6-46 (02FC)	BACnet Baud Rate	BAC Baud Rate 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19.2 kbps 5: 38.4 kbps 6: 57.6 kbps 7: 76.8 kbps 8: 115.2 kbps	All Modes 0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 38400 6: 57600 7: 76800 8: 115200	Default: 3 Range: 0 to 8	317
F6-47 (02FD)	Rx to Tx Wait Time	Rx to Tx Wait T	All Modes Sets the wait time between receiving and sending for BACnet.	Default: 5 ms Min.: 5 Max.: 65	317

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F6-48 (02FE)	BACnet Device Object Identifier 0	BAC Dev Obj Id 0	All Modes Sets the least significant word for BACnet.	Default: 0 Min.: 0 Max.: FFFF	317
F6-49 (02FF)	BACnet Device Object Identifier 1	BAC Dev Obj Id 1	All Modes Sets the most significant word for BACnet.	Default: 0 Min.: 0 Max.: 3F	317
F6-50 (03C1)	DeviceNet MAC Address	DN MAC Address	All Modes Selects the drive MAC address.	Default: 64 Min.: 0 Max.: 64	317
F6-51 (03C2)	DeviceNet Communication Speed	DN Baud Rate 0: 125 kbps 1: 250 kbps 2: 500 kbps 3: Set from Network 4: Auto Detect	All Modes 0: 125 kbps 1: 250 kbps 2: 500 kbps 3: Adjustable from network 4: Detect automatically	Default: 4 Range: 0 to 4	317
F6-52 (03C3)	DeviceNet PCA Setting	PCA Selection	All Modes Sets the format of the data set from the DeviceNet master to the drive.	Default: 21 Min.: 0 Max.: 255	318
F6-53 (03C4)	DeviceNet PPA Setting	PPA Selection	All Modes Sets the format of the data set from the drive to the DeviceNet master.	Default: 71 Min.: 0 Max.: 255	318
F6-54 (03C5)	DeviceNet Idle Mode Fault Detection	DN Idle Flt Det 0: Stop 1: Ignore	All Modes 0: Enabled 1: Disabled, no fault detection	Default: 0 Range: 0, 1	318
F6-55 (03C6)	DeviceNet Baud Rate Monitor	DN BAUD RATE MEM 0: 125 kbps 1: 250 kbps 2: 500 kbps	Verifies the baud rate running on the network. 0: 125 kbps 1: 250 kbps 2: 500 kbps	Default: 0 Range: 0 to 2	318
F6-56 (03D7)	DeviceNet Speed Scaling	Speed Scale	All Modes Sets the scaling factor for the speed monitor in DeviceNet.	Default: 0 Min.: -15 Max.: 15	318
F6-57 (03D8)	DeviceNet Current Scaling	Current Scale	All Modes Sets the scaling factor for the output current monitor in DeviceNet.	Default: 0 Min.: -15 Max.: 15	318
F6-58 (03D9)	DeviceNet Torque Scaling	Torque Scale	All Modes Sets the scaling factor for the torque monitor in DeviceNet.	Default: 0 Min.: -15 Max.: 15	318
F6-59 (03DA)	DeviceNet Power Scaling	Power Scale	All Modes Sets the scaling factor for the power monitor in DeviceNet.	Default: 0 Min.: -15 Max.: 15	318
F6-60 (03DB)	DeviceNet Voltage Scaling	Voltage Scale	All Modes Sets the scaling factor for the voltage monitor in DeviceNet.	Default: 0 Min.: -15 Max.: 15	318
F6-61 (03DC)	DeviceNet Time Scaling	Time Scale	All Modes Sets the scaling factor for the time monitor in DeviceNet.	Default: 0 Min.: -15 Max.: 15	318
F6-62 (03DD)	DeviceNet Heartbeat Interval	DN Heart Beat	All Modes Sets the heartbeat interval for DeviceNet communications.	Default: 0 Min.: 0 Max.: 10	319
F6-63 (03DE)	DeviceNet Network MAC ID	DN MAC ID MEM	All Modes Saves and monitors settings 0 to 63 of F6-50 (DeviceNet MAC Address).	Default: 63 Min.: 0 Max.: 63	319
F6-64 to F6-71 (03DF to 03C8)	Reserved	_	All Modes Reserved for Dynamic I/O Assembly Parameters.	_	-
F6-72 (03DE)	PowerLink Node Address	PowerLink NodeID	All Modes Reserved.	_	_

<1> Parameter setting value is not reset to the default value when the drive is initialized.

<2> Values shown are for the MECHATROLINK-II option (SI-T3). Values for MECHATROLINK-III option (SI-ET3) are:

Min: 03 Max.: EF

<3> Values shown are for the MECHATROLINK-II option (SI-T3). Values for MECHATROLINK-III option (SI-ET3) are:

0: 64-byte 1: 32-byte

◆ F7: Communication Option Card (SI-EM3, SI-EN3, SI-EP3)

F7 parameters are used for EtherNet/IP, Modbus TCP/IP, and PROFINET options. Other parameters in the F7 group are used for communication-protocol-specific settings. For more details on a specific option card, refer to the instruction manual for the option.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F7-01 (03E5) <1>	IP Address 1	IP Address 1	All Modes Sets the most significant octet of network static IP address.	Default: 192 Range: 0 to 255	_
F7-02 (03E6) <1>	IP Address 2	IP Address 2	All Modes Sets the second most significant octet of network static IP address.	Default: 168 Range: 0 to 255	-
F7-03 (03E7) <1>	IP Address 3	IP Address 3	All Modes Sets the third most significant octet of network static IP address.	Default: 1 Range: 0 to 255	-
F7-04 (03E8) <1>	IP Address 4	IP Address 4	All Modes Sets the fourth most significant octet of network static IP address.	Default: 20 Range: 0 to 255	-
F7-05 (03E9)	Subnet Mask 1	Subnet Mask 1	All Modes Sets the most significant octet of network static Subnet Mask.	Default: 255 Range: 0 to 255	-
F7-06 (03EA)	Subnet Mask 2	Subnet Mask 2	All Modes Sets the second most significant octet of network static Subnet Mask.	Default: 255 Range: 0 to 255	_
F7-07 (03EB)	Subnet Mask 3	Subnet Mask 3	All Modes Sets the third most significant octet of network static Subnet Mask.	Default: 255 Range: 0 to 255	-
F7-08 (03EC)	Subnet Mask 4	Subnet Mask 4	All Modes Sets the fourth most significant octet of network static Subnet Mask.	Default: 0 Range: 0 to 255	-
F7-09 (03ED)	Gateway Address 1	Gateway IP Add 1	All Modes Sets the most significant octet of network Gateway address.	Default: 192 Range: 0 to 255	-
F7-10 (03EE)	Gateway Address 2	Gateway IP Add 2	All Modes Sets the second most significant octet of network Gateway address.	Default: 168 Range: 0 to 255	-
F7-11 (03EF)	Gateway Address 3	Gateway IP Add 3	All Modes Sets the third most significant octet of network Gateway address.	Default: 1 Range: 0 to 255	-
F7-12 (03E0)	Gateway Address 4	Gateway IP Add 4	All Modes Sets the fourth most significant octet of network Gateway address.	Default: 1 Range: 0 to 255	-
F7-13 (03F1)	Address Mode at Startup	IP Add Mode Sel 0: User Defined 1: BOOTP 2: DHCP	All Modes Select the option address setting method 0: Static <2> 1: BOOTP 2: DHCP	Default: 2 Range: 0 to 2	-

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
F7-14 (03F2)	Duplex Mode Selection	Duplex Select 0: Half Duplex 1: Auto Negotiate 2: Full Duplex	All Modes Selects duplex mode setting. 0: Half duplex forced 1: Auto-negotiate duplex mode and communication speed 2: Full duplex forced	Default: 1 Range: 0 to 2	-
F7-15 (03F3)	Communication Speed Selection	Baud Rate 10: 10 Mbps 100: 100 Mbps	All Modes Sets the communication speed 10: 10 Mbps 100: 100 Mbps	Default: 10 Range: 10, 100	_
F7-16 (03F4)	Communication Loss Timeout	CommLoss Tout	All Modes Sets the timeout value for communication loss detection in tenths of a second. A value of 0 disables the connection timeout. Example: An entered value of 100 represents 10.0 seconds.	Default: 0 Min.: 0 Max.: 300	_
F7-17 (03F5)	EtherNet/IP Speed Scaling Factor	EN Speed Scale	All Modes Sets the scaling factor for the speed monitor in EtherNet/IP Class ID 2AH Object.	Default: 0 Min.: -15 Max.: 15	_
F7-18 (03F6)	EtherNet/IP Current Scaling Factor	EN Current Scale	All Modes Sets the scaling factor for the output current monitor in EtherNet/IP Class ID 2AH Object.	Default: 0 Min.: -15 Max.: 15	_
F7-19 (03F7)	EtherNet/IP Torque Scaling Factor	EN Torque Scale	All Modes Sets the scaling factor for the torque monitor in EtherNet/IP Class ID 2AH Object.	Default: 0 Min.: -15 Max.: 15	_
F7-20 (03F8)	EtherNet/IP Power Scaling Factor	EN Power Scale	All Modes Sets the scaling factor for the power monitor in EtherNet/IP Class ID 2AH Object.	Default: 0 Min.: -15 Max.: 15	_
F7-21 (03F9)	EtherNet/IP Voltage Scaling Factor	EN Voltage Scale	All Modes Sets the scaling factor for the voltage monitor in EtherNet/IP Class ID 2AH Object.	Default: 0 Min.: -15 Max.: 15	_
F7-22 (03FA)	EtherNet/IP Time Scaling	EN Time Scale	All Modes Sets the scaling factor for the time monitor in EtherNet/IP Class ID 2AH Object.	Default: 0 Min.: -15 Max.: 15	_
F7-23 to F7-32 (03FB to 0374)	Dynamic Output Assembly Parameters	_	Parameters used in Output Assembly 116. Each parameter contains a MEMOBUS/Modbus address. The value received for Output Assembly 116 will be written to this corresponding MEMOBUS/Modbus address. A MEMOBUS/Modbus address value of 0 means that the value received for Output Assembly 116 will not be written to any MEMOBUS/Modbus register.		_
F7-33 to F7-42 (0375 to 037E)	Dynamic Input Assembly Parameters	-	Parameters used in Input Assembly 166. Each parameter contains a MEMOBUS/Modbus address. The value sent for Input Assembly 166 will be read from this corresponding MEMOBUS/Modbus address. A MEMOBUS/Modbus address value of 0 means that the value sent for Input Assembly 166 is not defined by the user, therefore the option default register value will be returned.	Default: 0	_

<1> Cycle power for setting changes to take effect.

<2> If F7-13 is set to 0, then all IP Addresses (as defined with parameters F7-01 to F7-04) must be unique.

B.9 H Parameters: Multi-Function Terminals

H parameters assign functions to the multi-function input and output terminals.

◆ H1: Multi-Function Digital Inputs

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H1-01 (0438)	Multi-Function Digital Input Terminal S1 Function Selection	Term S1 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 40 (F) Min.: 1 Max.: 9F	320
H1-02 (0439)	Multi-Function Digital Input Terminal S2 Function Selection	Term S2 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 41 (F) Min.: 1 Max.: 9F	320
H1-03 (0400)	Multi-Function Digital Input Terminal S3 Function Selection	Term S3 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 24 Min.: 0 Max.: 9F	320
H1-04 (0401)	Multi-Function Digital Input Terminal S4 Function Selection	Term S4 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 14 Min.: 0 Max.: 9F	320
H1-05 (0402)	Multi-Function Digital Input Terminal S5 Function Selection	Term S5 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 3 (0) <1> Min.: 0 Max.: 9F	320
H1-06 (0403)	Multi-Function Digital Input Terminal S6 Function Selection	Term S6 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 4 (3) <1> Min.: 0 Max.: 9F	320
H1-07 (0404)	Multi-Function Digital Input Terminal S7 Function Selection	Term S7 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 6 (4) Min.: 0 Max.: 9F	320
H1-08 (0405)	Multi-Function Digital Input Terminal S8 Function Selection	Term S8 Func Sel	All Modes Assigns a function to the multi-function digital inputs. Refer to pages 620 to 625 for descriptions of setting values. Note: Set unused terminals to F.	Default: 8 Min.: 0 Max.: 9F	320

<1> Value in parenthesis is the default setting when a 3-Wire initialization is performed (A1-03 = 3330).

	H1 Multi-Function Digital Input Selections							
H1-□□ Setting	Function	LCD Display	Description	Page				
0	3-Wire sequence	3-Wire Control	All Modes Closed: Reverse rotation (only if the drive is set up for 3-Wire sequence) Terminals S1 and S2 are automatically set up for the Run command and Stop command.	321				
1	LOCAL/REMOTE selection	Local/Remote Sel	Open: REMOTE (parameter settings determine the source of the frequency Reference 1 or 2 (b1-01, b1-02 or b1-15, b1-16) Closed: LOCAL, Frequency reference and Run command are input from the digital operator.	321				

H1-00	Function	LCD Display	Description	Page
Setting	Function	LCD Display	· · · · · · · · · · · · · · · · · · ·	Page
2	External reference 1/2 selection	Ext Ref Sel	All Modes Open: Run command and frequency reference source 1 (determined by b1-01 and b1-02) Closed: Run command and frequency reference source 2 (determined by b1-15 and b1-16)	322
3	Multi-Step Speed Reference 1	Multi-Step Ref 1	All Modes When input terminals are set to Multi-Step Speed References 1 through 3, switching combinations of those terminals will create a multi-step speed sequence using the frequency references set in d1-01 through d1-08.	
4	Multi-Step Speed Reference 2	Multi-Step Ref 2	When input terminals are set to Multi-Step Speed References 1 through 3, switching combinations of those terminals will create a multi-step speed sequence using the frequency references set in d1-01 through d1-08.	322
5	Multi-Step Speed Reference 3	Multi-Step Ref 3	When input terminals are set to Multi-Step Speed References 1 through 3, switching combinations of those terminals will create a multi-step speed sequence using the frequency references set in d1-01 through d1-08.	322
6	Jog reference selection	Jog Freq Ref	All Modes Closed: Jog frequency reference (d1-17) selected. Jog has priority over all other reference sources.	322
7	Accel/decel time selection 1	Multi-Acc/Dec 1	Used to switch between accel/decel time 1 (set in C1-01, C1-02) and accel/decel time 2 (set in C1-03, C1-04).	322
8	Baseblock command (N.O.)	Ext BaseBlk N.O.	All Modes Closed: No drive output	322
9	Baseblock command (N.C.)	Ext BaseBlk N.C.	All Modes Open: No drive output	322
A	Accel/decel ramp hold	Acc/Dec RampHold	Open: Accel/decel is not held Closed: The drive pauses during acceleration or deceleration and maintains the output frequency.	322
В	Drive overheat alarm (oH2)	OH2 Alarm Signal	All Modes Closed: Closes when an oH2 alarm occurs	323
С	Analog terminal input selection	Term A2 Enable	Open: Function assigned by H3-14 is disabled. Closed: Function assigned by H3-14 is enabled.	323
D	PG encoder disable	PG Fdbk Disable	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Speed feedback for V/f Control with PG is enabled. Closed: Speed feedback disabled.	323
Е	ASR integral reset	ASR Intgrl Reset	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: PI control Closed: Integral reset	323
F	Through mode	Term Not Used	Select this setting when the terminal is not used or when using the terminal in the pass-through mode. The terminal does not trigger a drive function, but can be used as digital input for the controller to which the drive is connected.	323
10	Up command	Up Command 1	The drive accelerates when the Up command terminal closes, and decelerates when the Down command closes. When both terminals are closed or both are open, the drive holds the frequency reference. The Up and Down commands must always be used in conjunction with one another.	323

B.9 H Parameters: Multi-Function Terminals

H1 Multi-Function Digital Input Selections					
H1-UU Setting	Function	LCD Display	Description	Page	
11	Down command	Down Command 1	The drive accelerates when the Up command terminal closes, and decelerates when the Down command closes. When both terminals are closed or both are open, the drive holds the frequency reference. The Up and Down commands must always be used in conjunction with one another.	323	
12	Forward Jog	Forward Jog	All Modes Closed: Runs forward at the Jog frequency d1-17.	324	
13	Reverse Jog	Reverse Jog	All Modes Closed: Runs reverse at the Jog frequency d1-17.	324	
14	Fault reset	Fault Reset	All Modes Closed: Resets faults if the cause is cleared and the Run command is removed.	324	
15	Fast Stop (N.O.)	Fast-Stop N.O.	All Modes Closed: Decelerates at the Fast Stop time set to C1-09.	324	
16	Motor 2 selection	Motor 2 Select	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Motor 1 (E1-□□, E2-□□) Closed: Motor 2 (E3-□□, E4-□□)	325	
17	Fast Stop (N.C.)	Fast-Stop N.C.	All Modes Open: Decelerates to stop at the Fast Stop time set to C1-09.	324	
18	Timer function input	Timer function	All Modes Triggers the timer set up by parameters b4-01 and b4-02. Must be set in conjunction with the timer function output (H2- \square = 12).	325	
19	PID disable	PID Disable	All Modes Open: PID control enabled Closed: PID control disabled	326	
1A	Accel/decel time selection 2	Multi-Acc/Dec 2	Used in conjunction with an input terminal set for "Accel/decel time selection 1" $(H1-\Box\Box=7)$, and allows the drive to switch between accel/decel times 3 and 4.	326	
1B	Program lockout	Program Lockout	Open: Parameters cannot be edited (except for U1-01 if the reference source is assigned to the digital operator). Closed: Parameters can be edited and saved.	326	
1E	Reference sample hold	Ref Sample Hold	All Modes Closed: Samples the analog frequency reference and operates the drive at that speed.	326	

H1 Multi-Function Digital Input Selections				
H1-□□ Setting	Function	LCD Display	Description	Page
20 to 2F	External fault	20: NO/Always Det, Ramp to Stop 21: NC/Always Det, Ramp to Stop 22: NO/During RUN, Ramp to Stop 23: NC/During RUN, ramp to stop 24: NO/ Always Det, Coast to Stop 25: NC/Always Det, Coast to Stop 26: NO/During RUN, Coast to Stop 27: NC/During RUN, Coast to Stop 28: NO/Always Det, Fast-Stop 29: NC/Always Det, Fast-Stop 29: NC/Always Det, Fast-Stop 28: NO/During RUN, Fast-Stop 28: NC/During RUN, Fast-Stop 20: NC/Always Det, Alarm Only 20: NC/Always Det, Alarm Only 21: NC/During RUN, Alarm Only 22: NO/During RUN, Alarm Only 25: NC/During RUN, Alarm Only	20: N.O., Always detected, ramp to stop 21: N.C., Always detected, ramp to stop 22: N.O., During run, ramp to stop 23: N.C., During run, ramp to stop 24: N.O., Always detected, coast to stop 25: N.C., Always detected, coast to stop 26: N.O., During run, coast to stop 27: N.C., During run, coast to stop 28: N.O., Always detected, Fast Stop 29: N.C., Always detected, Fast Stop 29: N.C., During run, Fast Stop 28: N.O., During run, Fast Stop 28: N.O., During run, Fast Stop 20: N.O., Always detected, alarm only (continue running) 20: N.C., Always detected, alarm only (continue running) 21: N.O., During run, alarm only (continue running) 22: N.O., During run, alarm only (continue running)	326
30	PID integral reset	PID Intgrl Reset	All Modes Closed: Resets the PID control integral value.	327
31	PID integral hold	PID Intgrl Hold	All Modes Open: Performs integral operation. Closed: Maintains the current PID control integral value.	327
32	Multi-Step Speed Reference 4	Multi-Step Ref 4	Used in combination with input terminals set to Multi-Step Speed Reference 1, 2, and 3. Use parameters d1-09 to d1-16 to set reference values.	327
34	PID soft starter cancel	PID SFS Cancel	All Modes Open: PID soft starter is enabled. Closed: Disables the PID soft starter b5-17.	327
35	PID input level selection	PID Input Invert	All Modes Closed: Inverts the PID input signal.	327
40	Forward run command (2-Wire sequence)	FwdRun 2Wire Seq	All Modes Open: Stop Closed: Forward run Note: Cannot be set together with settings 42 or 43.	327
41	Reverse run command (2-Wire sequence)	RevRun 2WireSeq	Open: Stop Closed: Reverse run Note: Cannot be set together with settings 42 or 43.	327
42	Run command (2-Wire sequence 2)	Run/Stp 2WireSeq	Open: Stop Closed: Run Note: Cannot be set together with settings 40 or 41.	328

H1 Multi-Function Digital Input Selections				
H1-□□ Setting	Function	LCD Display	Description	Page
43	FWD/REV command (2-Wire sequence 2)	FWD/REV 2WireSeq	Open: Forward Closed: Reverse Note: Determines motor direction, but does not issue a Run command. Cannot be set together with settings 40 or 41.	328
44	Offset frequency 1	Offset Freq 1	All Modes Closed: Adds d7-01 to the frequency reference.	328
45	Offset frequency 2	Offset Freq 2	All Modes Closed: Adds d7-02 to the frequency reference.	328
46	Offset frequency 3	Offset Freq 3	All Modes Closed: Adds d7-03 to the frequency reference.	328
47	Node setup	CanOpenNID Setup	All Modes Closed: Node setup for SI-S3 enabled.	328
60	DC Injection Braking command	DCInj Activate	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Triggers DC Injection Braking.	328
61	External Speed Search command 1	Speed Search 1	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Activates Current Detection Speed Search from the maximum output frequency (E1-04).	328
62	External Speed Search command 2	Speed Search 2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Activates Current Detection Speed Search from the frequency reference.	328
63	Field weakening	Field Weak	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: The drive performs Field Weakening control as set for d6-01 and d6-02.	328
65	KEB Ride-Thru 1 (N.C.)	KEB Ridethru NC	All Modes Open: KEB Ride-Thru 1 enabled.	328
66	KEB Ride-Thru 1 (N.O.)	KEB Ridethru NO	All Modes Closed: KEB Ride-Thru 1 enabled.	328
67	Communications test mode	Comm Test Mode	All Modes Tests the MEMOBUS/Modbus RS-422/RS-485 interface. Displays "PASS" if the test completes successfully.	329
68	High Slip Braking (HSB)	HighSlipBraking	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Activates High Slip Braking to stop the drive during a Run command.	329
6A	Drive enable	Drive Enable	Open: Drive disabled. If this input is opened during run, the drive will stop as specified by b1-03. Closed: Ready for operation.	329
71	Speed/Torque control Sswitch	Spd/Trq Ctl Chng	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Speed Control Closed: Torque Control	329
72	Zero servo	Zero Servo Cmd	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Zero Servo enabled	329
75	Up 2 command	Up Command 2	Used to control the bias added to the frequency reference by the Up/Down 2 function. The Up 2 and Down 2 commands must always be used in conjunction with one another.	329

		H1 M	fulti-Function Digital Input Selections	
H1-□□ Setting	Function	LCD Display	Description	Page
76	Down 2 command	Down Command 2	All Modes Used to control the bias added to the frequency reference by the Up/Down 2 function. The Up 2 and Down 2 commands must always be used in conjunction with one another.	329
77	ASR gain switch	ASR Gain Switch	OLV/FM AOLV/PM CLV/PM Open: ASR proportional gain 1 (C5-01) Closed: ASR proportional gain 2 (C5-03)	330
78	External torque reference polarity inversion	Tref Sign Change	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Forward torque reference. Closed: Reverse polarity.	330
7A	KEB Ride-Thru 2 (N.C.)	KEB Ridethru2NC	All Modes Open: KEB Ride-Thru 2 enabled. Drive disregards L2-29 and performs Single Drive KEB Ride-Thru 2.	330
7B	KEB Ride-Thru 2 (N.O.)	KEB Ridethru2NO	All Modes Closed: KEB Ride-Thru 2 enabled. Drive disregards L2-29 and performs Single Drive KEB Ride-Thru 2.	330
7C	Short circuit braking (N.O.)	SC Brake (NO)	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Short Circuit Braking enabled	330
7D	Short circuit braking (N.C.)	SC Brake (NC)	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Short Circuit Braking enabled	330
7E	Forward/reverse detection (V/f Control with Simple PG feedback)	PG Rotate Rev	OLV/PM AOLV/PM CLV/PM Direction of rotation detection (for V/f with Simple PG Feedback)	331
7F	PID Bi-Directional Enable	PID BiDir Enable	All Modes Reserved.	_
90 to 97	DriveWorksEZ digital inputs 1 to 8	_	All Modes Reserved for DWEZ input functions	331
9F	DriveWorksEZ disable	DWEZ Disable	All Modes Open: DWEZ enabled Closed: DWEZ disabled	331

H2: Multi-Function Digital Outputs

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H2-01 (040B)	Terminal M1-M2 function selection (relay)	M1-M2 Func Sel	Refer to H2 Multi-Function Digital Output Settings on pages 626 to 629 for descriptions of setting values.	Default: 0 Range: 0 to 192	331
H2-02 (040C)	Terminal M3-M4 function selection (relay)	P1/PC Func Sel		Default: 1 Range: 0 to 192	331
H2-03 (040D)	Terminal M5-M6 function selection (relay)	P2/PC Func Sel		Default: 2 Range: 0 to 192	331

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H2-06 (0437)	Watt Hour Output Unit Selection	Pwr Mon Unit Sel	All Modes Sets the output units for the watt hours when Watt Hour Pulse Output is selected as the digital output (H2-01, H2-02, or H2-03 = 39). Outputs a 200 ms pulse signal when the watt hour counter increases by the units selected. 0: 0.1 kWh units 1: 1 kWh units 2: 10 kWh units 3: 100 kWh units 4: 1000 kWh units	Default: 0 Range: 0 to 4	341
H2-07 (0B3A) <1>	MEMOBUS Register 1 Address Select	MFDO Regs1 Addr	All Modes Sets the addresses of the MEMOBUS/Modbus registers from which data will be sent to contact outputs 62 and 162. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 1 Range: 1 to 1FFF	341
H2-08 (0B3B) <1>	MEMOBUS Register 1 Bit Select	MFDO Regs1 Bit	All Modes Sets the bits for the MEMOBUS/Modbus registers from which data will be sent to contact outputs 62 and 162. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0 to FFFF	341
H2-09 (0B3C) <1>	MEMOBUS Register 2 Address Select	MFDO Regs2 Addr	All Modes Sets the addresses of the MEMOBUS/Modbus registers from which data will be sent to contact outputs 63 and 163. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 1 Range: 1 to 1FFF	341
H2-10 (0B3D) <1>	MEMOBUS Register 2 Bit Select	MFDO Regs2 Bit	All Modes Sets the bits for the MEMOBUS/Modbus registers from which data will be sent to contact outputs 63 and 163. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0 to FFFF	341

<1> Available in drive software versions PRG: 1019 and later.

		H2 M	Multi-Function Digital Output Settings	
H2-□□ Setting	Function	LCD Display	Description	Page
0	During run	During RUN 1	All Modes Closed: A Run command is active or voltage is output.	332
1	Zero speed	Zero Speed	Open: Output speed is greater than the value of E1-09 (Minimum Output Frequency) or b2-01 (DC Injection Braking Start Frequency). Closed: Output frequency is less than or equal to the value of E1-09 (Minimum Output Frequency) or b2-01 (DC Injection Braking Start Frequency).	332
2	Speed agree 1	Fref/Fout Agree1	All Modes Closed: Output frequency equals the speed reference (plus or minus the hysteresis set to L4-02).	332
3	User-set speed agree 1	Fref/Set Agree 1	All Modes Closed: Output frequency and speed reference equal L4-01 (plus or minus the hysteresis set to L4-02).	333
4	Frequency detection 1	Freq Detect 1	All Modes Closed: Output frequency is less than or equal to the value in L4-01 with hysteresis determined by L4-02.	333
5	Frequency detection 2	Freq Detect 2	All Modes Closed: Output frequency is greater than or equal to the value in L4-01 with hysteresis determined by L4-02.	334
6	Drive ready	Drive Ready	All Modes Closed: Power up is complete and the drive is ready to accept a Run command.	334

H2 Multi-Function Digital Output Settings				
H2-□□ Setting	Function	LCD Display	Description	Page
7	DC bus undervoltage	DC Bus Undervolt	All Modes Closed: DC bus voltage is below the Uv trip level set in L2-05.	334
8	During baseblock (N.O.)	BaseBlk 1	All Modes Closed: Drive has entered the baseblock state (no output voltage).	335
9	Frequency reference source	Ref Source	Open: External Reference 1 or 2 supplies the frequency reference (set in b1-01 or b1-15). Closed: Digital operator supplies the frequency reference.	335
A	Run command source	Run Cmd Source	All Modes Open: External Reference 1 or 2 supplies the Run command (set in b1-02 or b1-16). Closed: Digital operator supplies the Run command.	335
В	Torque detection 1 (N.O.)	Trq Det 1 N.O.	All Modes Closed: An overtorque or undertorque situation has been detected.	335
С	Frequency reference loss	Loss of Ref	All Modes Closed: Analog frequency reference has been lost. Frequency reference loss is detected when the frequency reference drops below 10% of the reference within 400 ms.	335
D	Braking resistor fault	DB Overheat	All Modes Closed: Braking resistor or transistor is overheated or faulted out. Note: This setting is not available in models 4A0930 and 4A1200.	335
Е	Fault	Fault	All Modes Closed: Fault occurred (this excludes CPF00 and CPF01).	335
F	Through mode	Not Used	All Modes Select this setting when the terminal is not used or when using the terminal in the pass-through mode.	335
10	Minor fault	Minor Fault	All Modes Closed: An alarm has been triggered, or the IGBTs have reached 90% of their expected life span.	335
11	Fault reset command active	Reset Cmd Active	All Modes Closed: The drive has received a reset command from the multi-function input terminals or from a serial network, or the RESET key on the digital operator has been pressed.	336
12	Timer output	Timer Output	All Modes Closed: Timer output.	336
13	Speed agree 2	Fref/Fout Agree2	All Modes Closed: When drive output frequency equals the frequency reference ±L4-04. Note: This setting is not available in models 4A0930 and 4A1200.	336
14	User-set speed agree 2	Fref/Set Agree 2	All Modes Closed: When the drive output frequency is equal to the value in L4-03 \pm L4-04.	336
15	Frequency detection 3	Freq Detect 3	All Modes Closed: When the drive output frequency is less than or equal to the value in L4-03 ±L4-04.	337
16	Frequency detection 4	Freq Detect 4	All Modes Closed: When the output frequency is greater than or equal to the value in L4-03 ±L4-04.	337
17	Torque detection 1 (N.C.)	Trq Det 1 N.C.	All Modes Open: Overtorque or undertorque has been detected.	225
18	Torque detection 2 (N.O.)	Trq Det 2 N.O.	All Modes Closed: Overtorque or undertorque has been detected.	335
19	Torque detection 2 (N.C.)	Trq Det 2 N.C.	All Modes Open: Overtorque or undertorque has been detected.	335

H2 Multi-Function Digital Output Settings					
H2-□□ Setting	Function	LCD Display	Description	Page	
1A	During reverse	Reverse Dir	All Modes Closed: Drive is running in the reverse direction.	337	
1B	During baseblock (N.C.)	BaseBlk 2	All Modes Open: Drive has entered the baseblock state (no output voltage).	338	
1C	Motor 2 selection	Motor 2 Selected	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Motor 2 is selected by a digital input (H1-□□ = 16)	338	
1D	During regeneration	Regenerating	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Motor is regenerating energy into the drive.	338	
1E	Restart enabled	Dur Flt Restart	All Modes Closed: An automatic restart is performed	338	
1F	Motor overload alarm (oL1)	Overload (OL1)	All Modes Closed: oL1 is at 90% of its trip point or greater. An oH3 situation also triggers this alarm.	338	
20	Drive overheat pre- alarm (oH)	OH Prealarm	All Modes Closed: Heatsink temperature exceeds the parameter L8-02 value.	338	
22	Mechanical weakening detection	MechFatigue(OL5)	All Modes Closed: Mechanical weakening detected.	338	
2F	Maintenance period	Maintenance	All Modes Closed: Cooling fan, electrolytic capacitors, IGBTs, or the soft charge bypass relay may require maintenance.	338	
30	During torque limit	Torque Limit	OLV/PM AOLV/PM CLV/PM Closed: When the torque limit has been reached.	339	
31	During speed limit	Speed Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Speed limit has been reached.	339	
32	During speed limit in Torque Control	Spd Lim @ T Cont	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Speed limit has been reached while using Torque Control.	339	
33	Zero Servo complete	Zero Servo End	OLV/PM AOLV/PM CLV/PM Closed: Zero Servo operation has finished.	339	
37	During frequency output	During RUN 2	All Modes Open: No frequency output from drive if stopped with baseblock, DC injection braking during initial excitation, or short-circuit braking. Closed: Drive is outputting a frequency.	339	
38	Drive enabled	Drive Enable	All Modes Closed: Multi-function input set for "Drive enable" is closed (H1- $\square\square$ = 6A)	339	
39	Watt hour pulse output	Watt-hour Pulse	All Modes Output units are determined by H2-06. Outputs a pulse every 200 ms to indicate the kWh count.	339	
3C	LOCAL/REMOTE status	Local	All Modes Open: REMOTE Closed: LOCAL	339	
3D	During speed search	During SpdSrch	All Modes Closed: Speed Search is being executed.	340	
3E	PID feedback low	PID Feedback Low	All Modes Closed: PID feedback level is too low.	340	

H2 Multi-Function Digital Output Settings				
H2-□□ Setting	Function	LCD Display	Description	Page
3F	PID feedback high	PID FeedbackHigh	All Modes Closed: The PID feedback level is too high.	340
4A	During KEB Ride-Thru	During KEB	All Modes Closed: KEB Ride-Thru is being performed.	340
4B	During short circuit braking	During SC Brake	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Short Circuit Braking is active.	340
4C	During fast stop	During Fast Stop	All Modes Closed: A Fast Stop command has been entered from the operator or input terminals.	340
4D	oH Pre-alarm time limit	OH Pre-Alarm	All Modes Closed: oH pre-alarm time limit has passed.	340
4E	Braking transistor fault (rr)	Brk Trans Fault	All Modes Closed: The built-in dynamic braking transistor failed. Note: This setting is not available in models 2A0169 to 2A0415 and 4A0088 to 4A1200.	340
4F	Braking resistor overheat (oH)	BrkResistOvHeat	Closed: The dynamic braking resistor has overheated. Note: This setting is not available in models 2A0169 to 2A0415 and 4A0088 to 4A1200.	340
60	Internal cooling fan alarm	Fan Alrm Det	All Modes Closed: Internal cooling fan alarm	340
61	Rotor position detection complete	RotPosDetCmpIt	OLV/PM AOLV/PM CLV/PM Closed: Drive has successfully detected the rotor position of the PM motor.	340
62 <1>	MEMOBUS Register 1 (Selected with H2-07 and H2-08)	Memobus Regs1	The contact output is closed when any of the bits specified by H2-08 for the MEMOBUS/Modbus register address set in H2-07 turn on. Note: This setting is not available in models 4A0930 and 4A1200.	340
63 <1>	MEMOBUS Register 2 (Selected with H2-09 and H2-10)	Memobus Regs2	All Modes The contact output is closed when any of the bits specified by H2-10 for the MEMOBUS/Modbus register address set in H2-09 turn on. Note: This setting is not available in models 4A0930 and 4A1200.	340
90 to 92	DriveWorksEZ digital outputs 1 to 3	_	All Modes Reserved for DWEZ digital output functions.	340
100 to 192	Function 0 to 92 with inverse output	!Function	All Modes Inverts the output switching of the multi-function output functions. Set the last two digits of 1 □ □ to reverse the output signal of that specific function.	340

<1> Available in drive software versions PRG: 1019 and later.

H3: Multi-Function Analog Inputs

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H3-01 (0410)	Terminal A1 Signal Level Selection	Term A1 Level 0: 0-10V, (LowLim=0) 1: 0-10V, (BipolRef)	10: 0 to 10 V	Default: 0 Range: 0, 1	341
H3-02 (0434)	Terminal A1 Function Selection	Term A1 FuncSel		Default: 0 Range: 0 to 32	342

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H3-03 (0411)	Terminal A1 Gain Setting	Terminal A1 Gain	All Modes Sets the level of the input value selected in H3-02 when 10 V is input at terminal A1.	Default: 100.0% Min.: -999.9 Max.: 999.9	342
H3-04 (0412) ◆RUN	Terminal A1 Bias Setting	Terminal A1 Bias	All Modes Sets the level of the input value selected in H3-02 when 0 V is input at terminal A1.	Default: 0.0% Min.: -999.9 Max.: 999.9	342
H3-05 (0413)	Terminal A3 Signal Level Selection	Term A3 Signal 0: 0-10V (LowLim=0) 1: 0-10V, (BipolRef)	All Modes 0: 0 to 10 V 1: -10 to 10 V	Default: 0 Range: 0, 1	342
H3-06 (0414)	Terminal A3 Function Selection	Terminal A3 Sel	All Modes Sets the function of terminal A3.	Default: 2 Range: 0 to 32	342
H3-07 (0415) •⊕RUN	Terminal A3 Gain Setting	Terminal A3 Gain	All Modes Sets the level of the input value selected in H3-06 when 10 V is input at terminal A3.	Default: 100.0% Min.: -999.9 Max.: 999.9	343
H3-08 (0416) ⊕RUN	Terminal A3 Bias Setting	Terminal A3 Bias	All Modes Sets the level of the input value selected in H3-06 when 0 V is input at terminal A3.	Default: 0.0% Min.: -999.9 Max.: 999.9	343
H3-09 (0417)	Terminal A2 Signal Level Selection	Term A2 Level	All Modes 0: 0 to 10 V 1: -10 to 10 V 2: 4 to 20 mA 3: 0 to 20 mA Note: Use DIP switch S1 to set input terminal A2 for a current or a voltage input signal.	Default: 2 Range: 0 to 3	343
H3-10 (0418)	Terminal A2 Function Selection	Term A2 FuncSel	All Modes Sets the function of terminal A2.	Default: 0 Range: 0 to 32	343
H3-11 (0419) ◆RUN	Terminal A2 Gain Setting	Terminal A2 Gain	All Modes Sets the level of the input value selected in H3-10 when 10 V (20 mA) is input at terminal A2.	Default: 100.0% Min.: -999.9 Max.: 999.9	343
H3-12 (041A)	Terminal A2 Bias Setting	Terminal A2 Bias	All Modes Sets the level of the input value selected in H3-10 when 0 V (0 or 4 mA) is input at terminal A2.	Default: 0.0% Min.: -999.9 Max.: 999.9	343
H3-13 (041B)	Analog Input Filter Time Constant	A1/A2 Filter T	All Modes Sets a primary delay filter time constant for terminals A1, A2, and A3. Used for noise filtering.	Default: 0.03 s Min.: 0.00 Max.: 2.00	344
H3-14 (041C)	Analog Input Terminal Enable Selection	A1/A2/A3 Sel 1: A1 Available 2: A2 Available 3: A1/A2 Available 4: A3 Available 5: A1/A3 Available 6: A2/A3 Available 7: All Available	All Modes Determines which analog input terminals will be enabled or disabled when a digital input programmed for "Analog input enable" (H1-□□ = C) is activated. The terminals not set as the target are not influenced by input signals. 1: Terminal A1 only 2: Terminal A2 only 3: Terminals A1 and A2 only 4: Terminal A3 only 5: Terminals A1 and A3 6: Terminals A2 and A3 7: All terminals enabled	Default: 7 Range: 1 to 7	344
H3-16 (02F0)	Terminal A1 Offset	TerminalA1Offset	All Modes Adds an offset when the analog signal to terminal A1 is at 0 V.	Default: 0 Min.: -500 Max.: 500	345
H3-17 (02F1)	Terminal A2 Offset	TerminalA2Offset	All Modes Adds an offset when the analog signal to terminal A2 is at 0 V.	Default: 0 Min.: -500 Max.: 500	345
H3-18 (02F2)	Terminal A3 Offset	TerminalA3Offset	All Modes Adds an offset when the analog signal to terminal A3 is at 0 V.	Default: 0 Min.: -500 Max.: 500	345

H3-□□	H3 Multi-Function Analog Input Settings					
Setting	Function	LCD Display	Description When Output Is 100%	Page		
0	Frequency bias	Freq Ref Bias	All Modes E1-04 (maximum output frequency)	345		
1	Frequency gain	Freq Ref Gain	All Modes 0 to 10 V signal allows a setting of 0 to 100%10 to 0 V signal allows a setting of -100 to 0%.	345		
2	Auxiliary frequency reference 1	Aux Reference1	All Modes E1-04 (maximum output frequency)	345		
3	Auxiliary frequency reference 2	Aux Reference2	All Modes E1-04 (maximum output frequency)	345		
4	Output voltage bias	Voltage Bias	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = E1-05 (motor rated voltage)	345		
5	Accel/decel time gain	Acc/DecTime Gain	All Modes 10 V = 100%	345		
6	DC Injection Braking current	DC Brake Current	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Drive rated current	345		
7	Overtorque/undertorque detection level	Torque Det Level	All Modes 10 V = Drive rated current (V/f, V/f w PG) 10 V = Motor rated torque (OLV, CLV, OLV/PM, AOLV/PM, CLV/PM)	346		
8	Stall Prevention level during run	Stall Prev Level	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Drive rated current	346		
9	Output frequency lower limit level	Ref Lower Limit	All Modes 10 V = E1-04 (maximum output frequency)	346		
В	PID feedback	PID Feedback1	All Modes 10 V = 100%	346		
С	PID setpoint	PID Set Point	All Modes 10 V = 100%	346		
D	Frequency bias	Freq Ref Bias 2	All Modes 10 V = E1-04 (maximum output frequency)	346		
Е	Motor temperature (PTC input)	Motor PTC	All Modes $10 \text{ V} = 100\%$	346		
F	Through mode	Not Used	All Modes Select this setting when the terminal is not used or when using the terminal in the pass-through mode.	346		
10	Forward torque limit	Fwd Torque Limit	V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque	346		
11	Reverse torque limit	Rev Torque Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque			
12	Regenerative torque limit	Regen Torq Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque	346		
13	Torque reference/ Torque limit	Torque Reference	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque	347		

		H3 M	ulti-Function Analog Input Settings	
H3-□□ Setting	Function	LCD Display	Description When Output Is 100%	Page
14	Torque compensation	Torque Comp	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque	347
15	General torque limit	Torque Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque	346
16	Differential PID feedback	PID Feedback 2	All Modes 10 V = 100%	347
17	Motor Thermistor (NTC)	Moter temp (NTC)	All Modes 10 V = -9 °C 0 V = +234 °C Note: This setting is only available in models 4A0930 and 4A1200.	347
1F	Through mode	Not Used	All Modes Select this setting when the terminal is not used or when using the terminal in the pass-through mode.	346
30 to 32	DriveWorksEZ analog input 1 to 3	_	All Modes Output is determined by the function selected using DWEZ.	347

♦ H4: Analog Outputs

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H4-01 (041D)	Multi-Function Analog Output Terminal FM Monitor Selection	Term FM FuncSel	All Modes Selects the data to be output through multi-function analog output terminal FM. Set the desired monitor parameter to the digits available in U□-□□. For example, enter "103" for U1-03.	Default: 102 Range: 000 to 999	347
H4-02 (041E)	Multi-Function Analog Output Terminal FM Gain	Terminal FM Gain	All Modes Sets the signal level at terminal FM that is equal to 100% of the selected monitor value.	Default: 100.0% Min.: -999.9 Max.: 999.9	347
H4-03 (041F)	Multi-Function Analog Output Terminal FM Bias	Terminal FM Bias	All Modes Sets the signal level at terminal FM that is equal to 0% of the selected monitor value.	Default: 0.0% Min.: -999.9 Max.: 999.9	347
H4-04 (0420)	Multi-Function Analog Output Terminal AM Monitor Selection	Terminal AM Sel	All Modes Selects the data to be output through multi-function analog output terminal AM. Set the desired monitor parameter to the digits available in U□-□□. For example, enter "103" for U1-03.	Default: 103 Range: 000 to 999	347
H4-05 (0421)	Multi-Function Analog Output Terminal AM Gain	Terminal AM Gain	All Modes Sets the signal level at terminal AM that is equal to 100% of the selected monitor value.	Default: 50.0% Min.: -999.9 Max.: 999.9	347
H4-06 (0422)	Multi-Function Analog Output Terminal AM Bias	Terminal AM Bias	All Modes Sets the signal level at terminal AM that is equal to 0% of the selected monitor value.	Default: 0.0% Min.: -999.9 Max.: 999.9	347
H4-07 (0423)	Multi-Function Analog Output Terminal FM Signal Level Selection	Term FM Lvl Sel 0: 0-10 VDC 1: -10 +10 VDC 2: 4-20 mA	All Modes 0: 0 to 10 V 1: -10 to 10 V 2: 4 to 20 mA	Default: 0 Range: 0 to 2	348
H4-08 (0424)	Multi-Function Analog Output Terminal AM Signal Level Selection	Term AM Lvl Sel 0: 0-10 VDC 1: -10 +10 VDC 2: 4-20 mA	All Modes 0: 0 to 10 V 1: -10 to 10 V 2: 4 to 20 mA	Default: 0 Range: 0 to 2	348

◆ H5: MEMOBUS/Modbus Serial Communication

Note: Restart the drive to enable MEMOBUS/Modbus communication settings.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H5-01 (0425) <1>	Drive Node Address	Serial Comm Adr	All Modes Selects drive station node number (address) for MEMOBUS/ Modbus terminals R+, R-, S+, S Cycle power for the setting to take effect.	Default: 1F (Hex) Min.: 0 Max.: FF	719
H5-02 (0426)	Communication Speed Selection	Serial Baud Rate 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19.2 kbps 5: 38.4 kbps 6: 57.6 kbps 7: 76.8 kbps 8: 115.2 kbps	All Modes 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 76800 bps 8: 115200 bps Cycle power for the setting to take effect.	Default: 3 Range: 0 to 8	719
H5-03 (0427)	Communication Parity Selection	Serial Com Sel 0: No Parity 1: Even Parity 2: Odd Parity	All Modes 0: No parity 1: Even parity 2: Odd parity Cycle power for the setting to take effect.	Default: 0 Range: 0 to 2	719
H5-04 (0428)	Stopping Method after Communication Error (CE)	Serial Fault Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	All Modes 0: Ramp to stop 1: Coast to stop 2: Fast Stop 3: Alarm only	Default: 3 Range: 0 to 3	719
H5-05 (0429)	Communication Fault Detection Selection	Serial Flt Dtct 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled. If communication is lost for more than two seconds, a CE fault will occur.	Default: 1 Range: 0, 1	719
H5-06 (042A)	Drive Transmit Wait Time	Transmit WaitTIM	All Modes Set the wait time between receiving and sending data.	Default: 5 ms Min.: 5 Max.: 65	720
H5-07 (042B)	RTS Control Selection	RTS Control Sel 0: Disabled 1: Enabled	All Modes 0: Disabled. RTS is always on. 1: Enabled. RTS turns on only when sending.	Default: 1 Range: 0, 1	720
H5-09 (0435)	CE Detection Time	CE Detect Time	All Modes Sets the time required to detect a communications error. Adjustment may be needed when networking several drives.	Default: 2.0 s Min.: 0.0 Max.: 10.0	720
H5-10 (0436)	Unit Selection for MEMOBUS/Modbus Register 0025H	CommReg 25h Unit 0: 0.1 V 1: 1 V	All Modes 0: 0.1 V units 1: 1 V units	Default: 0 Range: 0, 1	720
H5-11 (043C)	Communications ENTER Function Selection	Enter CommandSel 0: Enter Required 1: No EnterRequired	O: Drive requires an Enter command before accepting any changes to parameter settings. 1: Parameter changes are activated immediately without the Enter command (same as V7).	Default: 0 Range: 0, 1	721
H5-12 (043D)	Run Command Method Selection	Run CommandSel 0: FWD Run &REV Run 1: Run & FWD/REV	All Modes 0: FWD/Stop, REV/Stop 1: Run/Stop, FWD/REV	Default: 0 Range: 0, 1	721

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H5-17 (11A1) <2>	Operation Selection when Unable to Write into EEPROM	Busy Enter Sel 0: No ROM Enter 1: RAM Enter	Selects operation when an attempt is made to write data into EEPROM via MEMOBUS/Modbus communications and writing into EEPROM is not possible. There is normally no need to change this parameter from the default value 0: Cannot write into EEPROM 1: Write in RAM only Note: Parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	721
H5-18 (11A2) <3>	Filter Time Constant for Motor Speed Monitoring	MtrSpd Monitor T	All Modes Sets the filter time constant for monitoring the motor speed from MEMOBUS/Modbus communications and communication options. Applicable MEMOBUS/Modbus registers are: 3EH, 3FH, 44H, ACH, and ADH Note: Parameter is not available in models 4A0930 and 4A1200.	Default: 0 ms Min.: 0 Max.: 100	721

- <1> If this parameter is set to 0, the drive will be unable to respond to MEMOBUS/Modbus commands.
- <2> Available in drive software versions PRG: 1018 and later.
- <3> Available in drive software versions PRG: 1019 and later.

◆ H6: Pulse Train Input/Output

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
H6-01 (042C)	Pulse Train Input Terminal RP Function Selection	Term RP Func Sel 0: Frequency Ref 1: PID Feedback 2: PID Set Point 3: PG Feedback	All Modes 0: Frequency reference 1: PID feedback value 2: PID setpoint value 3: V/f Control with Simple PG feedback (possible only when using motor 1 in V/f Control)	Default: 0 Range: 0 to 3	349
H6-02 (042D)	Pulse Train Input Scaling	Term RP Scaling	All Modes Sets the terminal RP input signal frequency that is equal to 100% of the value selected in H6-01.	Default: 1440 Hz Min.: 100 Max.: 32000	350
H6-03 (042E) •◆RUN	Pulse Train Input Gain	Terminal RP Gain	All Modes Sets the level of the value selected in H6-01 when a frequency with the value set in H6-02 is input.	Default: 100.0% Min.: 0.0 Max.: 1000.0	350
H6-04 (042F) [*] ◆RUN	Pulse Train Input Bias	Terminal RP Bias	All Modes Sets the level of the value selected in H6-01 when 0 Hz is input.	Default: 0.0% Min.: -100.0 Max.: 100.0	350
H6-05 (0430) [*] ◆RUN	Pulse Train Input Filter Time	Term RP Flt Time	All Modes Sets the pulse train input filter time constant.	Default: 0.10 s Min.: 0.00 Max.: 2.00	350
H6-06 (0431)	Pulse Train Monitor Selection	Term MP Func Sel	All Modes Select the pulse train monitor output function (value of the \Box - \Box part of $U\Box$ - \Box). For example, enter "501" for U5-01.	Default: 102 Range: 000 to 809	351
H6-07 (0432)	Pulse Train Monitor Scaling	Term RP Scaling	All Modes Sets the terminal MP output signal frequency when the monitor value is 100%. For example, to have the pulse train monitor output equal the output frequency, set H6-06 to 102 and H6-07 to 0.	Default: 1440 Hz Min.: 0 Max.: 32000	351
H6-08 (043F)	Pulse Train Input Minimum Frequency	MP Lower Limit	All Modes Sets the minimum frequency for the pulse train input to be detected. Enabled when H6-01 = 0, 1, or 2.	Default: 0.5 Hz Min.: 0.1 Max.: 1000.0	351

B.10 L: Protection Function

L parameters provide protection to the drive and motor, including control during momentary power loss, Stall Prevention, frequency detection, fault restarts, overtorque detection, and other types of hardware protection.

◆ L1: Motor Protection

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L1-01 (0480)	Motor Overload Protection Selection	Mtr OL Charact 0: OL1 Disabled 1: VT Motor 2: CT Motor 3: Vector Motor 4: PM Motor 5: Constant Torque 6: 50Hz VT Motor	All Modes 0: Disabled 1: General purpose motor (standard fan cooled) 2: Drive dedicated motor with a speed range of 1:10 3: Vector motor with a speed range of 1:100 4: PM motor with variable torque 5: PM motor with constant torque control 6: General purpose motor (50 Hz) The drive may not be able to provide protection when using multiple motors, even if overload is enabled in L1-01. Set L1-01 to 0 and install separate thermal relays to each motor.	Default: <i> Range: 0 to 6</i>	352
L1-02 (0481)	Motor Overload Protection Time	MOL Time Const	All Modes Sets the motor thermal overload protection (oL1) time.	Default: 1.0 min Min.: 0.1 Max.: 5.0	354
L1-03 (0482)	Motor Overheat Alarm Operation Selection (PTC input)	Mtr OH Alarm Sel 0 : Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm only	All Modes Sets operation when the motor temperature analog input (H3-02, H3-10, or H3-06 = E) exceeds the oH3 alarm level. 0: Ramp to stop 1: Coast to stop 2: Fast Stop (decelerate to stop using the deceleration time in C1-09) 3: Alarm only ("oH3" will flash)	Default: 3 Range: 0 to 3	356
L1-04 (0483)	Motor Overheat Fault Operation Selection (PTC input)	Mtr OH Fault Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop	All Modes Sets stopping method when the motor temperature analog input (H3-02, H3-10, or H3-06 = E) exceeds the oH4 fault level. 0: Ramp to stop 1: Coast to stop 2: Fast Stop (decelerate to stop using the deceleration time in C1-09)	Default: 1 Range: 0 to 2	356
L1-05 (0484)	Motor Temperature Input Filter Time (PTC input)	Mtr Temp Filter	All Modes Adjusts the filter for the motor temperature analog input (H3-02, H3-10, or H3-06 = E).	Default: 0.20 s Min.: 0.00 Max.: 10.00	356
L1-08 (1103) <2>	oL1 Current Level	OL1 current lvl1	All Modes Sets the reference current for motor thermal overload detection for motor 1 in amperes. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0.0 A Min.: 10% of drive rated current Max.: 150% of drive rated current <3>	357
L1-09 (1104) <2>	oL1 Current Level for Motor 2	OL1 current lvl2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the reference current for motor thermal overload detection for motor 2 in amperes. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0.0 A Min.: 10% of drive rated current Max.: 150% of drive rated current <3>	357
L1-13 (046D)	Continuous Electrothermal Operation Selection	Mtr OL Mem Sel 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	357

B.10 L: Protection Function

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L1-15 (0440)	Motor 1 Thermistor Selection (NTC)	M1 OH5 Fault Sel	O: Disabled 1: Enabled Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	358
L1-16 (0441)	Motor 1 Overheat Temperature	M1 OH5 level	All Modes Sets the temperature for motor 1 that triggers an overheat fault (oH5). Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 120 °C Min.: 50 Max.: 200	358
L1-17 (0442)	Motor 2 Thermistor Selection (NTC)	M2 OH5 Fault Sel	O: Disabled 1: Enabled Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	358
L1-18 (0443)	Motor 2 Overheat Temperature	M2 OH5 level	All Modes Sets the temperature for motor 1 that triggers an overheat fault (oH5). Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 120 °C Min.: 50 Max.: 200	359
L1-19 (0444)	Operation at Thermistor Disconnect (THo) (NTC)	Tho Stop sel	All Modes Determines drive response when a thermistor disconnect fault (THo) occurs. 0: Ramp to stop 1: Coast to stop 2: Fast Stop (decelerate to stop using the deceleration time set to C1-09) 3: Alarm only ("THo" will flash) Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 3 Range: 0 to 3	359
L1-20 (0445)	Operation at Motor Overheat (oH5)	OH5 Stop sel	All Modes Determines drive response when a motor overheat fault (oH5) occurs. 0: Ramp to stop 1: Coast to stop 2: Fast Stop (decelerate to stop using the deceleration time set to C1-09) 3: Alarm only ("oH5" will flash) Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 1 Range: 0 to 3	359

<1> Default setting is determined by parameter A1-02, Control Method Selection.

2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

<2> Available in drive software versions PRG: 1019 and later.

<3> Display is in the following units:

²A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

◆ L2: Momentary Power Loss Ride-Thru

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L2-01 (0485)	Momentary Power Loss Operation Selection	PwrL Selection 0: Disabled 1: Enbl with Timer 2: Enbl whl CPU act 3: KEB Mode 4: KEB Stop Mode 5: KEB Decel to Stp	O: Disabled. Drive trips on Uv1 fault when power is lost. 1: Recover within the time set in L2-02. Uv1 will be detected if power loss is longer than L2-02. 2: Recover as long as CPU has power. Uv1 is not detected. 3: KEB deceleration for the time set to L2-02. 4: KEB deceleration as long as CPU has power. 5: KEB deceleration to stop.	Default: 0 Range: 0 to 5	359
L2-02 (0486)	Momentary Power Loss Ride-Thru Time	PwrL Ridethru t	All Modes Sets the Power Loss Ride-Thru time. Enabled only when L2-01 = 1 or 3.	Default: <1> Min.: 0.0 s Max.: 25.5 s	365
L2-03 (0487)	Momentary Power Loss Minimum Baseblock Time	PwrL Baseblock t	All Modes Sets the minimum wait time for residual motor voltage decay before the drive output reenergizes after performing Power Loss Ride-Thru. Increasing the time set to L2-03 may help if overcurrent or overvoltage occur during Speed Search or during DC Injection Braking.	Default: <1> Min.: 0.1 s Max.: 5.0 s	365
L2-04 (0488)	Momentary Power Loss Voltage Recovery Ramp Time	PwrL V/F Ramp t	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time for the output voltage to return to the preset V/f pattern during Speed Search.	Default: <1> Min.: 0.0 s Max.: 5.0 s	365
L2-05 (0489)	Undervoltage Detection Level (Uv1)	PUV Det Level	All Modes Sets the DC bus undervoltage trip level.	Default: 190 Vdc <2> <3> Min.: 150 Vdc Max.: 210 Vdc <3>	365
L2-06 (048A)	KEB Deceleration Time	KEB Decel Time	All Modes Sets the time required to decelerate from the speed when KEB was activated to zero speed.	Default: 0.00 s Min.: 0.00 Max.: 6000.0	365
L2-07 (048B)	KEB Acceleration Time	KEB Accel Time	All Modes Sets the time to accelerate to the frequency reference when momentary power loss is over. If set to 0.0, the active acceleration time (C1-01, C1-03, C1-05, or C1-07) is used.	Default: 0.00 s Min.: 0.00 Max.: 6000.0	366
L2-08 (048C)	Frequency Gain at KEB Start	KEB Freq Red	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the percentage of output frequency reduction at the beginning of deceleration when the KEB Ride-Thru function is started. Reduction = (slip frequency before KEB) × (L2-08/100) × 2	Default: 100% Min.: 0 Max.: 300	366
L2-10 (048E)	KEB Detection Time (Minimum KEB Time)	KEB Detect Time	All Modes Sets the time to perform KEB Ride-Thru.	Default: 50 ms Min.: 0 Max.: 2000	366
L2-11 (0461)	DC Bus Voltage Setpoint during KEB	KEB DC Bus Level	All Modes Sets the desired value of the DC bus voltage during KEB Ride-Thru.	Default: <2> Min.: 150 Vdc Max.: 400 Vdc <5>	366
L2-29 (0475)	KEB Method Selection	KEB Mode Sel 0: Single Mode KEB1 1: Single Mode KEB2 2: System Mode KEB1 3: System Mode KEB2	All Modes 0: Single Drive KEB Ride-Thru 1 1: Single Drive KEB Ride-Thru 2 2: System KEB Ride-Thru 1 3: System KEB Ride-Thru 2	Default: 0 Range: 0 to 3	366

<1> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

<2> Default setting is determined by parameter E1-01, Input voltage Setting.

<3> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

- <4> Setting range value is dependent on parameter C1-10, Accel/Decel Time Setting Units. When C1-10 = 0 (units of 0.01 seconds), the setting range becomes 0.00 to 600.00 seconds.
- <5> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives, but set the value below 1040 Vdc (overvoltage protection level).

◆ L3: Stall Prevention

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L3-01 (048F)	Stall Prevention Selection during Acceleration	StallP Accel Sel 0: Disabled 1: General Purpose 2: Intelligent	OLV/PM AOLV/PM CLV/PM O: Disabled. 1: General purpose. Acceleration is paused as long as the current is above the L3-02 setting. 2: Intelligent. Accelerate in the shortest possible time without exceeding the L3-02 level.	Default: 1 Range: 0 to 2	367
			Note: Setting 2 is not available when using OLV/PM.		
L3-02 (0490)	Stall Prevention Level during Acceleration	StallP Accel Lvl	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Used when L3-01 = 1 or 2. 100% is equal to the drive rated current.	Default: <1> Min.: 0% Max.: 150% <1>	368
L3-03 (0491)	Stall Prevention Limit during Acceleration	StallPAcc LowLim	OLV/PM AOLV/PM CLV/PM Sets Stall Prevention lower limit during acceleration when operating in the constant power range. Set as a percentage of drive rated current.	Default: 50% Min.: 0 Max.: 100	368
L3-04 (0492)	Stall Prevention Selection during Deceleration	StallP Decel Sel 0: Disabled 1: General Purpose 2: Intelligent 3: StallP +Resistor 4: High Flux Brake 5: High Flux Brake	O: Disabled. Deceleration at the active deceleration rate. An ov fault may occur. 1: General purpose. Deceleration is paused when the DC bus voltage exceeds the Stall Prevention level. 2: Intelligent. Decelerate as fast as possible while avoiding ov faults. 3: Stall Prevention with braking resistor. Stall Prevention during deceleration is enabled in coordination with dynamic braking. 4: Overexcitation Deceleration. Decelerates while increasing the motor flux. 5: Overexcitation Deceleration 2. Adjust the deceleration rate according to the DC voltage. Note: Setting 3 is not available in models 4A0930 and	Default: 1 Range: 0 to 5	369
L3-05 (0493)	Stall Prevention Selection during Run	StallP Run Sel 0: Disabled 1: Decel Time 1 2: Decel Time 2	4A1200. V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. Drive runs at a set frequency. A heavy load may cause stalling. 1: Decel time 1. Uses the deceleration time set to C1-02 while Stall Prevention is performed. 2: Decel time 2. Uses the deceleration time set to C1-04 while Stall Prevention is performed.	Default: 1 Range: 0 to 2	370
L3-06 (0494)	Stall Prevention Level during Run	StallP Run Level	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Enabled when L3-05 is set to 1 or 2. 100% is equal to the drive rated current.	Default: <1> Min.: 30% Max.: 150% <1>	370
L3-11 (04C7)	Overvoltage Suppression Function Selection	OV Inhibit Sel 0: Disabled 1: Enabled	Enables or disables the ov suppression function, which allows the drive to change the output frequency as the load changes to prevent an ov fault. 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	371

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L3-17 (0462)	Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention	DC Bus Reg Level	All Modes Sets the desired value for the DC bus voltage during overvoltage suppression and Stall Prevention during deceleration.	Default: 375 Vdc <3> <8> Min.: 150 Max.: 400 <8>	371
L3-20 (0465)	DC Bus Voltage Adjustment Gain	DC Bus P Gain	All Modes Sets the proportional gain for KEB Ride-Thru, Stall Prevention, and overvoltage suppression.	Default: <4> Min.: 0.00 Max.: 5.00	371
L3-21 (0466)	Accel/Decel Rate Calculation Gain	Acc/Dec P Gain	All Modes Sets the proportional gain used to calculate the deceleration rate during KEB Ride-Thru, ov suppression function, and Stall Prevention during deceleration (L3-04 = 2).	Default: 1.00 Min.: 0.10 Max.: 10.00	372
L3-22 (04F9)	Deceleration Time at Stall Prevention during Acceleration	PM Acc Stall P T	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the deceleration time used for Stall Prevention during acceleration in OLV/PM.	Default: 0.0 s Min.: 0.0 Max.: 6000.0	368
L3-23 (04FD)	Automatic Reduction Selection for Stall Prevention during Run	CHP Stall P Sel 0: Lv1 set in L3-06 1: Autom. Reduction	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Sets the Stall Prevention level set in L3-04 that is used throughout the entire frequency range. 1: Automatic Stall Prevention level reduction in the constant output range. The lower limit value is 40% of L3-06.	Default: 0 Range: 0, 1	370
L3-24 (046E)	Motor Acceleration Time for Inertia Calculations	Mtr Accel Time	All Modes Sets the time needed to accelerate the uncoupled motor at rated torque from stop to the maximum frequency.	Default: <5> <6> <7> Min: 0.001 s Max: 10.000 s	372
L3-25 (046F)	Load Inertia Ratio	Load Inertia Rat	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the ratio between the motor and machine inertia.	Default: 1.0 Min.: 1.0 Max.: 1000.0	372
L3-26 (0455)	Additional DC Bus Capacitors	ExtDC busCapSize	When DC bus capacitors have been added externally, be sure to add those values to the internal capacitor table for proper DC bus calculations.	Default: 0 μF Min: 0 Max: 65000	373
L3-27 (0456)	Stall Prevention Detection Time	Stl Prev DetTime	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time the current must exceed the Stall Prevention level to activate Stall Prevention.	Default: 50 ms Min.: 0 Max.: 5000	373
L3-34 (016F)	Torque Limit Delay Time	TRQ Dly Filter T	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the filter time constant in seconds for the torque limit value to return to set value when the Power KEB Ride-Thru is enabled (L2-29 = 1). If oscillation occurs during Power KEB Ride-Thru, gradually increase this setting in increments of 0.010 s. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: <9> Min.: 0.000 Max.: 1.000	373
L3-35 (0747) <10>	Speed Agree Width at Intelligent Stall Prevention during Deceleration	IntDecSpdAgrWdth	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the width of the speed agree when L3-04 = 2 (Intelligent Stall Prevention during deceleration) in units of 0.01 Hz. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0.00 Hz Min.: 0.00 Max.: 1.00	373

- <1> The default setting and upper limit are determined by C6-01, Drive Duty Selection, and L8-38, Frequency Reduction Selection.
- <2> The setting range is 0 to 2 in OLV/PM control mode. The setting range is 0 and 1 in CLV or AOLV/PM control modes.
- <3> Default setting is determined by parameter E1-01, Input voltage Setting.
- <4> Default setting is determined by parameter A1-02, Control Method Selection.
- <5> Parameter value changes automatically if E2-11 is manually changed or changed by Auto-Tuning.

B.10 L: Protection Function

- <6> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <7> Default setting is determined by parameter E5-01, Motor Code Selection.
- <8> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives, but set the value below 1040 Vdc (overvoltage protection level).
- <9> Default setting is determined by parameter A1-02, Control Method Selection. When A1-02 = 6 (AOLV/PM), default is 0.2 When A1-02 = 7 (CLV/PM), default is 0.02.
- <10> Available in drive software versions PRG: 1018 and later.

◆ L4: Speed Detection

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L4-01 (0499)	Speed Agree Detection Level		All Modes L4-01 sets the frequency detection level for digital output functions $H2-\Box\Box=2, 3, 4, 5.$	Default: 0.0 Hz Min.: 0.0 Max.: 400.0	373
L4-02 (049A)	Speed Agree Detection Width	Spd Agree Width	All Modes L4-02 sets the hysteresis or allowable margin for speed detection.	Default: Min.: 0.0 Max.: 20.0	373
L4-03 (049B)	Speed Agree Detection Level (+/-)		All Modes L4-03 sets the frequency detection level for digital output functions $H2-\Box\Box=13, 14, 15, 16.$	Default: 0.0 Hz Min.: -400.0 Max.: 400.0	374
L4-04 (49C)	Speed Agree Detection Width (+/-)	Spd Agree Wdth+-	All Modes L4-04 sets the hysteresis or allowable margin for speed detection.	Default: Min.: 0.0 Max.: 20.0	374
L4-05 (049D)	Frequency Reference Loss Detection Selection	Ref Loss Sel 0: Stop 1: Run@L4-06PrevRef	O: Stop. Drive stops when the frequency reference is lost. 1: Run. Drive runs at a reduced speed when the frequency reference is lost.	Default: 0 Range: 0, 1	374
L4-06 (04C2)	Frequency Reference at Reference Loss	Fref at Floss	All Modes Sets the percentage of the frequency reference that the drive should run with when the frequency reference is lost.	Default: 80.0% Min.: 0.0 Max.: 100.0	374
L4-07 (0470)	Speed Agree Detection Selection	Freq Detect Sel 0: No Detection @BB 1: Always Detected	All Modes 0: No detection during baseblock. 1: Detection always enabled.	Default: 0 Range: 0, 1	374

<1> Default setting is determined by parameter A1-02, Control Method Selection.

◆ L5: Fault Restart

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L5-01 (049E)	Number of Auto Restart Attempts	Num of Restarts	All Modes Sets the number of times the drive may attempt to restart after the following faults occur: GF, LF, oC, oH1, ov, PF, rH, rr, oL1, oL2, oL3, oL4, STo, Uv1.	Default: 0 Min.: 0 Max.: 10	375
L5-02 (049F)	Auto Restart Fault Output Operation Selection	Restart Sel 0: Flt Outp Disabld 1: Flt Outp Enabled	All Modes 0: Fault output not active. 1: Fault output active during restart attempt.	Default: 0 Range: 0, 1	375
L5-04 (046C)	Fault Reset Interval Time	Flt Reset Wait T	All Modes Sets the amount of time to wait between performing fault restarts.	Default: 10.0 s Min.: 0.5 Max.: 600.0	376
L5-05 (0467)	Fault Reset Operation Selection	Fault Reset Sel 0: Continuous 1: Use L5-04 Time	O: Continuously attempt to restart while incrementing restart counter only at a successful restart (same as F7 and G7). 1: Attempt to restart with the interval time set in L5-04 and increment the restart counter with each attempt (same as V7).	Default: 0 Range: 0, 1	376

◆ L6: Torque Detection

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L6-01 (04A1)	Torque Detection Selection 1	Torq Det 1 Sel 0: Disabled 1: OL Alm at SpdAgr 2: OL Alm dur RUN 3: OL Flt at SpdAgr 4: OL Flt dur RUN 5: UL Alm at SpdAgr 6: UL Alm dur RUN 7: UL Flt at SpdAgr 8: UL Flt dur RUN	O: Disabled 1: oL3 detection only active during speed agree, operation continues after detection 2: oL3 detection always active during run, operation continues after detection 3: oL3 detection only active during speed agree, output shuts down on an oL3 fault 4: oL3 detection always active during run, output shuts down on an oL3 fault 5: UL3 detection only active during speed agree, operation continues after detection 6: UL3 detection always active during run, operation continues after detection 7: UL3 detection only active during speed agree, output shuts down on an oL3 fault 8: UL3 detection always active during run, output shuts down on an oL3 fault	Default: 0 Range: 0 to 8	377
L6-02 (04A2)	Torque Detection Level 1	Torq Det 1 Lvl	All Modes Sets the overtorque and undertorque detection level.	Default: 150% Min.: 0 Max.: 300	378
L6-03 (04A3)	Torque Detection Time 1	Torq Det 1 Time	All Modes Sets the time an overtorque or undertorque condition must exist to trigger torque detection 1.	Default: 0.1 s Min.: 0.0 Max.: 10.0	378
L6-04 (04A4)	Torque Detection Selection 2	Torq Det 2 Sel 0: Disabled 1: OL Alm at SpdAgr 2: OL Alm dur RUN 3: OL Flt at SpdAgr 4: OL Flt dur RUN 5: UL Alm at SpdAgr 6: UL Alm dur RUN 7: UL Flt at SpdAgr 8: UL Flt dur RUN	O: Disabled 1: oL4 detection only active during speed agree, operation continues after detection 2: oL4 detection always active during run, operation continues after detection 3: oL4 detection only active during speed agree, output shuts down on an oL4 fault 4: oL4 detection always active during run, output shuts down on an oL4 fault 5: UL4 detection only active during speed agree, operation continues after detection 6: UL4 detection always active during run, operation continues after detection 7: UL4 detection only active during speed agree, output shuts down on an oL4 fault 8: UL4 detection always active during run, output shuts down on an oL4 fault	Default: 0 Range: 0 to 8	377
L6-05 (04A5)	Torque Detection Level 2	Torq Det 2 Lvl	All Modes Sets the overtorque and undertorque detection level.	Default: 150% Min.: 0 Max.: 300	378
L6-06 (04A6)	Torque Detection Time 2	Torq Det 2 Time	All Modes Sets the time an overtorque or undertorque condition must exist to trigger torque detection 2.	Default: 0.1 s Min.: 0.0 Max.: 10.0	378

B.10 L: Protection Function

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L6-08 (0468)	Mechanical Weakening Detection Operation	Mech Fatigue Sel 0: Disabled 1: Alm Spd>L6-09 2: Alm [Spd]>L6-09 3: Flt Spd>L6-09 4: Flt [Spd]>L6-09 5: Alm Spd <l6-09 6:="" 7:="" 8:="" [spd]<l6-09="" [spd]<l6-09<="" alm="" flt="" spd<l6-09="" td=""><td>This function can detect an overtorque or undertorque in a certain speed range as a result of machine fatigue. It is triggered by a specified operation time and uses the oL1 detection settings (L6-01 and L6-03). 0: Mechanical Weakening Detection disabled. 1: Continue running (alarm only). Detected when the speed (signed) is greater than L6-09. 2: Continue running (alarm only). Detected when the speed (not signed) is greater than L6-09. 3: Interrupt drive output (fault). Detected when the speed (signed) is greater than L6-09. 4: Interrupt drive output (fault). Detected when the speed (not signed) is greater than L6-09. 5: Continue running (alarm only). Detected when the speed (signed) is less than L6-09. 6: Continue running (alarm only). Detected when the speed (not signed) is less than L6-09. 7: Interrupt drive output (fault). Detected when the speed (signed) is less than L6-09. 8: Interrupt drive output (fault). Detected when the speed (not signed) is less than L6-09.</td><td>Default: 0 Range: 0 to 8</td><td>378</td></l6-09>	This function can detect an overtorque or undertorque in a certain speed range as a result of machine fatigue. It is triggered by a specified operation time and uses the oL1 detection settings (L6-01 and L6-03). 0: Mechanical Weakening Detection disabled. 1: Continue running (alarm only). Detected when the speed (signed) is greater than L6-09. 2: Continue running (alarm only). Detected when the speed (not signed) is greater than L6-09. 3: Interrupt drive output (fault). Detected when the speed (signed) is greater than L6-09. 4: Interrupt drive output (fault). Detected when the speed (not signed) is greater than L6-09. 5: Continue running (alarm only). Detected when the speed (signed) is less than L6-09. 6: Continue running (alarm only). Detected when the speed (not signed) is less than L6-09. 7: Interrupt drive output (fault). Detected when the speed (signed) is less than L6-09. 8: Interrupt drive output (fault). Detected when the speed (not signed) is less than L6-09.	Default: 0 Range: 0 to 8	378
L6-09 (0469)	Mechanical Weakening Detection Speed Level	MechFat Det Spd	All Modes Sets the speed that triggers Mechanical Weakening Detection. When L6-08 is set for an unsigned value, the absolute value is used if the setting is negative.	Default: 110.0% Min.: -110.0 Max.: 110.0	379
L6-10 (046A)	Mechanical Weakening Detection Time	MechFat Det Time	All Modes Sets the time mechanical weakening has to be detected before an alarm or fault is triggered.	Default: 0.1 s Min.: 0.0 Max.: 10.0	379
L6-11 (046B)	Mechanical Weakening Detection Start Time	MechFat Det Hour	All Modes Sets the operation time (U1-04) required before Mechanical Weakening Detection is active.	Default: 0 h Min.: 0 Max.: 65535	379

◆ L7: Torque Limit

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L7-01 (04A7)	Forward Torque Limit	Torq Limit Fwd	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM	Default: 200% Min.: 0 Max.: 300	380
L7-02 (04A8)	Reverse Torque Limit	Torq Limit Rev	Sets the torque limit value as a percentage of the motor rated torque. Four individual quadrants can be set. Output Torque	Default: 200% Min.: 0 Max.: 300	380
L7-03 (04A9)	Forward Regenerative Torque Limit	Torq Lmt Fwd Rgn	L7-04 L7-01 Motor r/min	Default: 200% Min.: 0 Max.: 300	380
L7-04 (04AA)	Reverse Regenerative Torque Limit	Torq Lmt Rev Rgn	Regeneration	Default: 200% Min.: 0 Max.: 300	380
L7-06 (04AC)	Torque Limit Integral Time Constant	Trq Lim I Time	OLV/PM AOLV/PM CLV/PM Sets the integral time constant for the torque limit.	Default: 200 ms Min: 5 Max: 10000	380
L7-07 (04C9)	Torque Limit Control Method Selection during Accel/Decel	Trq Lim d AccDec P-ctrl @ Acc/Dec I-ctrl @ Acc/Dec	OLV CLV OLV/PM AOLV/PM CLV/PM 0: Proportional control (changes to integral control at constant speed). Use this setting when acceleration to the desired speed should take precedence over the torque limit. 1: Integral control. Set L7-07 to 1 if the torque limit should take precedence.	Default: 0 Range: 0, 1	380

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L7-16 (0444D) <1>	Torque Limit Process at Start	U. Disabled	(+=··· ···)	Default: 1 Range: 0, 1	380

<1> Available in drive software versions PRG: 1018 and later.

◆ L8: Drive Protection

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L8-01 (04AD)	Internal Dynamic Braking Resistor Protection Selection (ERF type)	DB Resistor Prot 0: Not Provided 1: Provided	O: Resistor overheat protection disabled 1: Resistor overheat protection enabled Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	381
L8-02 (04AE)	Overheat Alarm Level	OH Pre-Alarm Lvl	All Modes An overheat alarm occurs when heatsink temperature exceeds the L8-02 level.	Default: Min.: 50 °C Max.: 150 °C	381
L8-03 (04AF)	Overheat Pre-Alarm Operation Selection	OH Pre-Alarm Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only 4: Run@L8-19 Rate	All Modes 0: Ramp to stop. A fault is triggered. 1: Coast to stop. A fault is triggered. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. A fault is triggered. 3: Continue operation. An alarm is triggered. 4: Continue operation at reduced speed as set in L8-19.	Default: 3 Range: 0 to 4	381
L8-05 (04B1)	Input Phase Loss Protection Selection	Inp Ph Loss Det 0: Disabled 1: Enabled	All Modes Selects the detection of input current phase loss, power supply voltage imbalance, or main circuit electrolytic capacitor deterioration. 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	382
L8-07 (04B3)	Output Phase Loss Protection Selection	Outp Ph Loss Det 0: Disabled 1: 1PH Loss Det 2: 2/3PH Loss Det	All Modes 0: Disabled 1: Enabled (triggered by a single phase loss) 2: Enabled (triggered when two phases are lost)	Default: 1 Range: 0 to 2	382
L8-09 (04B5)	Output Ground Fault Detection Selection	Grnd Flt Det Sel 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled	Default: <1> Range: 0, 1	382
L8-10 (04B6)	Heatsink Cooling Fan Operation Selection	Fan On/Off Sel 0: Dur Run (OffDly) 1: Always On	O: Run with timer (Fan operates only during run and for L8-11 seconds after stop.) 1: Run always (Cooling fan operates whenever the drive is powered up.)	Default: 0 Range: 0, 1	383
L8-11 (04B7)	Heatsink Cooling Fan Off Delay Time	Fan Delay Time	All Modes Sets a delay time to shut off the cooling fan after the Run command is removed when L8-10 = 0.	Default: 60 s Min.: 0 Max.: 300	383
L8-12 (04B8)	Ambient Temperature Setting	Ambient Temp	All Modes Enter the ambient temperature. This value adjusts the oL2 detection level.	Default: 40 °C Min.: -10 Max.: 50	383
L8-15 (04BB)	oL2 Characteristics Selection at Low Speeds	OL2 Sel @ L-Spd 0: Disabled 1: Enabled	All Modes 0: No oL2 level reduction below 6 Hz. 1: oL2 level is reduced linearly below 6 Hz. It is halved at 0 Hz.	Default: 1 Range: 0, 1	383
L8-18 (04BE)	Software Current Limit Selection	Soft CLA Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	383

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L8-19 (04BF)	Frequency Reduction Rate during Overheat Pre-Alarm	Fc Red dur OHAlm	All Modes Specifies the frequency reference reduction gain at overheat pre- alarm when L8-03 = 4.	Default: 0.8 Min.: 0.1 Max.: 0.9	384
L8-27 (04DD)	Overcurrent Detection Gain	OC Level	OLV/PM AOLV/PM CLV/PM Sets the gain for overcurrent detection as a percentage of the motor rated current. Overcurrent is detected using the lower value between the overcurrent level of the drive or the value set to L8-27.	Default: 300.0% Min.: 0.0 Max.: 400.0	384
L8-29 (04DF)	Current Unbalance Detection (LF2)	LF2 Flt Det Sel 0: Disabled 1: Current&Voltage 2: Current Det Type 3: Voltage Det Type	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM For models 2A0004 to 2A0415, 4A0002 to 4A0675, and 5A0003 to 5A0242: 0: Disabled 1: Enabled (current and voltage detection) 2: Enabled (current detection) 3: Enabled (voltage detection) For models 4A0930 and 4A1200: 0: Disabled 1: Enabled (current detection)	Default: 1 Range: 0 to 3 Range: 0, 1	384
L8-32 (04E2)	Cooling Fan Failure Selection	MC/FAN PS FltSel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only 4: Run@L8-19 Rate	All Modes Determines drive response when a fault occurs with the internal cooling fan. 0: Ramp to stop 1: Coast to stop 2: Fast stop (Decelerate to stop using the deceleration time set to C1-09) 3: Alarm only ("FAn" will flash) 4: Continue operation at reduced speed as set to L8-19.	Default: 1 Range: 0 to 4	384
L8-35 (04EC)	Installation Method Selection	Installation Sel 0: IP00/OpenChassis 2: IP20/Nema Type 1 3: Finless/Fin Ext	All Modes 0: IP00/Open-Chassis enclosure 1: Side-by-Side mounting 2: IP20/NEMA Type 1 enclosure 3: Finless model drive or external heatsink installation	Default: <3> Range: 0 to 3	385
L8-38 (04EF)	Carrier Frequency Reduction	Fc Reduct dur OL 0: Disabled 1: Active below 6Hz 2: Active @ any Spd	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled below 6 Hz 2: Enabled for the entire speed range	Default: APRange: 0 to 2	385
L8-40 (04F1)	Carrier Frequency Reduction Off Delay Time	Fc Reduct Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time that the drive continues running with reduced carrier frequency after the carrier reduction condition is gone. Setting 0.00 s disables the carrier frequency reduction time.	Default: <5> Min.: 0.00 s Max.: 2.00 s	386
L8-41 (04F2)	High Current Alarm Selection	High Cur Alm Sel 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled. An alarm is triggered at output currents above 150% of drive rated current.	Default: 0 Range: 0, 1	386
L8-55 (045F)	Internal Braking Transistor Protection	DB Tr protection 0: Disable 1: Enable	O: Disabled. Disable when using a regen converter or optional braking unit. 1: Protection enabled. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 1 Range: 0, 1	386
L8-78 (02CC)	Power Unit Output Phase Loss Protection	LF3 Det Sel 0: Disabled 1: Enabled	Enables motor protection in the event of output phase loss. 0: Disabled 1: Enabled Note: This parameter is only available in models 4A0930 and 4A1200.	Default: 1 Range: 0, 1	386

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L8-93 (073C)	LSo Detection Time at Low Speed	LSO Det Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the amount of time until baseblock is executed after detecting pull-out at low speed.	Default: 1.0 s Min.: 0.0 Max.: 10.0	386
L8-94 (073D)	LSo Detection Level at Low Speed	LSO Det Level	OLV/PM CLV/PM Determines the detection level of pull-out at low speed.	Default: 3% Min.: 0 Max.: 10	387
L8-95 (073F)	Average LSo Frequency at Low Speed	Num of LSO Avg	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the average number of times pull-out can occur at low speed.	Default: 10 times Min.: 1 Max.: 50	387

- <1> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <2> The setting range is 0.0 to 300.0% for models 4A0930 and 4A1200.
- <3> Default setting is determined by parameter o2-04, Drive Model Selection.
- <4> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.
- <5> Default setting is determined by parameter A1-02, Control Method Selection.

◆ L9: Drive Protection 2

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
L9-03 (0819) 	Carrier Frequency Reduction Level Selection	Fc ReductLvl Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV/PM Selects the level to start the reduction of the frequency or to clear the current frequency level for the automatic reduction of the carrier frequency. There is normally no need to change this parameter from the default value. 0: Reduces the carrier frequency based on the drive rated current that is not derated. 1: Reduces the carrier frequency based on the drive rated current that is derated by the carrier frequency and the temperature selected for C6-02. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0 Range: 0, 1	387

<1> Available in drive software versions PRG: 1018 and later.

B.11 n: Special Adjustment

The n parameters adjust more advanced performance characteristics such as Hunting Prevention, speed feedback detection, High Slip Braking, and Online Tuning for motor line-to-line resistance.

n1: Hunting Prevention

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n1-01 (0580)	Hunting Prevention Selection	Hunt Prev Select 0: Disabled 1: Enabled	VIf VIFW PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 1 Range: 0, 1	388
n1-02 (0581)	Hunting Prevention Gain Setting	Hunt Prev Gain	OLV/PM AOLV/PM CLV/PM If the motor vibrates while lightly loaded, increase the gain by 0.1 until vibration ceases. If the motor stalls, decrease the gain by 0.1 until the stalling ceases.	Default: 1.00 Min.: 0.00 Max.: 2.50	388
n1-03 (0582)	Hunting Prevention Time Constant	Hunt Prev Time	OLV/PM OLV/PM CLV/PM Sets the time constant used for Hunting Prevention.	Default: <i> Min.: 0 ms Max.: 500 ms</i>	388
n1-05 (0530)	Hunting Prevention Gain while in Reverse	Hprev Gain @Rev	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain used for Hunting Prevention. If set to 0, the gain set to n1-02 is used for operation in reverse.	Default: 0.00 Min.: 0.00 Max.: 2.50	388

<1> Default setting is determined by parameter o2-04, Drive Model Selection.

◆ n2: Speed Feedback Detection Control (AFR) Tuning

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n2-01 (0584)	Speed Feedback Detection Control (AFR) Gain	AFR Gain	OLV CLV OLV/PM AOLV/PM CLV/PM Sets the internal speed feedback detection control gain in the automatic frequency regulator (AFR). If hunting occurs, increase the set value. If response is low, decrease the set value.	Default: 1.00 Min.: 0.00 Max.: 10.00	389
n2-02 (0585)	Speed Feedback Detection Control (AFR) Time Constant 1	AFR Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant used for speed feedback detection control (AFR).	Default: 50 ms Min.: 0 Max.: 2000	389
n2-03 (0586)	Speed Feedback Detection Control (AFR) Time Constant 2	AFR Time 2		Default: 750 ms Min.: 0 Max.: 2000	389

◆ n3: High Slip Braking (HSB) and Overexcitation Braking

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n3-01 (0588)	High-Slip Braking Deceleration Frequency Width	HSB DecStepWidth	VIf VIFW PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the output frequency reduction step width for when the drive stops the motor using HSB. Set as a percentage of the maximum output frequency. Increase this setting if overvoltage occurs during HSB.	Default: 5% Min.: 1 Max.: 20	389
n3-02 (0589)	High-Slip Braking Current Limit	HSB Current Lim	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current limit during HSB as a percentage of the motor rated current.	Default: <1> Min.: 100% Max.: <1>	390
n3-03 (058A)	High-Slip Braking Dwell Time at Stop	HSB DwelTim@Stp	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time the drive will run with minimum frequency (E1-09) at the end of deceleration. If this time is set too low, the machine inertia can cause the motor to rotate slightly after HSB.	Default: 1.0 s Min.: 0.0 Max.: 10.0	390
n3-04 (058B)	High-Slip Braking Overload Time	HSB OL Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time required for an HSB overload fault (oL7) to occur when the drive output frequency does not change during an HSB stop. This parameter does not typically require adjustment.	Default: 40 s Min.: 30 Max.: 1200	390
n3-13 (0531)	Overexcitation Deceleration Gain	Hflux Brake Gain	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain applied to the V/f pattern during Overexcitation Deceleration (L3-04 = 4).	Default: 1.10 Min.: 1.00 Max.: 1.40	391
n3-14 (0532)	High Frequency Injection during Overexcitation Deceleration	HarmInj@HiFlxBrk 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	391
n3-21 (0579)	High-Slip Suppression Current Level	Hflux I Supp Lvl	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets output current level at which the drive will start reducing the overexcitation gain in order to prevent a too high motor slip during Overexcitation Deceleration. Set as a percentage of the drive rated current.	Default: 100% Min.: 0 Max.: 150	391
n3-23 (057B)	Overexcitation Operation Selection	Hflux Brake Sel 0: Enabled-Both Dir 1: Enabled-Fwd only 2: Enabled-Rev only	OLV/PM AOLV/PM CLV/PM 0: Enabled in both directions 1: Enabled only when rotating forward 2: Enabled only when in reverse	Default: 0 Range: 0 to 2	391

<1> The upper limit of the setting range and default setting are determined by parameters C6-01, Drive Duty Selection, and L8-38, Frequency Reduction Selection.

◆ n5: Feed Forward Control

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n5-01 (05B0)	Feed Forward Control Selection	Feedfoward Sel 0: Disabled 1: Enabled	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled	Default: 0 Range: 0, 1	392
n5-02 (05B1)	Motor Acceleration Time	Motor Accel Time	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time required to accelerate the motor at the rated torque from stop to rated speed.	Default: <1> <2> Min.: 0.001 s Max.: 10.000 s	392
n5-03 (05B2)	Feed Forward Control Gain	Feedfoward Gain	OLV/PM AOLV/PM CLV/PM Sets the ratio between motor and load inertia. Lower this setting if overshoot occurs at the end of acceleration.	Default: 1.00 Min.: 0.00 Max.: 100.00	393

<1> Default setting is determined by parameter E5-01, Motor Code Selection.

◆ n6: Online Tuning

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n6-01 (0570)	Online Tuning Selection	Online Tune Sel	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Line-to-line resistance tuning 2: Voltage correction. Setting not possible when Energy Saving is enabled (b8-01).	Default: 0 Range: 0 to 2	394
n6-05 (05C7)	Online Tuning Gain	R1 Comp Gain	OLV/PM AOLV/PM CLV/PM Decrease this setting for motors with a relatively large rotor time constant. If overload occurs, increase this setting slowly in increments of 0.10.	Default: 1.0 Min.: 0.1 Max.: 50.0	394

◆ n8: PM Motor Control Tuning

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n8-01 (540)	Initial Rotor Position Estimation Current	InitRotPosDetCur	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current used for initial rotor position estimation as a percentage of the motor rated current (E5-03). If the motor nameplate lists an "Si" value, that value should be entered here.	Default: 50% Min.: 0 Max.: 100	394
n8-02 (541)	Pole Attraction Current	Pull-In Current	OLV/PM AOLV/PM CLV/PM Sets the current during initial polar attraction as a percentage of the motor rated current. Enter a high value when attempting to increase starting torque.	Default: 80% Min.: 0 Max.: 150	394
n8-11 (054A) <1>	Induction Voltage Estimation Gain 2	InducedVEstGain2	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: <2> Min.: 0.0 Max.: 1000.0	394

<2> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n8-14 (054D) <1>	Polarity Compensation Gain 3	PoleComp Gain 3	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930	Default: 1.000 Min.: 0.000 Max.: 10.000	395
n8-15 (054E)	Polarity Compensation Gain 4	PoleComp Gain 4	and 4A1200. V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0.500 Min.: 0.000 Max.: 10.000	395
n8-21 (0554) 	Motor Ke Gain	Back EMF Gain	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 0.90 Min.: 0.80 Max.: 1.00	395
n8-35 (562)	Initial Rotor Position Detection Selection	Init Pole EstSel 0: Pull-In Method 1: Harm Inj Method 2: Pulse Method	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Pull-in 1: High frequency injection 2: Pulse injection	Default: 1 Range: 0 to 2	395
n8-36 (0563) <1>	High Frequency Injection Level	PM Harm Inj Freq	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the frequency in Hz for the superimposed signal used for superimposed harmonics. Enabled when n8-57 = 1. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930	Default: 500 Hz Min.: 200 Max.: 1000	395
n8-37 (0564) 	High Frequency Injection Amplitude	PM Harm Inj Amp	and 4A1200. V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the amplitude for superimposed harmonics according to the voltage class of the motor. Adjust this value when there is too much or too little current as a result of the settings assigned to motor parameters. Enabled when n8-57 = 1. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 20.0% Min.: 0.0 Max.: 50.0	395
n8-39 (0566) 	Low Pass Filter Cutoff Frequency for High Frequency Injection	PM Harm LPF Freq	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the cutoff frequency of a low pass filter for high frequency injection. Enabled when n8-57 = 1. There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 50 Hz Min.: 0 Max.: 1000	396
n8-45 (0538)	Speed Feedback Detection Control Gain (for PM Motors)	PM Spd Fdbk Gain	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Increase this setting if hunting occurs. Decrease to lower the response.	Default: 0.80 Min.: 0.00 Max.: 10.00	396

B.11 n: Special Adjustment

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n8-47 (053A)	Pull-In Current Compensation Time Constant (for PM Motors)	PM Pull-in I Tc	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant to make the pull-in current reference and actual current value agree. Decrease the value if the motor begins to oscillate, and increase the value if it takes too long for the current reference to equal the output current.	Default: 5.0 s Min.: 0.0 Max.: 100.0	396
n8-48 (053B)	Pull-In Current (for PM Motors)	PM No-load Curr	OLV/PM AOLV/PM CLV/PM Defines the d-Axis current reference during no-load operation at a constant speed. Set as a percentage of the motor rated current. Increase this setting if hunting occurs while running at constant speed.	Default: 30% Min.: 20 Max.: 200	396
n8-49 (053C)	d-Axis Current for High Efficiency Control (for PM Motors)	EnergySav ID Lvl	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the d-Axis current reference when running a high load at constant speed. Set as a percentage of the motor rated current.	Default: <3> Min.: -200.0% Max.: 0.0%	396
n8-51 (053E)	Acceleration/ Deceleration Pull-In Current (for PM Motors)	PM Pull-in I@Acc	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the d-Axis current reference during acceleration/ deceleration as a percentage of the motor rated current. Set to a high value when more starting torque is needed.	Default: 50% Min.: 0 Max.: 200	396
n8-54 (056D)	Voltage Error Compensation Time Constant	PM V Error CompT	OLV/PM AOLV/PM CLV/PM Adjusts the value when hunting occurs at low speed. If hunting occurs with sudden load changes, increase n8-54 in increments of 0.1. Reduce this setting if oscillation occurs at start.	Default: 1.00 s Min.: 0.00 Max.: 10.00	397
n8-55 (056E)	Load Inertia	PMLoad wk2 Ratio 0: Less than 1:10 1: 1:10 to 1:30 2: 1:30 to 1:50 3: More than 1:50	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the ratio between motor and machine inertia. 0: Below 1:10 1: Between 1:10 and 1:30 2: Between 1:30 and 1:50 3: Beyond 1:50	Default: 0 Min.: 0 Max.: 3	397
n8-57 (0574)	High Frequency Injection	PM Harm Inj Sel 0: Disabled 1: Enabled	OLV/PM AOLV/PM CLV/PM O: Disabled. Disable when using an SPM motor. 1: Enabled. Use this setting to enhance the speed control range when using an IPM motor.	Default: 0 Range: 0, 1	397
n8-62 (057D)	Output Voltage Limit (for PM Motors)	PM Vout Limit	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Prevents output voltage saturation. Should be set just below the voltage provided by the input power supply.	Default: 200.0 V ⁴ > Min.: 0.0 Max.: 230.0 ⁴ >	398
n8-65 (065C)	Speed Feedback Detection Control Gain during ov Suppression	SFdbk G @OV Supp	OLV/PM AOLV/PM CLV/PM Sets the gain used for internal speed feedback detection during ov suppression.	Default: 1.50 Min.: 0.00 Max.: 10.00	398
n8-69 (065D)	Speed Calculation Gain	SpdSrch Gain	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the proportional gain for PLL control of an extended observer. There is normally no need to change this parameter from the default value.	Default: 1.00 Min.: 0.00 Max.: 20.00	398

ø
ᇷ
ĕ
ၽ
22
ুত
Δ.

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
n8-72 (0655) <1>	Speed Estimation Method Selection	Spd Est method 0: Conventional 1: A1000 method	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the method to be used for estimating the speed. 0: Conventional method 1: A1000 method There is normally no need to change this parameter from the default value. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 1 Range: 0, 1	398
n8-84 (02D3)	Initial Polarity Estimation Timeout Current	Polarity Det Curr	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current to determine polarity for the initial polarity calculation as a percentage of the motor rated current. 100% = Motor rated current Note: If an "Si" value is listed on a Yaskawa motor nameplate, set n8-84 to "Si" value x 2.	Default: 100% Min.: 0 Max.: 150	398

<1> Available in drive software versions PRG: 1018 and later.

- <3> Default setting is determined by parameter E5-01, Motor Code Selection.
- <4> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

<2> Default setting is determined by parameter n8-72, Speed Estimation Method Selection. When n8-72 = 0, default is 50.0When n8-72 = 1, default is 150.0.

B.12 o: Operator-Related Settings

The o parameters set up the digital operator displays.

◆ o1: Digital Operator Display Selection

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
01-01 (0500) ***PUN	Drive Mode Unit Monitor Selection	User Monitor Sel	All Modes Switches the display after the power has been turned on. When using an LED operator, pressing the up arrow key will display the following data: frequency reference → rotational direction → output frequency → output current → output voltage → U1-□□. Note: Enter the "1-□□" portion of "U1-□□" to view the monitor. Certain monitors are not available in all control modes.	Default: 106 (Monitor U1-06) Range: 104 to 813	399
01-02 (0501) ◆RUN	User Monitor Selection after Power Up	Power-On Monitor 1: Frequency Ref 2: FWD/REV 3: Output Freq 4: Output Current 5: User Monitor	All Modes Selects the information displayed on the digital operator when the power is turned on. 1: Frequency reference (U1-01) 2: Direction 3: Output frequency (U1-02) 4: Output current (U1-03) 5: User-selected monitor (set by o1-01)	Default: 1 Range: 1 to 5	399
o1-03 (0502)	Digital Operator Display Selection	Display Unit Sel 0: 0.01 Hz 1: 0.01 % 2: r/min 3: User Units	All Modes Sets the units the drive should use to display the frequency reference and motor speed monitors. 0: 0.01 Hz 1: 0.01% (100% = E1-04) 2: r/min (calculated using the number of motor poles setting in E2-04, E4-04, or E5-04) 3: User-selected units (set by o1-10 and o1-11)	Default: <1> Range: 0 to 3	399
o1-04 (0503)	V/f Pattern Display Unit	V/f Ptrn Unit 0: Hertz 1: RPM	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Hz 1: r/min	Default: <1> Range: 0, 1	400
01-05 (0504) ● RUN <2>	LCD Contrast Control	LCD Contrast	All Modes Sets the contrast of the LCD operator. Note: This parameter is not available in models 4A0930 and 4A1200.	Default: 3 Min.: 0 Max.: 5	400
o1-10 (0520)	User-Set Display Units Maximum Value	UserDisp Scaling	All Modes These settings define the display values when o1-03 is set to 3. o1-10 sets the display value that is equal to the maximum output	Default: <3> Range: 1 to 60000	400
o1-11 (0521)	User-Set Display Units Decimal Display	UserDisp Dec Sel	frequency. o1-11 sets the position of the decimal position.	Default: <3> Range: 0 to 3	400

<1> Default setting is determined by parameter A1-02, Control Method Selection.

<2> Available in drive software versions PRG: 1019 and later.

<3> Default setting is determined by parameter o1-03, Digital Operator Display Selection.

◆ o2: Digital Operator Keypad Functions

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
o2-01 (0505)	LO/RE Key Function Selection	LO/RE Key 0: Disabled 1: Enabled	All Modes 0: Disabled 1: Enabled. LO/RE key switches between LOCAL and REMOTE operation.	Default: 1 Range: 0, 1	400
o2-02 (0506)	STOP Key Function Selection	Oper STOP Key 0: Disabled 1: Enabled	All Modes 0: Disabled. STOP key is disabled in REMOTE operation. 1: Enabled. STOP key is always enabled.	Default: 1 Range: 0, 1	401
o2-03 (0507)	User Parameter Default Value	User Default Sel 0: No Change 1: Save User Init 2: Clear User Init	All Modes 0: No change. 1: Set defaults. Saves parameter settings as default values for a User Initialization. 2: Clear all. Clears the default settings that have been saved for a User Initialization.	Default: 0 Range: 0 to 2	401
o2-04 (0508)	Drive Model Selection	Inverter Model #	All Modes Enter the drive model. Setting required only if installing a new control board.	Default: Determined by drive capacity	401
o2-05 (0509)	Frequency Reference Setting Method Selection	Oper Ref Method 0: Disabled 1: Enabled	O: ENTER key must be pressed to enter a frequency reference. 1: ENTER key is not required. The frequency reference can be adjusted using the up and down arrow keys only.	Default: 0 Range: 0, 1	402
o2-06 (050A)	Operation Selection when Digital Operator is Disconnected	Oper Discon Det 0: Disabled 1: Enabled	O: The drive continues operating if the digital operator is disconnected. 1: An oPr fault is triggered and the motor coasts to stop.	Default: 1 Range: 0, 1	402
o2-07 (0527)	Motor Direction at Power Up when Using Operator	For/RevSel@PwrUp 0: Forward 1: Reverse	All Modes 0: Forward 1: Reverse This parameter requires assigning drive operation to the digital operator.	Default: 0 Range: 0, 1	402
o2-09 (050D)	-	_	Factory use.	_	_
o2-19 (050D) 	Selection of Parameter Write during Uv	ParameterSet Sel 0: Disabled 1: Enabled	Selects whether parameter settings can be changed during a DC bus undervoltage condition. To be used with 24 V Power Supply option (PS-A10L, PS-A10H) revision B or later. 0: Disabled 1: Enabled Note: 1. This parameter is not available in models 4A0930 and 4A1200. 2. Enabling this function may trigger a CPF06 fault when used with a 24 V Power Supply option revision earlier than B, as the parameter changes might not occur correctly.	Default: 0 Range: 0, 1	402

<1> Available in drive software versions PRG: 1019 and later.

• o3: Copy Function

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
o3-01 (0515)	Copy Function Selection	COPY SELECT 0: COPY SELECT 1: INV→OP READ 2: OP→INV WRITE 3: OP←→INV VERIFY	0: Copy select 1: INV → OP READ (Read parameters from the drive, saving them onto the digital operator). 2: OP → INV WRITE (Copy parameters from the digital operator, writing them to the drive). 3: OP → INV VERIFY (Verify that parameter settings match the data saved on the operator). To read the drive parameter settings into the digital operator, set o3-02 to 1 (to allow reading).	Default: 0 Range: 0 to 3	403
o3-02 (0516)	Copy Allowed Selection	Read Allowable 0: Disabled 1: Enabled	All Modes Selects whether the read operation (o3-01 = 1) is enabled or disabled. 0: Read operation prohibited 1: Read operation allowed	Default: 0 Range: 0, 1	403

◆ o4: Maintenance Monitor Settings

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
o4-01 (050B)	Cumulative Operation Time Setting	DrvElapsTimeCnt	All Modes Sets the value for the cumulative operation time of the drive in units of 10 h.	Default: 0 Min.: 0 Max.: 9999	403
o4-02 (050C)	Cumulative Operation Time Selection	ElapsTimeCntSet 0: Power-On Time 1: Running Time	All Modes 0: Logs power-on time 1: Logs operation time when the drive output is active (output operation time).	Default: 0 Range: 0, 1	403
o4-03 (050E)	Cooling Fan Operation Time Setting	FanElapsTimeCn	All Modes Sets the value of the fan operation time monitor U4-03 in units of 10 h.	Default: 0 Min.: 0 Max.: 9999	403
o4-05 (051D)	Capacitor Maintenance Setting	BusCap Maint Set	All Modes Sets the value of the Maintenance Monitor for the capacitors. See U4-05 to check when the capacitors may need to be replaced.	Default: 0% Min.: 0 Max.: 150	404
o4-07 (0523)	DC Bus Pre-Charge Relay Maintenance Setting	ChrgCircMaintSet	All Modes Sets the value of the Maintenance Monitor for the soft charge bypass relay. See U4-06 to check when the bypass relay may need to be replaced.	Default: 0% Min.: 0 Max.: 150	404
o4-09 (0525)	IGBT Maintenance Setting	IGBT Maint Set	All Modes Sets the value of the Maintenance Monitor for the IGBTs. See U4-07 for IGBT replacement times.	Default: 0% Min.: 0 Max.: 150	404
o4-11 (0510)	U2, U3 Initialization	Fault Data Init 0: Disabled 1: Enabled	All Modes 0: U2-□□ and U3-□□ monitor data is not reset when the drive is initialized using A1-03. 1: U2-□□ and U3-□□ monitor data is reset when the drive is initialized using A1-03. Parameter is automatically reset to 0.	Default: 0 Range: 0, 1	404
o4-12 (0512)	kWh Monitor Initialization	kWh Monitor Init 0: No Reset 1: Reset	O: U4-10 and U4-11 monitor data is not reset when the drive is initialized using A1-03. 1: U4-10 and U4-11 monitor data is reset when the drive is initialized using A1-03. Parameter is automatically reset to 0.	Default: 0 Range: 0, 1	404
o4-13 (0528)	Number of Run Commands Counter Initialization	Run Counter Init 0: No Reset 1: Reset	All Modes 0: U4-02 monitor data is not reset when the drive is initialized using A1-03. 1: U4-02 monitor data is reset when the drive is initialized using A1-03. Parameter is automatically reset to 0.	Default: 0 Range: 0, 1	404

B.13 DriveWorksEZ Parameters

q: DriveWorksEZ Parameters

No. (Addr. Hex)	Name	Description	Values	Page
q1-01 to q6-07 (1600 to 1746)	DriveWorksEZ Parameters	All Modes Reserved for DriveWorksEZ	Refer to Help in the DWEZ software.	405

◆ r: DriveWorksEZ Connection Parameters

No. (Addr. Hex)	Name	Description	Values	Page
r1-01 to r1-40 (1840 to 1867)	DriveWorksEZ Connection Parameters 1 to 20 (upper/ lower)	All Modes DriveWorksEZ Connection Parameters 1 to 20 (upper/lower)	Default: 0 Min.: 0 Max.: FFFF	405

B.14 T: Motor Tuning

Enter data into the following parameters to tune the motor and drive for optimal performance.

◆ T1: Induction Motor Auto-Tuning

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
T1-00 (0700)	Motor 1/Motor 2 Selection	Select Motor 1: 1st Motor 2: 2nd Motor	V/f V/f w PG OLV OLV/PM AOLV/PM CLV/PM 1: Motor 1 (sets E1-□□, E2-□□) 2: Motor 2 (sets E3-□□, E4-□□)	Default: 1 Range: 1, 2	208
T1-01 (0701) <1>	Auto-Tuning Mode Selection	Tuning Mode Sel 0: Standard Tuning 1: Tune-No Rotatel 2: Term Resistance 3: V/f Engy Sav Tun 4: Tune-No Rotate2 5: Tune-No Rotate3 8: 9:	VIf VIFW PG OLV OLV/PM AOLV/PM CLV/PM 0: Rotational Auto-Tuning 1: Stationary Auto-Tuning for Line-to-Line Resistance 3: Rotational Auto-Tuning for Line-to-Line Resistance 3: Rotational Auto-Tuning for V/f Control (necessary for Energy Savings and Speed Estimation Speed Search) 4: Stationary Auto-Tuning 2 5: Stationary Auto-Tuning 3 <2> 8: Inertia Tuning (perform Rotational Auto-Tuning prior to Inertia Tuning) 9: ASR Gain Tuning (perform Rotational Auto-Tuning prior to ASR Gain Auto-Tuning) Note: 1. Setting 5 is not available in models 4A0930 and 4A1200. 2. Settings 8 and 9 may not be available when gears are between the machine and the motor shaft.	Default: 0 <3> Range: 0 to 5; 8,	209
T1-02 (0702)	Motor Rated Power	Mtr Rated Power	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated power as specified on the motor nameplate. Note: Use the following formula to convert horsepower into kilowatts: 1HP = 0.746 kW.	Default: Min.: 0.00 kW Max.: 650.00 kW	209
T1-03 (0703)	Motor Rated Voltage	Rated Voltage	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated voltage as specified on the motor nameplate.	Default: 200.0 V <5> Min: 0.0 Max: 255.0 <5>	209
T1-04 (0704)	Motor Rated Current	Rated Current	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated current as specified on the motor nameplate.	Default: Min.: 10% of drive rated current Max.: 200% of drive rated current	209
T1-05 (0705)	Motor Base Frequency	Rated Frequency	OLV/PM AOLV/PM CLV/PM Sets the rated frequency of the motor as specified on the motor nameplate.	Default: 60.0 Hz Min.: 0.0 Max.: 400.0	209
T1-06 (0706)	Number of Motor Poles	Number of Poles	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of motor poles as specified on the motor nameplate.	Default: 4 Min.: 2 Max.: 48	210
T1-07 (0707)	Motor Base Speed	Rated Speed	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the rated speed of the motor as specified on the motor nameplate.	Default: 1750 r/ min Min.: 0 Max.: 24000	209

_
ā
だ
~
9
œ
F
ď۲
_

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
T1-08 (0708)	PG Number of Pulses Per Revolution	PG Pulses/Rev	V/f V/f w PG OLV CLV/PM AOLV/PM CLV/PM Sets the number of pulses per revolution for the PG being used (pulse generator or encoder).	Default: 1024 ppr Min.: 1 Max.: 60000	209
T1-09 (0709)	Motor No-Load Current (Stationary Auto- Tuning)	No-Load Current	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the no-load current for the motor. After setting the motor capacity to T1-02 and the motor rated current to T1-04, this parameter will automatically display the no-load current for a standard 4-pole Yaskawa motor. Enter the no-load current as indicated on the motor test report.	Default: – Min.: 0 A Max.: T1-04	210
T1-10 (070A)	Motor Rated Slip (Stationary Auto- Tuning)	Motor Rated Slip	V/f V/f w PG OLV CLV/PM OLV/PM CLV/PM Sets the motor rated slip. After setting the motor capacity to T1-02, this parameter will automatically display the motor slip for a standard 4-pole Yaskawa motor. Enter the motor slip as indicated on the motor test report.	Default: – Min.: 0.00 Hz Max.: 20.00 Hz	210
T1-11 (070B)	Motor Iron Loss	Mtr Iron Loss(W)	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the iron loss for determining the Energy Saving coefficient. The value is set to E2-10 (motor iron loss) set when the power is cycled. If T1-02 is changed, a default value appropriate for the motor capacity that was entered will appear.	Default: 14 W <6> Min.: 0 Max.: 65535	210

- <1> The availability of certain Auto-Tuning methods is determined by the control mode selected for the drive.
- <2> Available in drive software versions PRG: 1019 and later.
- <3> Default setting is determined by parameter A1-02, Control Method Setting.
- <4> Default setting is determined by parameter o2-04, Drive Model Selection.
- <5> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- <6> Default setting value differs depending on the motor code value and motor parameter settings.

◆ T2: PM Motor Auto-Tuning

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
T2-01 (0750)	PM Motor Auto-Tuning Mode Selection	PM Tuning Mode 0: Standard Tuning 1: Tune-No Rotate 2: Term Resistance 3: Z-Pulse Tuning 8: Inertia Tuning 9: Tune ASR gain 11: 13: 14:	OLV/PM AOLV/PM CLV/PM O: PM Motor Parameter Settings 1: PM Stationary Auto-Tuning 2: PM Stationary Auto-Tuning for Stator Resistance 3: Z Pulse Offset Tuning 8: Inertia Tuning 9: ASR Gain Auto-Tuning 11: Back EMF Constant Tuning 11: Back EMF Constant Tuning 14: PM Rotational Auto-Tuning 14: PM Rotational Auto-Tuning 1	Default: 0 Range: 0 to 3; 8, 9, 11, 13, 14	211
T2-02 (0751)	PM Motor Code Selection	PM Mtr Code Sel	OLV/PM AOLV/PM CLV/PM Enter the motor code when using a Yaskawa PM motor. After entering the motor code, the drive automatically sets parameters T2-03 through T2-14. When using a motor without a supported motor code or a non-Yaskawa motor, set FFFF and adjust the other T2 parameters according to the motor nameplate or the motor test report.	Default: <5> Min: 0000 Max: FFFF	211
T2-03 (0752)	PM Motor Type	PM Motor Type 0: IPM motor 1: SPM motor	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: IPM motor 1: SPM motor.	Default: 1 Range: 0, 1	211
T2-04 (0730)	PM Motor Rated Power	Mtr Rated Power	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated power. Note: Use the following formula to convert horsepower into kilowatts: 1HP = 0.746 kW.	Default: <6> Min.: 0.00 kW Max.: 650.00 kW	211
T2-05 (0732)	PM Motor Rated Voltage	Rated Voltage	OLV/PM AOLV/PM CLV/PM Enter the motor rated voltage as indicated on the motor nameplate.	Default: 200.0 V <7> Min.: 0.0 Max.: 255.0 <7>	212
T2-06 (0733)	PM Motor Rated Current	Rated Current	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Enter the motor rated current as indicated on the motor nameplate.	Default: 6 Min.: 10% of drive rated current Max.: 200% of drive rated current	212
T2-07 (0753)	PM Motor Base Frequency	Base Frequency	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Enter the motor base frequency as indicated on the motor nameplate.	Default: 87.5 Hz Min.: 0.0 Max.: 400.0	212

-
ดา
-
_
~
-

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
T2-08 (0734)	Number of PM Motor Poles	Number of Poles	OLV/PM AOLV/PM CLV/PM	Default: 6 Min.: 2 Max.: 48	212
T2-09 (0731)	PM Motor Base Speed	Rated Speed	OLV/PM AOLV/PM CLV/PM Enter the base speed for the PM motor as indicated on the motor.	Default: 1750 r/min Min.: 0 Max.: 24000	212
T2-10 (0754)	PM Motor Stator Resistance	Arm Resistance	OLV/PM AOLV/PM CLV/PM	Default: <8> Min.: 0.000 Ω Max.: 65.000 Ω	212
T2-11 (0735)	PM Motor d-Axis Inductance	d-Axis Induct	OLV/PM AOLV/PM CLV/PM Enter the d-axis inductance for the PM motor as indicated on the	Default: Min.: 0.00 mH Max.: 600.00 mH	212
T2-12 (0736)	PM Motor q-Axis Inductance	q-Axis Induct	OLV/PM AOLV/PM CLV/PM Enter the g-axis inductance for the PM motor as indicated on the	Default: SMin.: 0.00 mH Max.: 600.00 mH	212
T2-13 (0755)	Induced Voltage Constant Unit Selection	Iduct Volt Unit 0: mV/RPM 1: mV/(rad/sec)		Default: 1 Range: 0, 1	213
T2-14 (0737)	PM Motor Induced Voltage Constant	Induct Volt Coef	OLV/PM AOLV/PM CLV/PM	Default: <8> Min.: 0.0 Max.: 2000.0	213
T2-15 (0756)	Pull-In Current Level for PM Motor Tuning	Pull-In I Lvl	Sets the amount of null-in current to use for Auto-Tuning as a	Default: 30% Min.: 0 Max.: 120	213
T2-16 (0738)	PG Number of Pulses Per Revolution for PM Motor Tuning	PG Pulses/Rev	OLV/PM AOLV/PM CLV/PM Sets the number of pulses per revolution for the PG being used	Default: 1024 ppr Min.: 1 Max.: 15000	213
T2-17 (0757)	Encoder Z-Pulse Offset	Z-Pulse Offset	OLV/PM AOLV/PM CLV/PM	Default: 0.0 deg Min.: -180.0 Max.: 180.0	213

- <1> The availability of certain Auto-Tuning methods is determined by the control mode selected for the drive.
- Available in drive software versions PRG: 1015 and later.
- Available in drive software versions PRG: 1018 and later. <3>
- <4> Available in drive software versions PRG: 1019 and later.
- <5> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.
- <6> Default setting is determined by parameter o2-04, Drive Model Selection.
- Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- Default setting is determined by parameter T2-02, PM Motor Code Selection, and the drive capacity.

◆ T3: ASR and Inertia Tuning

No. (Addr. Hex)	Name	LCD Display	Description	Values	Page
T3-01 (0760)	Test Signal Frequency	Test Signal Freq	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the frequency of the test signal used during Inertia Tuning and ASR Gain Auto-Tuning. Reduce this value if the inertia is large or if a fault occurs.	Default: 3.0 Hz Min.: 0.1 Max.: 20.0	213
T3-02 (0761)	Test Signal Amplitude	Test Signal Ampl	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the amplitude of the test signal used during Inertia and ASR Gain Auto-Tuning. Reduce this value if the inertia is too large or if a fault occurs.	Default: 0.5 rad Min.: 0.1 Max.: 10.0	214
T3-03 (0762)	Motor Inertia	Motor Inertia	OLV/PM AOLV/PM CLV/PM Sets the motor inertia. Default setting is the inertia of a Yaskawa motor.	Default: <2> <3> Min.: 0.0001 kgm² Max.: 600.00 kgm²	214
T3-04 (0763) <1>	System Response Frequency	System Resp Freq	II OLV/DM II AOLV/DM I MANUALVI	Default: 10.0 Hz Min.: 0.1 Max.: 50.0	214

<1> Displayed only when performing Inertia Tuning or ASR Gain Auto-Tuning (T1-01 = 8 or T2-01 = 9).

<2> Default setting is determined by parameter E5-01, Motor Code Selection.

<3> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

B.15 U: Monitors

Monitor parameters allow the user to view drive status, fault information, and other data concerning drive operation.

◆ U1: Operation Status Monitors

No. (Addr. Hex)	Name		Description	Analog Output Level	Unit
U1-01 (0040)	Frequency Reference	Frequency Ref	All Modes Monitors the frequency reference. Display units are determined by o1-03.	10 V: Max frequency (-10 to +10 V)	0.01 Hz
U1-02 (0041)	Output Frequency	Output Freq	All Modes Displays the output frequency. Display units are determined by o1-03.	10 V: Max frequency (-10 to +10 V)	0.01 Hz
U1-03 (0042)	Output Current	Output Current	Displays the output current. Note: The unit is expressed in 1 A for models 4A0930 and 4A1200.	10 V: Drive rated current	<1> <2>
U1-04 (0043)	Control Method	Control Method	All Modes 0: V/f Control 1: V/f Control with PG 2: Open Loop Vector Control 3: Closed Loop Vector Control	No signal output available	_
U1-05 (0044)	Motor Speed	Motor Speed	OLV/PM AOLV/PM CLV/PM Displays the motor speed feedback. Display units are determined by o1-03.	10 V: Max frequency (-10 to +10 V)	0.01 Hz
U1-06 (0045)	Output Voltage Reference	Output Voltage	All Modes Displays the output voltage.	10 V: 200 Vrms	0.1 Vac
U1-07 (0046)	DC Bus Voltage	DC Bus Voltage	All Modes Displays the DC bus voltage.	10 V: 400 V	1 Vdc
U1-08 (0047)	Output Power	Output kWatts	All Modes Displays the output power (this value is calculated internally).	10 V: Drive capacity (motor capacity) kW (-10 to +10 V)	<4>
U1-09 (0048)	Torque Reference	Torque Reference	OLV/PM AOLV/PM CLV/PM Monitors the internal torque reference.	10 V: Motor rated torque (-10 to +10 V)	0.1%
U1-10 (0049)	Input Terminal Status	Input Term Sts	Displays the input terminal status. U1 - 10=0000000 U1 - 10=0000000 U1 - 1 Digital input 1 (terminal S1 enabled) 1 Digital input 2 (terminal S2 enabled) 1 Digital input 3 (terminal S4 enabled) 1 Digital input 5 (terminal S5 enabled) 1 Digital input 6 (terminal S6 enabled) 1 Digital input 7 (terminal S7 enabled) 1 Digital input 8 (terminal S8 enabled)	No signal output available	_

No. (Addr. Hex)	Name		Description	Analog Output Level	Unit
U1-11 (004A)	Output Terminal Status	Output Term Sts	Displays the output terminal status. U1 - 11 = 0000000	No signal output available	
U1-12 (004B)	Drive Status	Int Ctl Sts 1	Displays the drive operation status. U1 - 12=0000000 U1 - 1During run 1 During gero-speed 1 During fault reset signal input 1 During speed agree 1 Drive ready 1 During alarm detection 1 During fault detection	No signal output available	
U1-13 (004E)	Terminal A1 Input Level	Term A1 Level	All Modes Displays the signal level to analog input terminal A1.	10 V: 100% (-10 to +10 V)	0.1%
U1-14 (004F)	Terminal A2 Input Level	Term A2 Level	All Modes Displays the signal level to analog input terminal A2.	10 V: 100% (-10 to +10 V)	0.1%
U1-15 (0050)	Terminal A3 Input Level	Term A3 Level	All Modes Displays the signal level to analog input terminal A3.	10 V: 100% (-10 to +10 V)	0.1%
U1-16 (0053)	Output Frequency after Soft Starter	SFS Output	All Modes Displays output frequency with ramp time and S-curves. Units determined by o1-03.	10 V: Max frequency (-10 to +10 V)	0.01 Hz
U1-17 (0058)	DI-A3 Input Status	DI Opt Status	All Modes Displays the reference value input from the DI-A3 option card. Display will appear in hexadecimal as determined by the digital card input selection in F3-01. 3FFFF: Set (1 bit) + sign (1 bit) + 16 bit	No signal output available	_
U1-18 (0061)	oPE Fault Parameter	OPE Error Code	All Modes Displays the parameter number that caused the oPE02 or oPE08 operation error.	No signal output available	_
U1-19 (0066)	MEMOBUS/Modbus Error Code	Transmit Err	All Modes Displays the contents of a MEMOBUS/Modbus error. U1 - 19=0000000 1 CRC Error 1 Data Length Error 0 Not Used 1 Parity Error 1 Framing Error 1 Timed Out 0 Not Used	No signal output available	_

No. (Addr. Hex)	Name		Description	Analog Output Level	Unit
U1-21 (0077)	AI-A3 Terminal V1 Input Voltage Monitor	AI Opt Ch1 Level	All Modes Displays the input voltage to terminal V1 on analog input card AI-A3.	10 V: 100% (-10 to +10 V)	0.1%
U1-22 (072A)	AI-A3 Terminal V2 Input Voltage Monitor	AI Opt Ch2 Level	All Modes Displays the input voltage to terminal V2 on analog input card AI-A3.	10 V: 100% (-10 to +10 V)	0.1%
U1-23 (072B)	AI-A3 Terminal V3 Input Voltage Monitor	AI Opt Ch3 Level	All Modes Displays the input voltage to terminal V3 on analog input card AI-A3.	10 V: 100% (-10 to +10 V)	0.1%
U1-24 (007D)	Input Pulse Monitor	Term RP Inp Freq	All Modes Displays the frequency to pulse train input terminal RP.	Determined by H6-02	1 Hz
U1-25 (004D)	Software Number (Flash)	CPU 1 SW Number	All Modes FLASH ID	No signal output available	_
U1-26 (005B)	Software No. (ROM)	CPU 2 SW Number	All Modes ROM ID	No signal output available	-
U1-27 (07A8)	Message ID (OPR)	MessageID (OPR)	All Modes OPR ID	No signal output available	-
U1-28 (07A9)	Message ID (INV)	MessageID (INV)	All Modes INV ID	No signal output available	-
U1-29 (07AA)	Software No. (PWM)	CPU 3 SW Number	All Modes PWM ID Note: This monitor is only displayed in models 4A0930 and 4A1200.	No signal output available	_

- <1> Display is in the following units:
 - 2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.
 - 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.
 - 4A0930 and 4A1200: 1 A units.
- <2> The values of U1-03, U2-05, and U4-13 are displayed on the digital operator in units of amperes. When those monitors are checked using MEMOBUS/Modbus communications, the monitor values in MEMOBUS/Modbus communications are displayed as: numeric value / 8192 × drive rated current (A) from the condition "192 (maximum value) = drive rated current (A)"
- <3> Values shown are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.
- <4> In V/f and V/f w/PG control modes, 10 V = drive capacity (kW). In OLV, CLV, OLV/PM, AOLV/PM, and CLV/PM control modes, 10 V = motor rated power (E2-11) (kW).

U2: Fault Trace

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U2-01 (0080)	Current Fault	Current Fault	All Modes Displays the current fault.	No signal output available	_
U2-02 (0081)	Previous Fault	Last Fault	All Modes Displays the previous fault.	No signal output available	_
U2-03 (0082)	Frequency Reference at Previous Fault	Frequency Ref	All Modes Displays the frequency reference at the previous fault.	No signal output available	0.01 Hz
U2-04 (0083)	Output Frequency at Previous Fault	Output Freq	All Modes Displays the output frequency at the previous fault.	No signal output available	0.01 Hz
U2-05 (0084)	Output Current at Previous Fault	Output Current	Displays the output current at the previous fault. Note: The unit is expressed in 1 A for models 4A0930 and 4A1200.	No signal output available	<1> <2>

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U2-06 (0085)	Motor Speed at Previous Fault	Motor Speed	OLV/PM AOLV/PM CLV/PM Displays the motor speed at the previous fault.	No signal output available	0.01 Hz
U2-07 (0086)	Output Voltage at Previous Fault	Output Voltage	All Modes Displays the output voltage at the previous fault.	No signal output available	0.1 Vac
U2-08 (0087)	DC Bus Voltage at Previous Fault	DC Bus Voltage	All Modes Displays the DC bus voltage at the previous fault.	No signal output available	1 Vdc
U2-09 (0088)	Output Power at Previous Fault	Output kWatts	All Modes Displays the output power at the previous fault.	No signal output available	0.1 kW
U2-10 (0089)	Torque Reference at Previous Fault	Torque Reference	OLV/FM OLV/PM CLV/PM Displays the torque reference at the previous fault.	No signal output available	0.1%
U2-11 (008A)	Input Terminal Status at Previous Fault	Input Term Sts	All Modes Displays the input terminal status at the previous fault. Displayed as in U1-10.	No signal output available	_
U2-12 (008B)	Output Terminal Status at Previous Fault	Output Term Sts	All Modes Displays the output status at the previous fault. Displayed as in U1-11.	No signal output available	_
U2-13 (008C)	Drive Operation Status at Previous Fault	Inverter Status	All Modes Displays the operation status of the drive at the previous fault. Displayed as in U1-12.	No signal output available	_
U2-14 (008D)	Cumulative Operation Time at Previous Fault	Elapsed time	All Modes Displays the cumulative operation time at the previous fault.	No signal output available	1 h
U2-15 (07E0)	Run Speed after Soft Starter at Previous Fault	SFS Output	All Modes Displays the run speed after a soft start when a previous fault occurred. Displayed as in U1-16.	No signal output available	0.01 Hz
U2-16 (07E1)	Motor q-Axis Current at Previous Fault	Motor Iq Current	OLV/PM AOLV/PM CLV/PM Displays the q-axis current for the motor at the previous fault. Displayed as in U6-01.	No signal output available	0.1%
U2-17 (07E2)	Motor d-Axis Current at Previous Fault	Motor Id Current	OLV/PM AOLV/PM CLV/PM Displays the d-axis current for the motor at the previous fault. Displayed as in U6-02.	No signal output available	0.1%
U2-19 (07E4)	Rotor Deviation at Previous Fault	d-q Axis Dev Err	OLV/PM OLV CLV OLV/PM AOLV/PM CLV/PM Displays the degree of rotor deviation when the most recent fault occurred. Displayed as in U6-10.	No signal output available	0.1 deg
U2-20 (008E)	Heatsink Temperature at Previous Fault	Actual Fin Temp	All Modes Displays the temperature of the heatsink when the most recent fault occurred. Displayed as in U4-08.	No signal output available	1 °C
U2-27 (07FA)	Motor Temperature at Previous Fault (NTC)	Moter temp (NTC)	All Modes Displays the temperature of the motor when the most recent fault occurred. Displayed as in U4-32. Note: This monitor is only displayed in models 4A0930 and 4A1200.	No signal output available	1 °C
U2-28 (07FC)	Malfunctioned Module	Fault Axis	All Modes Display the module where the previous fault occurred at a decimal number. Note: This monitor is only displayed in models 4A0930 and 4A1200.	No signal output available	_

<1> Display is in the following units:

²A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.

²A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.

4A0930 and 4A1200: 1 A units.

The values of U1-03, U2-05, and U4-13 are displayed on the digital operator in units of amperes. When those monitors are checked using MEMOBUS/Modbus communications, the monitor values in MEMOBUS/Modbus communications are displayed as: numeric value / 8192 × drive rated current (A) from the condition "192 (maximum value) = drive rated current (A)"

U3: Fault History

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U3-01 to U3-04 (0090 to 0093 (0800 to 0803))	1st to 4th Most Recent Fault	Fault Message □	All Modes Displays the first to the fourth most recent faults.	No signal output available	-
U3-05 to U3-10 (0804 to 0809)	5th to 10th Most Recent Fault	Fault Message □	All Modes Displays the fifth to the tenth most recent faults. After ten faults, data for the oldest fault is deleted. The most recent fault appears in U3-01, with the next most recent fault appearing in U3-02. The data is moved to the next monitor parameter each time a fault occurs.	No signal output available	_
U3-11 to U3-14 (0094 to 0097 (080A to 080D))	Cumulative Operation Time at 1st to 4th Most Recent Fault	Elapsed Time □	All Modes Displays the cumulative operation time when the first to the fourth most recent faults occurred.	No signal output available	1 h
U3-15 to U3-20 (080E to 0813)	Cumulative Operation Time at 5th to 10th Most Recent Fault	Elapsed Time □	All Modes Displays the cumulative operation time when the fifth to the tenth most recent faults occurred.	No signal output available	1 h

◆ U4: Maintenance Monitors

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U4-01 (004C) <1>	Cumulative Operation Time	Drv Elapsed Time	All Modes Displays the cumulative operation time of the drive. The value for the cumulative operation time counter can be reset in parameter o4-01. Use parameter o4-02 to determine if the operation time should start as soon as the power is switched on or only while the Run command is present. The maximum number displayed is 99999, after which the value is reset to 0.	No signal output available	1 h
U4-02 (0075)	Number of Run Commands	RUN Cmd Counter	Displays the number of times the Run command is entered. Reset the number of Run commands using parameter 04-13. This value will reset to 0 and start counting again after reaching 65535.	No signal output available	1 Time
U4-03 (0067) <2>	Cooling Fan Operation Time	Fan Elapsed TIme	Displays the cumulative operation time of the cooling fan. The default value for the fan operation time is reset in parameter o4-03. This value will reset to 0 and start counting again after reaching 99999.	No signal output available	1 h
U4-04 (007E)	Cooling Fan Maintenance	Fan Life Mon	Displays main cooling fan usage time as a percentage of its expected performance life. Parameter 04-03 can be used to reset this monitor. Replace the fan when this monitor reaches 90%.	No signal output available	1%

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U4-05 (007C)	Capacitor Maintenance	Cap Life Mon	All Modes Displays main circuit capacitor usage time as a percentage of their expected performance life. Parameter o4-05 can be used to reset this monitor. Replace the capacitor when this monitor reaches 90%.	No signal output available	1%
U4-06 (07D6)	Soft Charge Bypass Relay Maintenance	ChgCirc Life Mon	Displays the soft charge bypass relay maintenance time as a percentage of its estimated performance life. Parameter o4-07 can be used to reset this monitor. Replace the soft charge bypass relay when this monitor reaches 90%.	No signal output available	1%
U4-07 (07D7)	IGBT Maintenance	IGBT Life Mon	Displays IGBT usage time as a percentage of the expected performance life. Parameter o4-09 can be used to reset this monitor. Replace the IGBT when this monitor reaches 90%.	No signal output available	1%
U4-08 (0068)	Heatsink Temperature	Heatsink Temp	All Modes Displays the heatsink temperature.	10 V: 100 °C	1 °C
U4-09 (005E)	LED Check	LED Oper Check	All Modes Lights all segments of the LED to verify that the display is working properly.	No signal output available	_
U4-10 (005C)	kWh, Lower 4 Digits	kWh Lower 4 dig	All Modes Monitors the drive cumulative output power usage. The value is	No signal output available	1 kWh
U4-11 (005D)	kWh, Upper 5 Digits	kWh Upper 5 dig	shown as a 9-digit number displayed across two monitors U4-10 and U4-11. Example: 12345678.9 kWh is displayed as: U4-10: 678.9 kWh U4-11: 12345 MWh	No signal output available	1 MWh
U4-13 (07CF)	Peak Hold Current	Current PeakHold	Displays the highest current value that occurred during run. Note: The unit is expressed in 1 A for models 4A0930 and 4A1200.	No signal output available	0.01 A <3> <4> <5>
U4-14 (07D0)	Peak Hold Output Frequency	Freq@ I PeakHold	All Modes Displays the output frequency when the current value shown in U4-13 occurred.	No signal output available	0.01 Hz
U4-16 (07D8)	Motor Overload Estimate (oL1)	Motor OL1 Level	All Modes Shows the value of the motor overload detection accumulator. 100% is equal to the oL1 detection level.	10 V: 100%	0.1%
U4-18 (07DA)	Frequency Reference Source Selection	Reference Source	Displays the source for the frequency reference as XY-nn. X: indicates which reference is used: 1 = Reference 1 (b1-01) 2 = Reference 2 (b1-15) Y-nn: indicates the reference source 0-01 = Digital operator 1-00 = Analog (Not displayed in models 4A0930 and 4A1200) 1-01 = Analog (terminal A1) 1-02 = Analog (terminal A2) 1-03 = Analog (terminal A3) 2-02 to 17 = Multi-step speed (d1-02 to 17) 3-01 = MEMOBUS/Modbus communications 4-01 = Communication option card 5-01 = Pulse input 7-01 = DWEZ 9-01 = Up/Down Command (Not displayed in models 4A0930 and 4A1200)	No signal output available	_

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U4-19 (07DB)	Frequency Reference from MEMOBUS/ Modbus Comm.	MEMOBUS Freq Ref	All Modes Displays the frequency reference provided by MEMOBUS/Modbus (decimal).	No signal output available	0.01%
U4-20 (07DC)	Option Frequency Reference	Option Freq Ref	All Modes Displays the frequency reference input by an option card (decimal).	No signal output available	_
U4-21 (07DD)	Run Command Source Selection	Run Cmd Source	Displays the source for the Run command as XY-nn. X: Indicates which Run source is used: 1 = Reference 1 (b1-02) 2 = Reference 2 (b1-16) Y: Input power supply data 0 = Digital operator 1 = External terminals 3 = MEMOBUS/Modbus communications 4 = Communication option card 7 = DWEZ nn: Run command limit status data 00: No limit status. 01: Run command was left on when stopped in the PRG mode 02: Run command was left on when switching from LOCAL to REMOTE operation 03: Waiting for soft charge bypass contactor after power up (Uv or Uv1 flashes after 10 s) 04: Waiting for "Run command prohibited" time period to end 05: Fast Stop (digital input, digital operator) 06: b1-17 (Run command given at power-up) 07: During baseblock while coast to stop with timer 08: Frequency reference is below minimal reference during baseblock 09: Waiting for Enter command	No signal output available	_
U4-22 (07DE)	MEMOBUS/Modbus Communications Reference	MEMOBUS Ref Reg	All Modes Displays the drive control data set by MEMOBUS/Modbus communications register no. 0001H as a four-digit hexadecimal number.	No signal output available	-
U4-23 (07DF)	Communication Option Card Reference	Option Ref Reg	All Modes Displays drive control data set by an option card as a four-digit hexadecimal number.	No signal output available	_
U4-32 (07FB)	Motor Temperature (NTC)	Moter temp (NTC)	Displays the motor temperature (NTC). U4-32 will display "20 °C" when a multi-function analog input is not set for motor thermistor input (H1-□□ = 17H). Note: This monitor is only displayed in models 4A0930 and 4A1200.		1°C
U4-37 (1044)	oH Alarm Location Monitor	OH Alarm Axis	Displays the module where the oH alarm occurred as a binary number. Note: This monitor is only displayed in models 4A0930 and 4A1200.	No signal output available	_
U4-38 (1045)	FAn Alarm Location Monitor	FAN Alarm Axis	Displays the module where the FAn alarm occurred as a binary number. Note: This monitor is only displayed in models 4A0930 and 4A1200.	No signal output available	_
U4-39 (1046)	voF Alarm Location Monitor	VOF Alarm Axis	All Modes Displays the module where the voF alarm occurred as a binary number. Note: This monitor is only displayed in models 4A0930 and 4A1200.	No signal output available	_

<1> The MEMOBUS/Modbus communications data is in 10 h units. If data in 1 h units are also required, refer to register number 0099H.

- <2> The MEMOBUS/Modbus communications data is in 10 h units. If data in 1 h units are also required, refer to register number 009BH.
- <3> Display is in the following units: 2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units. 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units. 4A0930 and 4A1200: 1 A units.
- <4> The values of U1-03, U2-05, and U4-13 are displayed on the digital operator in units of amperes. When those monitors are checked using MEMOBUS/Modbus communications, the monitor values in MEMOBUS/Modbus communications are displayed as: numeric value / 8192 × drive rated current (A) from the condition "192 (maximum value) = drive rated current (A)"
- <5> When reading the value of this monitor via MEMOBUS/Modbus a value of 8192 is equal to 100% of the drive rated output current.

U5: PID Monitors

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U5-01 (0057)	PID Feedback	PID Feedback 1	All Modes Displays the PID feedback value.	10 V: 100% (-10 to +10 V)	0.01%
U5-02 (0063)	PID Input	PID Input	All Modes Displays the amount of PID input (deviation between PID setpoint and feedback).	10 V: 100% (-10 to +10 V)	0.01%
U5-03 (0064)	PID Output	PID Output	All Modes Displays PID control output.	10 V: 100% (-10 to +10 V)	0.01%
U5-04 (0065)	PID Setpoint	PID Setpoint	All Modes Displays the PID setpoint.	10 V: 100% (-10 to +10 V)	0.01%
U5-05 (07D2)	PID Differential Feedback	PID Feedback 2	All Modes Displays the 2nd PID feedback value if differential feedback is used (H3- \square = 16).	10 V: 100% (-10 to +10 V)	0.01%
U5-06 (07D3)	PID Adjusted Feedback	PID Diff Fdbk	Displays the difference of both feedback values if differential feedback is used (U5-01 - U5-05). If differential feedback is not used, then U5-01 and U5-06 will be the same.	10 V: 100% (-10 to +10 V)	0.01%
U5-21 (0872) <1>	Automatically Calculated Energy Saving Coefficient Ki Value	Ki Auto Cal Val	OLV/PM AOLV/PM CLV/PM Displays the energy saving coefficient Ki value.	No signal output available	0.01
U5-22 (0873) <1>	Automatically Calculated Energy Saving Coefficient Kt Value	Kt Auto Cal Val	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Displays the energy saving coefficient Kt value.	No signal output available	0.01

<1> Available in drive software versions PRG: 1015 and later.

U6: Operation Status Monitors

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U6-01 (0051)	Motor Secondary Current (Iq)	Mot SEC Current	All Modes Displays the value of the motor secondary current (Iq). Motor rated secondary current is 100%.	10 V: Motor secondary rated current (-10 to +10 V)	0.1%
U6-02 (0052)	Motor Excitation Current (Id)	Mot EXC Current	OLV/PM AOLV/PM CLV/PM Displays the value calculated for the motor excitation current (Id). Motor rated secondary current is 100%.	10 V: Motor secondary rated current (-10 to +10 V)	0.1%
U6-03 (0054)	ASR Input	ASR Input	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM	10 V: Max frequency (-10 to +10 V)	
U6-04 (0055)	6-04 ASR Output ASR Output		Displays the input and output values when using ASR control.	10 V: Motor secondary rated current (-10 to +10 V)	0.01%

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U6-05 (0059)	Output Voltage Reference (Vq)	Voltage Ref (Vq)	OLV/PM AOLV/PM CLV/PM Output voltage reference (Vq) for the q-Axis.	10 V: 200 Vrms (-10 to +10 V)	0.1 Vac
U6-06 (005A)	Output Voltage Reference (Vd)	Voltage Ref (Vd)	OLV/PM AOLV/PM CLV/PM Output voltage reference (Vd) for the d-Axis.	10 V: 200 Vrms (-10 to +10 V)	0.1 Vac
U6-07 (005F)	q-Axis ACR Output	ACR(q) Output	OLV/FM OLV/PM CLV/PM Displays the output value for current control relative to motor secondary current (q-Axis).	10 V: 200 Vrms (-10 to +10 V)	0.1%
U6-08 (0060)	d-Axis ACR Output	ACR(d) Output	OLV/PM AOLV/PM CLV/PM Displays the output value for current control relative to motor secondary current (d-Axis).	110 V: 200 Vrms (-10 to +10 V)	0.1%
U6-09 (07C0)	Advance Phase Compensation (Δθ)	d-q Axis Comp		10 V: 180 deg -10 V: -180 deg (-10 to +10 V)	0.1 deg
U6-10 (07C1)	Control Axis Deviation $(\Delta\theta)$	d-q Axis Devt	V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Displays the amount of deviation between the actual d-Axis / q-Axis and the γ-Axis / δ-Axis used for motor control.	10 V: 180 deg -10 V: -180 deg (-10 to +10 V)	0.1 deg
U6-13 (07CA)	Flux Position Detection (sensor)	FluxPosition Fb	OLV/PM AOLV/PM CLV/PM Monitors the value of the flux position detection (sensor).	10 V: 180 deg -10 V: -180 deg (-10 to +10 V)	0.1 deg
U6-14 (07CB)	Flux Position Estimation (observer)	FluxPosition Est	OLV/PM AOLV/PM CLV/PM Monitors the value of the flux position estimation.	10 V: 180 deg -10 V: -180 deg (-10 to +10 V)	0.1 deg
U6-18 (07CD)	Speed Detection PG1 Counter	PG1 CounterValue	All Modes Monitors the number of pulses for speed detection (PG1).	10 V: 65536	1 pulse
U6-19 (07E5)	Speed Detection PG2 Counter	PG2 CounterValue	All Modes Monitors the number of pulses for speed detection (PG2).	10 V: 65536	1 pulse
U6-20 (07D4)	Frequency Reference Bias (Up/Down 2)	Up/Dn 2 Bias Val	All Modes Displays the bias value used to adjust the frequency reference.	10 V: Max frequency	0.1%
U6-21 (07D5)	Offset Frequency	Offset Frequency	All Modes Displays the total value of the offset frequencies d7-01, d7-02 and d7-03 selected with digital inputs 44 to 46.	10 V: Max frequency	0.1%
U6-22 (0062)	Zero Servo Pulse Movement	Zero Servo Pulse	OLV/PM AOLV/PM CLV/PM Displays how far the rotor has moved from its last position in PG pulses (multiplied by 4).	10 V: No. of pulses per revolution (-10 to +10 V)	1 pulse
U6-25 (006B)	Feedback Control Output	ASR Out w/o Fil	OLV/PM AOLV/PM CLV/PM Output monitor for the ASR speed loop.	10 V: Motor secondary rated current (-10 to +10 V)	0.01%
U6-26 (006C)	Feed Forward Control Output	FF Cont Output	OLV/PM AOLV/PM CLV/PM Output monitor for Feed Forward control.	10 V: Motor secondary rated current (-10 to +10 V)	0.01%

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
U6-57 (07C4)	Integrated Current Deviation during Judging Polarity	PoleDis IdDifVal	OLV/PM AOLV/PM CLV/PM Displays the deviation from the integrated current when judging motor polarity. If this value is lower than 819, then increase the value set to n8-84. The value 8192 is equivalent to the motor rated current.	No signal output available	1
U6-80 to U6-83 (07B0H to 07B3)	Online IP Address	_	All Modes IP Address currently available; U6-80 is the most significant octet.	0 to 255	-
U6-84 to U6-87 (07B4 to 07B7) <2>	Online Subnet	-	All Modes Subnet currently available; U6-84 is the most significant octet.	0 to 255	-
U6-88 to U6-91 (07B8 to 07F1) <2>	Online Gateway	-	All Modes Gateway currently available; U6-88 is the most significant octet.	0 to 255	-
U6-92 (07F2) <2>	Online Speed	-	All Modes Link Speed	10: 10 Mbps 100: 100 Mbps	_
U6-93 (07F3) <2>	Online Duplex	-	All Modes Duplex Setting	0: Half 1: Full	_
U6-98 (07F8) <2>	First Fault	-	All Modes First Option Fault	_	-
U6-99 (07F9) <2>	Current Fault	-	All Modes Current Option Fault	_	-

<1> Values shown are specific to 200 V class drives. Double the values for 400 V class drives. Multiply the values by 2.875 for 600 V class drives.

Note: Fault histories are not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, or Uv3 occur.

◆ U8: DriveWorksEZ Monitors

No. (Addr. Hex)	Name	LCD Display	Description	Analog Output Level	Unit
	DriveWorksEZ Custom Monitor 1 to 10	_	All Modes DriveWorksEZ Custom Monitor 1 to 10	10 V: 100%	0.01%
	DriveWorksEZ Version Control Monitor 1 to 3	-	All Modes DriveWorksEZ Version Control Monitor 1 to 3	No signal output available	-
	DriveWorksEZ Pro Monitors	_	All Modes DriveWorksEZ Pro Monitors. Refer to the DWEZ Pro Help file for details.		_

<2> Available in drive software versions PRG: 1018 and later.

B.16 Control Mode Dependent Parameter Default Values

The tables below list parameters that depend on the control mode selection (A1-02 for motor 1, E3-01 for motor 2). Changing the control mode initializes these parameters to the values shown here.

◆ A1-02 (Motor 1 Control Mode) Dependent Parameters

Table B.4 A1-02 (Motor 1 Control Mode) Dependent Parameters and Default Values

NI.	No.	0.4" - D			Control Mod	des (A1-02)	
No.	Name	Setting Range	Resolution	V/f (0)	V/f w/PG (1)	OLV (2)	CLV (3)
b2-01	DC Injection Braking Start Frequency	0.0 to 10.0	0.1 Hz	0.5	0.5	0.5	0.5
b2-04	DC Injection Braking Time at Stop	0.00 to 10.00	0.01 s	0.50	0.50	0.50	0.50
b3-01	Speed Search Selection at Start	0 to 1	-	0	1	0	1
b3-02	Speed Search Deactivation Current	0 to 200	1%	120	_	100	-
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	0.00 to 6.00	-	<1>	<1>	<1>	<1>
b3-14	Bi-Directional Speed Search Selection	0 to 1	1	1	0	1	1
b5-15	PID Sleep Function Start Level	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
b6-01	Dwell Reference at Start	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
b6-03	Dwell Reference at Stop	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
b8-01	Energy Saving Control Selection	0 to 1	-	0	0	0	0
b8-02	Energy Saving Gain	0.0 to 10.0	0.1	_	_	0.7	1.0
b8-03	Energy Saving Control Filter Time Constant	0.00 to 10.00	0.01 s	_	_	0.50 <2>	0.01 <2>
C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
C2-01	S-Curve Time at Acceleration Start	0.00 to 10.00	0.01 s	0.20	0.20	0.20	0.20
C3-01	Slip Compensation Gain	0.0 to 2.5	0.1	0.0	_	1.0	1.0
C3-02	Slip Compensation Primary Delay Time	0 to 10000	1 ms	2000	_	200	_
C4-01	Torque Compensation Gain	0.00 to 2.50	0.01	1.00	1.00	1.00	_
C4-02	Torque Compensation Primary Delay Time	0 to 10000	1 ms	200 <3>	200 <3>	20	_
C5-01	ASR Proportional Gain 1	0.00 to 300.00	0.01		0.20		20.00
C5-02	ASR Integral Time 1	0.000 to 10.000	0.001 s	_	0.200		0.500
C5-03	ASR Proportional Gain 2	0.00 to 300.00	0.01	_	0.02	_	20.00
C5-04	ASR Integral Time 2	0.000 to 10.000	0.001 s	_	0.050	_	0.500
C5-06	ASR Primary Delay Time Constant	0.000 to 0.500	0.001 s	_	_		0.004
C5-07	ASR Gain Switching Frequency	0.0 to 400.0	0.1	_	_	_	0.0 Hz
C6-02	Carrier Frequency Selection	1 to F	_	7 <4>	7 <4>	7 <4>	7
d3-01	Jump Frequency 1	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
d3-02	Jump Frequency 2	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
d3-03	Jump Frequency 3	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
d3-04	Jump Frequency Width	0.0 to 20.0	0.1	1.0 Hz	1.0 Hz	1.0 Hz	1.0 Hz
d5-02	Torque Reference Delay Time	0 to 1000	1 ms		_		0
E1-04	Maximum Output Frequency	40.0 to 400.0	0.1 Hz	60.0	60.0	60.0	60.0
E1-05	Maximum Voltage	0.0 to 255.0 <5>	0.1 V	575 <6>	575 <6>	575	575
E1-06	Base Frequency	0.0 to 400.0	0.1 Hz	60.0	60.0	60.0	60.0
E1-07	Middle Output Frequency	0.0 to 400.0	0.1 Hz	3.0	3.0	3.0	3.0
E1-08	Middle Output Frequency Voltage	0.0 to 255.0 <5>	0.1 V	15.0 <6>	15.0 <6>	15.0	15.0
E1-09	Minimum Output Frequency	0.0 to 400.0	0.1 V 0.1 Hz	1.5	1.5	0.5	0.0
	Minimum Output Frequency Voltage	0.0 to 255.0 <5>			9.0		
E1-10			0.1 V	9.0		2.0	0.0
F1-01	PG 1 Pulses Per Revolution	0 to 60000	1 ppr	_	600		600
F1-05	PG 1 Rotation Selection	0 to 1	-	-	0	_	0
F1-09	Overspeed Detection Delay Time	0.0 to 2.0	0.1 s	-	1.0		0.0
L1-01	Motor Overload Protection Selection	0 to 4	-	1 100	1	1 0.30	1 0.20
L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	0.01	1.00	1.00	0.30	0.30

Nia	Nome	Coffing Dongs	Deschrien		Control Mod	des (A1-02)	
No.	Name	Setting Range	Resolution	V/f (0)	V/f w/PG (1)	OLV (2)	CLV (3)
L3-21	Accel/Decel Rate Calculation Gain	0.10 to 10.00	0.01	1.00	1.00	1.00	1.00
L3-34	Torque Limit Delay Time	0.000 to 1.000	0.001 s	_	_	-	-
L4-01	Speed Agree Detection Level	0.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
L4-02	Speed Agree Detection Width	0.0 to 20.0	0.1 Hz	2.0	2.0	2.0	2.0
L4-03	Speed Agree Detection Level (+/-)	-400.0 to 400.0	0.1	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz
L4-04	Speed Agree Detection Width (+/-)	0.0 to 20.0	0.1 Hz	2.0	2.0	2.0	2.0
L8-38	Carrier Frequency Reduction Selection	0 to 2	_	<4>	<4>	<4>	<4>
L8-40	Carrier Frequency Reduction Off Delay Time	0.00 to 2.00	0.01 s	0.50	0.50	0.50	0.50
01-03	Digital Operator Display Selection	0 to 3	_	0	0	0	0
01-04	V/f Pattern Display Unit	0 to 1	=	_	_		0

- <1> Default setting value is determined by parameter o2-04, Drive Model Selection.
- This setting value depends on a Maximum Applicable Motor Capacity in models 2A0250 to 2A0415, 4A0139 to 4A1200, and 5A0099 to 5A0242: 2.00 in Open Loop Vector Control, 0.05 in Closed Loop Vector Control.
- <3> This setting value depends on a Maximum Applicable Motor Capacity: 1000 ms in models 2A0138 to 2A0415, 4A0139 to 4A1200, and 5A0099 to 5A0242
- <4> Default setting is dependent on parameter C6-01, Drive Duty Selection.
- <5> Values shown are specific to 200 V class drives. Double the values for 400 V class drives. Multiply the values by 2.875 for 600 V class drives.
- <6> This setting value depends on a Maximum Applicable Motor Capacity and V/f pattern selection in parameter E1-03.

Table B.5 A1-02 (Motor 1 Control Mode) Dependent Parameters and Default Values

NI-	Name	Catting Dance	Deschution	C	ontrol Modes (A1-0	(2)
No.	Name	Setting Range	Resolution	OLV/PM (5)	AOLV/PM (6)	CLV/PM (7)
b2-01	DC Injection Braking Start Frequency	0.0 to 10.0	0.1 Hz	0.5 Hz	1.0% <1>	0.5% <1>
b2-04	DC Injection Braking Time at Stop	0.00 to 10.00	0.01 s	0.00	0.00	0.00
b3-01	Speed Search Selection at Start	0 to 1	_	0	0	1
b3-02	Speed Search Deactivation Current	0 to 200	1%	-	-	-
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	0.00 to 6.00	_	0.3	0.3	0.3
b3-14	Bi-Directional Speed Search Selection	0 to 1	_	1	1	1
b5-15	PID Sleep Function Start Level	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
b6-01	Dwell Reference at Start	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
b6-03	Dwell Reference at Stop	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
b8-01	Energy Saving Control Selection	0 to 1	_	_	1	1
b8-02	Energy Saving Gain	0.0 to 10.0	0.1	_	-	_
b8-03	Energy Saving Control Filter Time Constant	0.00 to 10.00	0.01 s	-	-	_
C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
C2-01	S-Curve Time at Acceleration Start	0.00 to 10.00	0.01 s	1.00	0.20	0.20
C3-01	Slip Compensation Gain	0.0 to 2.5	0.1	-	-	_
C3-02	Slip Compensation Primary Delay Time	0 to 10000	1 ms	-	-	_
C4-01	Torque Compensation Gain	0.00 to 2.50	0.01	0.00	-	_
C4-02	Torque Compensation Primary Delay Time	0 to 10000	1 ms	100	_	_
C5-01	ASR Proportional Gain 1	0.00 to 300.00	0.01	_	10.00	20.00
C5-02	ASR Integral Time 1	0.000 to 10.000	0.001 s	_	0.500	0.500
C5-03	ASR Proportional Gain 2	0.00 to 300.00	0.01	_	10.00	20.00
C5-04	ASR Integral Time 2	0.000 to 10.000	0.001 s	_	0.500	0.500
C5-06	ASR Primary Delay Time Constant	0.000 to 0.500	0.001 s	_	0.016	0.004
C5-07	ASR Gain Switching Frequency	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
C6-02	Carrier Frequency Selection	1 to F	_	2	2	2
d3-01	Jump Frequency 1	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
d3-02	Jump Frequency 2	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%

NI-	N	0-45	Deschatten	Co	ontrol Modes (A1-0)2)
No.	Name	Setting Range	Resolution	OLV/PM (5)	AOLV/PM (6)	CLV/PM (7)
d3-03	Jump Frequency 3	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
d3-04	Jump Frequency Width	0.0 to 20.0 <3>	0.1	1.0 Hz	1.0%	1.0%
d5-02	Torque Reference Delay Time	0 to 1000	1 ms	-	_	_
E1-04	Maximum Output Frequency	40.0 to 400.0	0.1 Hz	<4>	<4>	<4>
E1-05	Maximum Voltage	0.0 to 377.1 <5>	0.1 V	<4>	<4>	<4>
E1-06	Base Frequency	0.0 to 400.0	0.1 Hz	<4>	<4>	<4>
E1-07	Middle Output Frequency	0.0 to 400.0	0.1 Hz	_	_	_
E1-08	Middle Output Frequency Voltage	0.0 to 377.1 <5>	0.1 V	-	_	_
E1-09	Minimum Output Frequency	0.0 to 400.0	0.1 Hz	<4>	<4>	0.0
E1-10	Minimum Output Frequency Voltage	0.0 to 377.1 <5>	0.1 V	_	_	_
F1-01	PG 1 Pulses Per Revolution	0 to 60000	1 ppr	-	_	1024
F1-05	PG 1 Rotation Selection	0 to 1	-	1	1	1
F1-09	Overspeed Detection Delay Time	0.0 to 2.0	0.1 s	-	0.0	0.0
L1-01	Motor Overload Protection Selection	0 to 6	=	4	4	5
L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	0.01	0.65	0.65	0.65
L3-21	Accel/Decel Rate Calculation Gain	0.10 to 10.00	0.01	1.00	1.00	1.00
L3-34	Torque Limit Delay Time	0.000 to 1.000	0.001 s	-	0.200	0.020
L4-01	Speed Agree Detection Level	0.0 to 400.0 Hz <2>	0.1	0.0 Hz	0.0%	0.0%
L4-02	Speed Agree Detection Width	0.0 to 20.0	0.1 Hz	2.0 Hz	4.0% <1>	4.0% <1>
L4-03	Speed Agree Detection Level (+/-)	0.0 to 400.0 Hz <6>	0.1	0.0 Hz	0.0%	0.0%
L4-04	Speed Agree Detection Width (+/-)	0.0 to 20.0	0.1 Hz	2.0 Hz	4.0% <1>	4.0% <1>
L8-38	Carrier Frequency Reduction Selection	0 to 2	_	0	_	0
L8-40	Carrier Frequency Reduction Off Delay Time	0.00 to 2.00	0.01 s	0.00	-	0.00
o1-03	Digital Operator Display Selection	0 to 3	-	0	1	1
01-04	V/f Pattern Display Unit	0 to 1	-	-	1	1

- <1> Value calculated as a percentage of the maximum output frequency.
- <2> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%) instead of in Hz.
- <3> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 40.0%) instead of in Hz.
- <4> Default setting is dependent on parameter E5-01, Motor Code Selection.
- <5> Values shown are specific to 200 V class drives. Double the values for 400 V class drives. Multiply the values by 2.875 for 600 V class drives.
- <6> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (-100.0 to 100.0%) instead of in Hz.

◆ E3-01 (Motor 2 Control Mode) Dependent Parameters

Table B.6 E3-01 (Motor 2 Control Mode) Dependent Parameters and Default Values

Na	Nome	Cotting Bongs	Besslution		Control Mod	des (E3-01)	
No.	Name	Setting Range	Resolution	V/f (0)	V/f w/PG (1)	OLV (2)	CLV (3) 1.0 - 20.00 0.500 20.00 0.500 7 < 1 > 60.0 200.0 60.0 0.0 0.0 0.0 0.0
C3-21	Motor 2 Slip Compensation Gain	0.0 to 2.5	0.1	0.0	_	1.0	1.0
C3-22	Motor 2 Slip Compensation Primary Delay Time	0 to 10000	1 ms	2000	-	200	_
C5-21	Motor 2 ASR Proportional Gain 1	0.00 to 300.00	0.01	-	0.20	=	20.00
C5-22	Motor 2 ASR Integral Time 1	0.000 to 10.000	0.001 s	-	0.200	=	0.500
C5-23	Motor 2 Proportional Gain 2	0.00 to 300.00	0.01	_	0.02	-	20.00
C5-24	Motor 2 ASR Integral Time 2	0.000 to 10.000	0.001 s	-	0.050	=	0.500
C5-26	Motor 2 Carrier Frequency Selection	1 to F	_	7 < 1 >			
E3-04	Motor 2 Maximum Output Frequency	40.0 to 400.0	0.1 Hz	60.0	60.0	60.0	60.0
E3-05	Motor 2 Maximum Output Voltage <2>	0.0 to 255.0	0.1 V	200.0	200.0	200.0	200.0
E3-06	Motor 2 Base Frequency	0.0 to 400.0	0.1 Hz	60.0	60.0	60.0	60.0
E3-07	Motor 2 Mid Output Frequency	0.0 to 400.0	0.1 Hz	3.0	3.0	3.0	0.0
E3-08	Motor 2 Mid Output Frequency Voltage <2>	0.0 to 255.0	0.1 V	15.0	15.0	11.0	0.0
E3-09	Motor 2 Minimum Output Frequency	0.0 to 400.0	0.1 Hz	1.5	1.5	0.5	0.0
E3-10	Motor 2 Minimum Output Voltage <2>	0.0 to 255.0	0.1 V	9.0	9.0	2.0	0.0

<1> Default setting is determined by parameters o2-04, Drive Model Selection, and C6-01, Drive Duty Selection.

<2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

B.17 V/f Pattern Default Values

The following tables show the V/f pattern setting default values depending on the control mode (A1-02) and the V/f pattern selection (E1-03 in V/f Control).

Table B.7 E1-03 V/f Pattern Settings for Drive Capacity: Models 2A0004 to 2A0021, 4A0002 to 4A0011, and 5A0003 to 5A0009

No.	Unit								V/f C	ontrol									
E1-03	-	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F <1>	OLV	CLV
E1-04	Hz	50.0	60.0	60.0	72.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	90.0	120.0	180.0	60.0	60.0	60.0
E1-05 <2>	V	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	230.0	230.0	230.0
E1-06	Hz	50.0	60.0	50.0	60.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	_
E1-07	Hz	2.5	3.0	3.0	3.0	25.0	25.0	30.0	30.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	_
E1-08	V	15.0	15.0	15.0	15.0	35.0	50.0	35.0	50.0	19.0	24.0	19.0	24.0	15.0	15.0	15.0	17.3	13.8	_
E1-09	Hz	1.3	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	0.5	_
E1-10 <2>	V	9.0	9.0	9.0	9.0	8.0	9.0	8.0	9.0	11.0	13.0	11.0	15.0	9.0	9.0	9.0	10.2	2.9	ı

<1> This value determines the default values for E1-04 through E1-10 (E3-04 through E3-10 for motor 2).

Table B.8 E1-03 V/f Pattern Settings for Drive Capacity: Models 2A0030 to 2A0211, 4A0018 to 4A0103, and 5A0011 to 5A0077

No.	Unit								V/f C	ontrol									
E1-03	-	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F <1>	OLV	CLV
E1-04	Hz	50.0	60.0	60.0	72.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	90.0	120.0	180.0	60.0	60.0	60.0
E1-05 <2>	V	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	230.0	230.0	230.0
E1-06	Hz	50.0	60.0	50.0	60.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	-
E1-07	Hz	2.5	3.0	3.0	3.0	25.0	25.0	30.0	30.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	-
E1-08	V	14.0	14.0	14.0	14.0	35.0	50.0	35.0	50.0	18.0	23.0	18.0	23.0	14.0	14.0	14.0	16.1	12.7	_
E1-09	Hz	1.3	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	0.5	-
E1-10 <2>	V	7.0	7.0	7.0	7.0	6.0	7.0	6.0	7.0	9.0	11.0	9.0	13.0	7.0	7.0	7.0	8.1	2.3	_

<1> This value determines the default values for E1-04 through E1-10 (E3-04 through E3-10 for motor 2).

Table B.9 E1-03 V/f Pattern Settings for Drive Capacity:Models 2A0250 to 2A0415, 4A0139 to 4A1200, and 5A0099 to 5A0242

						4/	40139	10 4A I	200, a	nu sau	วบฮฮ เบ	JAUZ4	+2						
No.	Unit								V/f C	ontrol									
E1-03	-	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F <1>	OLV	CLV
E1-04	Hz	50.0	60.0	60.0	72.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	90.0	120.0	180.0	60.0	60.0	60.0
E1-05 <2>	V	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	230.0	230.0	230.0
E1-06	Hz	50.0	60.0	50.0	60.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	-
E1-07	Hz	2.5	3.0	3.0	3.0	25.0	25.0	30.0	30.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	-
E1-08 <2>	V	12.0	12.0	12.0	12.0	35.0	50.0	35.0	50.0	15.0	20.0	15.0	20.0	12.0	12.0	12.0	13.8	12.7	-
E1-09	Hz	1.3	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	0.5	-

<2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

<2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

B.17 V/f Pattern Default Values

No.	Unit								V/f C	ontrol									
E1-03	-	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F <1>	OLV	CLV
E1-10 <2>	V	6.0	6.0	6.0	6.0	5.0	6.0	5.0	6.0	7.0	9.0	7.0	11.0	6.0	6.0	6.0	6.9	2.3	-

<1> This value determines the default values for E1-04 through E1-10 (E3-04 through E3-10 for motor 2).

<2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives. Multiply the value by 2.875 for 600 V class drives.

677

B.18 Defaults by Drive Model and Duty Rating ND/HD

The following tables show parameters and default settings that change with the drive model selection (o2-04) and drive duty selection (C6-01). Parameter numbers shown in parenthesis are valid for motor 2.

Table B.10 200 V Class Drives Default Settings by Drive Model Selection and ND/HD settings

No.	Name	Unit				Default	Settings			
_	Drive Model	_	2A0	004	2A0	0006	2A0	800	2A0	0010
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	6	2	6	3	6	4	6	55
E2-11 (E4-11)	Motor Rated Output	kW (HP)	0.4 (0.75)	0.75 (0.75)	0.75 (1)	1.1 (1)	1.1 (2)	1.5 (2)	1.5 (2)	2.2 (3)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	_	1	1	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	_	_	_	_	-	I	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	_	_	_	_	_	_	_	_	_
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	_	288.2	223.7	223.7	196.6	196.6	169.4	169.4	156.8
C5-17 (C5-37)	Motor Inertia	kgm ²	0.0015	0.0028	0.0028	0.0068	0.0068	0.0068	0.0068	0.0088
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	1.9	3.3	3.3	4.9	4.9	6.2	6.2	8.5
E2-02 (E4-02)	Motor Rated Slip	Hz	2.9	2.5	2.5	2.6	2.6	2.6	2.6	2.9
E2-03 (E4-03)	Motor No-Load Current	A	1.2	1.8	1.8	2.3	2.3	2.8	2.8	3
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	9.842	5.156	5.156	3.577	3.577	1.997	1.997	1.601
E2-06 (E4-06)	Motor Leakage Inductance	%	18.2	13.8	13.8	18.5	18.5	18.5	18.5	18.4
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	14	26	26	38	38	53	53	77
E5-01	Motor Code Selection (for PM Motors)	Hex.	1202	1202	1203	1203	FFFF	FFFF	1205	1205
L2-02	Momentary Power Loss Ride-Thru Time	S	0.1	0.1	0.2	0.2	0.3	0.3	0.3	0.3
L2-03	Momentary Power Loss Minimum Baseblock Time	s	0.2	0.3	0.3	0.4	0.4	0.4	0.4	0.5
L2-04	Momentary Power Loss Voltage Recovery Time	s	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.178	0.142	0.142	0.142	0.142	0.166	0.166	0.145
L8-02	Overheat Alarm Level	°C	115	115	115	115	115	115	115	115
L8-35	Installation Method Selection	_	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.178	0.142	0.142	0.142	0.142	0.166	0.166	0.145

<1> This parameter is available in models 4A0930 and 4A1200.

B.18 Defaults by Drive Model and Duty Rating ND/HD

No.	Name	Unit				Default	Settings			
_	Drive Model	_	2A0	012	2A0	018	2A0	021	2A0	030
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	6	6	6	7	6	8	6	A
E2-11 (E4-11)	Motor Rated Output	kW (HP)	2.2 (3)	3.0 (3)	3.0 (3)	3.7 (5)	3.7 (5)	5.5 (7.5)	5.5 (7.5)	7.5 (10)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	ı	_	_	_	_	-	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	-	_	_	-	-	-	-	_
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	_	156.8	136.4	136.4	122.9	122.9	94.8	94.8	72.69
C5-17 (C5-37)	Motor Inertia	kgm ²	0.0088	0.0158	0.0158	0.0158	0.0158	0.0255	0.026	0.037
C6-02	Carrier Frequency Selection	-	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	8.5	11.4	11.4	14	14	19.6	19.6	26.6
E2-02 (E4-02)	Motor Rated Slip	Hz	2.9	2.7	2.7	2.73	2.73	1.5	1.5	1.3
E2-03 (E4-03)	Motor No-Load Current	A	3	3.7	3.7	4.5	4.5	5.1	5.1	8
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	1.601	1.034	1.034	0.771	0.771	0.399	0.399	0.288
E2-06 (E4-06)	Motor Leakage Inductance	%	18.4	19	19	19.6	19.6	18.2	18.2	15.5
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	77	91	91	112	112	172	172	262
E5-01	Motor Code Selection (for PM Motors)	Hex.	1206	1206	FFFF	FFFF	1208	1208	120A	120A
L2-02	Momentary Power Loss Ride-Thru Time	S	0.5	0.5	1	1	1	1	1	1
L2-03	Momentary Power Loss Minimum Baseblock Time	S	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8
L2-04	Momentary Power Loss Voltage Recovery Time	S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.145	0.145	0.145	0.154	0.154	0.168	0.168	0.175
L8-02	Overheat Alarm Level	°C	125	125	110	110	110	110	120	120
L8-35	Installation Method Selection	_	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.145	0.145	0.145	0.154	0.154	0.168	0.168	0.175

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit				Default	Settings			
-	Drive Model	-	2A0	040	2A0	056	2A0	069	2A0	0081
C6-01	Drive Duty Selection	-	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	6	В	6	D	6	E	6	F
E2-11 (E4-11)	Motor Rated Power	kW (HP)	7.5 (10)	11 (15)	11 (15)	15 (20)	15 (20)	18.5 (25)	18.5 (25)	22 (30)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	_	_	_	_	_	-	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	-	_	_	_	_	-	_	_
b8-03	Energy Saving Control Filter Time Constant	s	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	-	72.69	70.44	70.44	63.13	63.13	57.87	57.87	51.79
C5-17 (C5-37)	Motor Inertia	kgm ²	0.037	0.053	0.053	0.076	0.076	0.138	0.138	0.165
C6-02	Carrier Frequency Selection	-	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	26.6	39.7	39.7	53	53	65.8	65.8	77.2
E2-02 (E4-02)	Motor Rated Slip	Hz	1.3	1.7	1.7	1.6	1.6	1.67	1.67	1.7
E2-03 (E4-03)	Motor No-Load Current	A	8	11.2	11.2	15.2	15.2	15.7	15.7	18.5
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.288	0.23	0.23	0.138	0.138	0.101	0.101	0.079
E2-06 (E4-06)	Motor Leakage Inductance	%	15.5	19.5	19.5	17.2	17.2	15.7	20.1	19.5
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	262	245	245	272	272	505	505	538
E5-01	Motor Code Selection (for PM Motors)	Hex.	120B	120B	120D	120D	120E	120E	120F	120F
L2-02	Momentary Power Loss Ride-Thru Time	S	1	1	2	2	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	s	0.8	0.9	0.9	1	1	1	1	1
L2-04	Momentary Power Loss Voltage Recovery Time	S	0.3	0.3	0.3	0.6	0.6	0.6	0.6	0.6
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.175	0.265	0.265	0.244	0.244	0.317	0.317	0.355
L8-02	Overheat Alarm Level	°C	125	125	120	120	120	120	125	125
L8-35	Installation Method Selection	-	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.175	0.265	0.265	0.244	0.244	0.317	0.317	0.355

<1> This parameter is available in models 4A0930 and 4A1200.

B.18 Defaults by Drive Model and Duty Rating ND/HD

No.	Name	Unit				Default	Settings			
_	Drive Model	-	2A0	110	2A0	138	2A0	169	2A0	211
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND	HD	ND
02-04	Drive Model Selection	Hex.	7	0	7	2	7	3	7	4
E2-11 (E4-11)	Motor Rated Power	kW (HP)	22 (30)	30 (40)	30 (40)	37 (50)	37 (50)	45 (60)	45 (60)	55 (75)
b3-04	V/f Gain during Speed Search	%	100	80	80	80	80	80	80	80
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	_	_	_	_	_	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	_	_	_	-	-	-	-	-
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	0.50	0.50	2.00
b8-04	Energy Saving Coefficient Value	_	51.79	46.27	46.27	38.16	38.16	35.78	35.78	31.35
C5-17 (C5-37)	Motor Inertia	kgm ²	0.165	0.220	0.220	0.273	0.273	0.333	0.333	0.490
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	77.2	105	105	131	131	160	160	190
E2-02 (E4-02)	Motor Rated Slip	Hz	1.7	1.8	1.8	1.33	1.33	1.6	1.6	1.43
E2-03 (E4-03)	Motor No-Load Current	A	18.5	21.9	21.9	38.2	38.2	44	44	45.6
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.079	0.064	0.064	0.039	0.039	0.03	0.03	0.022
E2-06 (E4-06)	Motor Leakage Inductance	%	19.5	20.8	20.8	18.8	18.8	20.2	20.2	20.5
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	538	699	699	823	823	852	852	960
E5-01	Motor Code Selection (for PM Motors)	Hex.	1210	1210	1212	1212	1213	1213	1214	1214
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	S	1	1.1	1.1	1.1	1.1	1.2	1.2	1.3
L2-04	Momentary Power Loss Voltage Recovery Ramp Time	S	0.6	0.6	0.6	0.6	0.6	1	1	1
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.355	0.323	0.323	0.32	0.32	0.387	0.387	0.317
L8-02	Overheat Alarm Level	°C	130	130	130	130	130	130	125	125
L8-35	Installation Method Selection	_	0	0	0	0	0	0	0	0
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.355	0.323	0.323	0.32	0.32	0.387	0.387	0.317

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit				Default	Settings			
_	Drive Model	_	2A0	250	2A0	312	2A0	360	2A0	415
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	7	5	7	6	7	7	7	8
E2-11 (E4-11)	Motor Rated Power	kW (HP)	55 (75)	75 (100)	75 (100)	90 (125)	90 (125)	110 (150)	110 (150)	110 (175)
b3-04	V/f Gain during Speed Search	%	80	80	80	80	80	80	80	80
b3-06	Output Current 1 during Speed Search	-	0.5	0.7	0.7	0.7	0.7	0.7	0.7	0.7
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	-	_	_	_	_	I	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	_	_	_	_	_	_	_	_
b8-03	Energy Saving Control Filter Time Constant	s	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
b8-04	Energy Saving Coefficient Value	-	31.35	23.1	23.1	20.65	20.65	18.12	18.12	18.12
C5-17 (C5-37)	Motor Inertia	kgm ²	0.49	0.90	0.90	1.10	1.10	1.90	1.90	1.90
C6-02	Carrier Frequency Selection	-	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	190	260	260	260	260	260	260	260
E2-02 (E4-02)	Motor Rated Slip	Hz	1.43	1.39	1.39	1.39	1.39	1.39	1.39	1.39
E2-03 (E4-03)	Motor No-Load Current	A	45.6	72	72	72	72	72	72	72
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.022	0.023	0.023	0.023	0.023	0.023	0.023	0.023
E2-06 (E4-06)	Motor Leakage Inductance	%	20.5	20	20	20	20	20	20	20
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	960	1200	1200	1200	1200	1200	1200	1200
E5-01	Motor Code Selection (for PM Motors)	Hex.	1215	1215	1216	1216	FFFF	FFFF	FFFF	FFFF
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	S	1.3	1.5	1.5	1.5	1.5	1.7	1.7	1.7
L2-04	Momentary Power Loss Voltage Recovery Ramp Time	S	1	1	1	1	1	1	1	1
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.317	0.533	0.533	0.592	0.592	0.646	0.646	0.646
L8-02	Overheat Alarm Level	°C	115	115	120	120	120	120	120	120
L8-35	Installation Method Selection	-	0	0	0	0	0	0	0	0
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	100	100	100	100
n5-02	Motor Acceleration Time	S	0.317	0.533	0.533	0.592	0.592	0.646	0.646	0.646

<1> This parameter is available in models 4A0930 and 4A1200.

Table B.11 400 V Class Drives Default Settings by Drive Capacity and ND/HD Setting

No.	Name	Unit			•		Settings			
_	Drive Model	-	4A0	002	4A0	004	4A0	005	4A0	007
C6-01	Drive Duty Selection	-	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	9	2	9	3	9	4	9	5
E2-11 (E4-11)	Motor rated power	kW (HP)	0.4 (0.75)	0.75 (0.75)	0.75 (2)	1.5 (2)	1.5 (3)	2.2 (3)	2.2 (3)	3.0 (3)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	ı	_	I	_	I	_	I	I	-
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	ı	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	=	=	=	-	=	=	=	-	-
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	-	576.4	447.4	447.4	338.8	338.8	313.6	313.6	265.7
C5-17 (C5-37)	Motor Inertia	kgm ²	0.0015	0.0028	0.0028	0.0068	0.0068	0.0088	0.0088	0.0158
C6-02	Carrier Frequency Selection	-	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	1	1.6	1.6	3.1	3.1	4.2	4.2	5.7
E2-02 (E4-02)	Motor Rated Slip	Hz	2.9	2.6	2.6	2.5	2.5	3	3	2.7
E2-03 (E4-03)	Motor No-Load Current	A	0.6	0.8	0.8	1.4	1.4	1.5	1.5	1.9
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	38.198	22.459	22.459	10.1	10.1	6.495	6.495	4.360
E2-06 (E4-06)	Motor Leakage Inductance	%	18.2	14.3	14.3	18.3	18.3	18.7	18.7	19
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	14	26	26	53	53	77	77	105
E5-01	Motor Code Selection (for PM Motors)	Hex.	1232	1232	1233	1233	1235	1235	1236	1236
L2-02	Momentary Power Loss Ride-Thru Time	S	0.1	0.1	0.2	0.2	0.3	0.3	0.5	0.5
L2-03	Momentary Power Loss Min. Baseblock Time	S	0.2	0.3	0.3	0.4	0.4	0.5	0.5	0.5
L2-04	Momentary Power Loss Voltage Recovery Time	S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.178	0.142	0.142	0.166	0.166	0.145	0.145	0.145
L8-02	Overheat Alarm Level	°C	110	110	110	110	110	110	110	110
L8-35	Installation Method Selection	_	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	_	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.178	0.142	0.142	0.166	0.166	0.145	0.145	0.145

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit				Default	Settings			
_	Drive Model	-	4A0	009	4A0	011	4A0	018	4A0	023
C6-01	Drive Duty Selection	-	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	9	6	9	7	9	9	9	A
E2-11 (E4-11)	Motor Rated Power	kW (HP)	3.0 (5)	3.7 (5)	3.7 (5)	5.5 (7.5)	5.5 (7.5)	7.5 (10)	7.5 (10)	11 (15)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	_	_	_	_	-	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	=	_	_	_	=	-	_	=
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	-	265.7	245.8	245.8	189.5	189.5	145.38	145.38	140.88
C5-17 (C5-37)	Motor Inertia	kgm ²	0.0158	0.0158	0.0158	0.0255	0.026	0.037	0.037	0.053
C6-02	Carrier Frequency Selection	-	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	5.7	7	7	9.8	9.8	13.3	13.3	19.9
E2-02 (E4-02)	Motor Rated Slip	Hz	2.7	2.7	2.7	1.5	1.5	1.3	1.3	1.7
E2-03 (E4-03)	Motor No-Load Current	A	1.9	2.3	2.3	2.6	2.6	4	4	5.6
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	4.360	3.333	3.333	1.595	1.595	1.152	1.152	0.922
E2-06 (E4-06)	Motor Leakage Inductance	%	19	19.3	19.3	18.2	18.2	15.5	15.5	19.6
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	105	130	130	193	193	263	263	385
E5-01	Motor Code Selection (for PM Motors)	Hex.	FFFF	FFFF	1238	1238	123A	123A	123B	123B
L2-02	Momentary Power Loss Ride-Thru Time	S	0.5	0.5	0.5	0.5	0.8	0.8	1	1
L2-03	Momentary Power Loss Min. Baseblock Time	s	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9
L2-04	Momentary Power Loss Voltage Recovery Time	S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.145	0.154	0.154	0.168	0.168	0.175	0.175	0.265
L8-02	Overheat Alarm Level	°C	110	110	110	110	110	110	115	115
L8-35	Installation Method Selection	-	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.145	0.154	0.154	0.168	0.168	0.175	0.175	0.265

<1> This parameter is available in models 4A0930 and 4A1200.

B.18 Defaults by Drive Model and Duty Rating ND/HD

No.	Name	Unit				Default	Settings			
_	Drive Model		4A0	031	4A0	038	4A0	044	4A0	058
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	9	С	9	D	9	E	9	F
E2-11 (E4-11)	Motor Rated Power	kW (HP)	11 (15)	15 (20)	15 (20)	18.5 (25)	18.5 (25-30)	22 (30)	22 (25-30)	30 (40)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	-	_	_	_	_	_	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	-	_	_	-	-	_	_	_
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	-	140.88	126.26	126.26	115.74	115.74	103.58	103.58	92.54
C5-17 (C5-37)	Motor Inertia	kgm ²	0.053	0.076	0.076	0.138	0.138	0.165	0.165	0.220
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	19.9	26.5	26.5	32.9	32.9	38.6	38.6	52.3
E2-02 (E4-02)	Motor Rated Slip	Hz	1.7	1.6	1.6	1.67	1.67	1.7	1.7	1.8
E2-03 (E4-03)	Motor No-Load Current	A	5.6	7.6	7.6	7.8	7.8	9.2	9.2	10.9
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.922	0.55	0.55	0.403	0.403	0.316	0.316	0.269
E2-06 (E4-06)	Motor Leakage Inductance	%	19.6	17.2	17.2	20.1	20.1	23.5	23.5	20.7
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	385	440	440	508	508	586	586	750
E5-01	Motor Code Selection (for PM Motors)	Hex.	123D	123D	123E	123E	123F	123F	1240	1240
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	S	0.9	1	1	1	1	1	1	1.1
L2-04	Momentary Power Loss Voltage Recovery Time	s	0.3	0.6	0.6	0.6	0.6	0.6	0.6	0.6
L3-24	Motor Acceleration Time for Inertia Calculations	s	0.265	0.244	0.244	0.317	0.317	0.355	0.355	0.323
L8-02	Overheat Alarm Level	°C	120	120	120	120	115	115	120	120
L8-35	Installation Method Selection	_	2	2	2	2	2	2	0	0
L8-38	Carrier Frequency Reduction Selection	_	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.265	0.244	0.244	0.317	0.317	0.355	0.355	0.323

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit				Default	Settings			
-	Drive Model	-	4A0	072	4A0	088	4A0	103	4A0	139
C6-01	Drive Duty Selection	-	HD	ND	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	Α	1	Α	2	А	.3	A	4
E2-11 (E4-11)	Motor rated power	kW (HP)	30 (40)	37 (50)	37 (50-60)	45 (60)	45 (50-60)	55 (75)	55 (75)	75 (100)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	80	80	60
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	-	-	_	-	-	-	_	-
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	II	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8
b3-26 <1>	Start Speed Search Select	_	_	_	_	_	_	_	_	_
b8-03	Energy Saving Control Filter Time Constant	S	0.50	0.50	0.50	0.50	0.50	2.00	2.00	2.00
b8-04	Energy Saving Coefficient Value	=	92.54	76.32	76.32	71.56	71.56	67.2	67.2	46.2
C5-17 (C5-37)	Motor Inertia	kgm ²	0.220	0.273	0.273	0.333	0.333	0.490	0.490	0.90
C6-02	Carrier Frequency Selection	=	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	52.3	65.6	65.6	79.7	79.7	95	95	130
E2-02 (E4-02)	Motor Rated Slip	Hz	1.8	1.33	1.33	1.6	1.6	1.46	1.46	1.39
E2-03 (E4-03)	Motor No-Load Current	A	10.9	19.1	19.1	22	22	24	24	36
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.269	0.155	0.155	0.122	0.122	0.088	0.088	0.092
E2-06 (E4-06)	Motor Leakage Inductance	%	20.7	18.8	18.8	19.9	19.9	20	20	20
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	750	925	925	1125	1125	1260	1260	1600
E5-01	Motor Code Selection (for PM Motors)	Hex.	1242	1242	1243	1243	1244	1244	1245	1245
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2	2	2	2	2
L2-03	Momentary Power Loss Min. Basebl. Time	S	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.3
L2-04	Momentary Power Loss Volt. Recov. Time	S	0.6	0.6	0.6	0.6	0.6	1	1	1
L3-24	Motor Acceleration Time for Inertia Calculations	s	0.323	0.32	0.32	0.387	0.387	0.317	0.317	0.533
L8-02	Overheat Alarm Level	°C	120	120	110	110	120	120	130	130
L8-35	Installation Method Selection	=	0	0	0	0	0	0	0	0
L8-38	Carrier Frequency Reduction Selection	1	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	30	30
n5-02	Motor Acceleration Time	S	0.323	0.32	0.32	0.387	0.387	0.317	0.317	0.533

<1> This parameter is available in models 4A0930 and 4A1200.

B.18 Defaults by Drive Model and Duty Rating ND/HD

No.	Name	Unit				Default	Settings			
_	Drive Model	_	4A0	165	4A0	208	4A0	250	4AC	296
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD ND		HD	ND
o2-04	Drive Model Selection	Hex.	A	5	A	6	A	7	A	8
E2-11 (E4-11)	Motor rated power	kW (HP)	75 (100)	90 (125)	90 (125- 150)	110 (150)	110 (150)	132 (200)	132 (200)	160 (250)
b3-04	V/f Gain during Speed Search	%	60	60	60	60	60	60	60	60
b3-06	Output Current 1 during Speed Search	_	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	-	-	-	-	-	-	-	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
b3-26 <1>	Start Speed Search Select	_	_	_	_	_	_	_	_	_
b8-03	Energy Saving Control Filter Time Constant	s	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
b8-04	Energy Saving Coefficient Value	_	46.2	38.91	38.91	36.23	36.23	32.79	32.79	30.13
C5-17 (C5-37)	Motor Inertia	kgm ²	0.90	1.10	1.10	1.90	1.90	2.10	2.10	3.30
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	130	156	156	190	190	223	223	270
E2-02 (E4-02)	Motor Rated Slip	Hz	1.39	1.4	1.4	1.4	1.4	1.38	1.38	1.35
E2-03 (E4-03)	Motor No-Load Current	A	36	40	40	49	49	58	58	70
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.092	0.056	0.056	0.046	0.046	0.035	0.035	0.029
E2-06 (E4-06)	Motor Leakage Inductance	%	20	20	20	20	20	20	20	20
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	1600	1760	1760	2150	2150	2350	2350	2850
E5-01	Motor Code Selection (for PM Motors)	Hex.	1246	1246	1247	1247	1248	1248	1249	1249
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2	2	2	2	2
L2-03	Momentary Power Loss Min. Basebl. Time	s	1.3	1.5	1.5	1.7	1.7	1.7	1.7	1.8
L2-04	Momentary Power Loss Volt. Recov. Time	S	1	1	1	1	1	1	1	1
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.533	0.592	0.592	0.646	0.646	0.673	0.673	0.777
L8-02	Overheat Alarm Level	°C	130	130	120	120	120	120	125	125
L8-35	Installation Method Selection	=	0	0	0	0	0	0	0	0
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	30	30	30	30	30	30	30	30
n5-02	Motor Acceleration Time	s	0.533	0.592	0.592	0.646	0.646	0.673	0.673	0.777

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit			Default	Settings		
-	Drive Model	_	4A0	362	4A0)414	4A0	515
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	Α	9	Α	A	А	С
E2-11 (E4-11)	Motor rated power	kW (HP)	160 (250)	185 (300)	185 (300)	220 (350)	220 (350)	250 (400 -450)
b3-04	V/f Gain during Speed Search	%	60	60	60	60	60	60
b3-06	Output Current 1 during Speed Search	-	0.7	0.7	0.7	0.7	0.7	0.7
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	-	ı	_	-	_	-	-
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.8	0.8	0.8	0.8	0.8	0.8
b3-26 <1>	Start Speed Search Select	_	-	-	-	_	-	-
b8-03	Energy Saving Control Filter Time Constant	s	2.00	2.00	2.00	2.00	2.00	2.00
b8-04	Energy Saving Coefficient Value	-	30.13	30.57	30.57	27.13	27.13	21.76
C5-17 (C5-37)	Motor Inertia	kgm ²	3.30	3.60	3.60	4.10	4.10	6.50
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	270	310	310	370	370	500
E2-02 (E4-02)	Motor Rated Slip	Hz	1.35	1.3	1.3	1.3	1.3	1.25
E2-03 (E4-03)	Motor No-Load Current	A	70	81	81	96	96	130
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.029	0.025	0.025	0.02	0.02	0.014
E2-06 (E4-06)	Motor Leakage Inductance	%	20	20	20	20	20	20
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	2850	3200	3200	3700	3700	4700
E5-01	Motor Code Selection (for PM Motors)	Hex.	124A	124A	FFFF	FFFF	FFFF	FFFF
L2-02	Momentary Power Loss Ride-Thru Time	s	2	2	2	2	2	2
L2-03	Momentary Power Loss Min. Basebl. Time	S	1.8	1.9	1.9	2	2	2.1
L2-04	Momentary Power Loss Volt. Recov. Time	s	1	1	1	1	1	1
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.777	0.864	0.864	0.91	0.91	1.392
L8-02	Overheat Alarm Level	°C	130	130	140	140	140	140
L8-35	Installation Method Selection	_	0	0	0	0	0	0
L8-38	Carrier Frequency Reduction Selection	_	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	30	30	100	100	100	100
n5-02	Motor Acceleration Time	s	0.777	0.864	0.864	0.91	0.91	1.392

<1> This parameter is available in models 4A0930 and 4A1200.

B.18 Defaults by Drive Model and Duty Rating ND/HD

No.	Name	Unit			Default	Settings		
_	Drive Model	_	4 A 0	675	4A0	930	4A1	200
C6-01	Drive Duty Selection	_	HD	ND	HD	ND	HD	ND
o2-04	Drive Model Selection	Hex.	А	E	В	30	Е	32
E2-11 (E4-11)	Motor rated power	kW (HP)	315 (400 -450 -500)	355 (500 -550)	450 (650)	500 (750)	560 (900)	630 (1000)
b3-04	V/f Gain during Speed Search	%	60	60	60	60	60	60
b3-06	Output Current 1 during Speed Search	_	0.7	0.7	0.7	0.7	0.7	0.7
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	_	_	3.0	2.0	3.0	2.0
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.8	0.8	0.8	0.8	0.8	0.8
b3-26 <1>	Start Speed Search Select	_	_	_	1000	1000	1000	1000
b8-03	Energy Saving Control Filter Time Constant	s	2.00	2.00	2.00	2.00	2.00	2.00
b8-04	Energy Saving Coefficient Value	_	21.76	23.84	21.4	20.26	18.12	17.06
C5-17 (C5-37)	Motor Inertia		11.00	12.00	13.00	14.00	18.00	18.00
C6-02	Carrier Frequency Selection	_	1	7	1	1	1	1
E2-01 (E4-01)	Motor Rated Current	A	500	650	800	900	1090	1200
E2-02 (E4-02)	Motor Rated Slip	Hz	1.25	1	1	0.9	0.8	0.7
E2-03 (E4-03)	Motor No-Load Current	A	130	130	160	180	218	240
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.014	0.012	0.01	0.009	0.007	0.006
E2-06 (E4-06)	Motor Leakage Inductance	%	20	20	20	20	20	20
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	4700	5560	7050	7833	9870	11123
E5-01	Motor Code Selection (for PM Motors)	Hex.	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF
L2-02	Momentary Power Loss Ride-Thru Time	s	2	2	2	2	2	2
L2-03	Momentary Power Loss Min. Basebl. Time	s	2.1	2.3	2.8	3.1	4	4.6
L2-04	Momentary Power Loss Volt. Recov. Time	S	1	1	2.6	3	3.8	4.5
L3-24	Motor Acceleration Time for Inertia Calculations	S	1.392	1.667	2	2.222	2.857	3.333
L8-02	Overheat Alarm Level	°C	140	140	140	140	140	140
L8-35	Installation Method Selection	_	0	0	0	0	0	0
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	100	100	100	100	100	100
n5-02	Motor Acceleration Time	s	1.392	1.667	2	2.222	2.857	3.333

<1> This parameter is available in models 4A0930 and 4A1200.

Table B.12 600 V Class Drives Default Settings by Drive Model and ND/HD Setting

No.	Name	Unit	0.000 2		<u> </u>	.gc 2, 2.		Settings		<u> </u>		
_	Drive Model	_	5A0	0003	5A0	004		006	5A0	009	5A0	011
00.04	D: D (O) (HD	ND	HD	ND	HD	ND	HD	ND	HD	ND
C6-01	Drive Duty Selection	_	0	1	0	1	0	1	0	1	0	1
o2-04	Drive Model Selection	Hex ·	C	C3 C4 C5		5	C	7	С	9		
E2-11 (E4-11)	Motor Rated Power	kW (HP	0.75 (1)	1.5 (2)	1.5 (2)	2.2 (3)	2.2 (3)	3.7 (5)	3.7 (5)	5.5 (7.5)	5.5 (7.5)	7.5 (10)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	-	_	_	_	_	_	_	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	_	_	-	_	_	-	-	-	-	-	_
b8-03	Energy Saving Control Filter Time Constant	s	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
b8-04	Energy Saving Coefficient Value	_	541.9	494.4	494.4	415.3	415.3	320.2	320.2	239.95	239.95	199.86
C5-17 (C5-37)	Motor Inertia	kgm	0.0028	0.0068	0.0068	0.0088	0.0088	0.0158	0.0158	0.0255	0.026	0.037
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	1.7	2.7	2.7	3.9	3.9	6.1	6.1	9	9	11
E2-02 (E4-02)	Motor Rated Slip	Hz	2.5	2.5	2.5	3.0	3.0	2.7	2.7	1.5	1.5	1.3
E2-03 (E4-03)	Motor No-Load Current	A	0.8	0.8	0.8	1.2	1.2	1.8	1.8	2.7	2.7	3.3
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	21.9	13.72	13.72	8.825	8.825	4.936	4.936	2.601	2.601	1.446
E2-06 (E4-06)	Motor Leakage Inductance	%	18.3	18.3	18.3	18.7	18.7	19.3	19.3	18.2	18.2	15.5
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	53	53	53	77	77	130	130	193	193	263
L2-02	Momentary Power Loss Ride- Thru Time	S	0.2	0.2	0.3	0.3	0.5	0.5	0.5	0.5	0.8	0.8
L2-03	Momentary Power Loss Minimum Baseblock Time	S	0.5	0.5	0.5	0.5	0.5	0.8	0.8	0.8	0.8	1
L2-04	Momentary Power Loss Voltage Recovery Time	s	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8
L3-24	Motor Acceleration Time for Inertia Calculations	s	0.142	0.166	0.166	0.145	0.145	0.154	0.154	0.168	0.168	0.175
L8-02	Overheat Alarm Level	°C	110	110	110	110	110	110	110	110	115	115
L8-35	Installation Method Selection	_	2	2	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	_	2	2	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.142	0.166	0.166	0.145	0.145	0.154	0.154	0.168	0.168	0.175

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit				Default	Settings			
_	Drive Model	_	5A0	017	5A0	022	5A0027		5A0032	
00.04	D: D (O) (HD	ND	HD	ND	HD	ND	HD	ND
C6-01	Drive Duty Selection	_	0	1	0	1	0	1	0	1
o2-04	Drive Model Selection	Hex.	CA		С	C	CD		CE	
E2-11 (E4-11)	Motor Rated Power	kW (HP)	7.5 (10)	11 (15)	11 (15)	15 (20)	15 (20)	18.5 (25)	18.5 (25)	22 (30)
b3-04	V/f Gain during Speed Search	%	100	100	100	100	100	100	100	100
b3-06	Output Current 1 during Speed Search	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	-	_	_	_	_	_	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	_	_	-	-	-	-	-	_	-
b8-03	Energy Saving Control Filter Time Constant	s	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
b8-04	Energy Saving Coefficient Value	_	200	172	172	154	154	140	140	129
C5-17 (C5-37)	Motor Inertia	kgm ²	0.037	0.053	0.053	0.076	0.076	0.138	0.138	0.165
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	11	17	17	22	22	27	27	32
E2-02 (E4-02)	Motor Rated Slip	Hz	1.3	1.7	1.7	1.6	1.6	1.67	1.67	1.7
E2-03 (E4-03)	Motor No-Load Current	A	3.3	5.1	5.1	6.6	6.6	8.1	8.1	9.6
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	1.45	1.17	1.17	0.9	0.9	0.66	0.66	0.52
E2-06 (E4-06)	Motor Leakage Inductance	%	15.5	19.6	19.6	17.2	17.2	20.1	20.1	23.5
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	263	385	385	440	440	508	508	586
L2-02	Momentary Power Loss Ride-Thru Time	s	1	1	2	2	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	s	1	1	1	1.2	1.2	1.2	1.2	1.2
L2-04	Momentary Power Loss Voltage Recovery Time	s	0.8	0.9	0.9	1	1	1	1	1
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.18	0.27	0.27	0.24	0.24	0.32	0.32	0.36
L8-02	Overheat Alarm Level	°C	120	120	120	120	115	115	115	115
L8-35	Installation Method Selection	-	2	2	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	_	2	2	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.18	0.27	0.27	0.24	0.24	0.32	0.32	0.36

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit			Default	Settings		
_	Drive Model	_	5A(0041	5A0	052	5A0	062
C6 01	Drive Duty Selection		HD	ND	HD	ND	HD	ND
C6-01	Drive Duty Selection	_	0	1	0	1	0	1
o2-04	Drive Model Selection	Hex.	(F	D)1		2
E2-11 (E4-11)	Motor Rated Power	kW (HP)	22 (25-30)	30 (40)	30 (40)	37 (50)	37 (50-60)	45 (60)
b3-04	V/f Gain during Speed Search	%	100	80	80	80	80	80
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	_	_	_	_	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	-	-	-	_	_	_	-
b8-03	Energy Saving Control Filter Time Constant	S	0.5	0.5	0.5	0.5	0.5	0.5
b8-04	Energy Saving Coefficient Value	_	128.65	115.57	115.57	97.01	97.01	90.07
C5-17 (C5-37)	Motor Inertia	kgm ²	0.165	0.220	0.220	0.273	0.273	0.333
C6-02	Carrier Frequency Selection	_	1	7	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	32	41	41	52	52	62
E2-02 (E4-02)	Motor Rated Slip	Hz	1.7	1.8	1.8	1.33	1.33	1.6
E2-03 (E4-03)	Motor No-Load Current	Α	9.6	12.3	12.3	15.6	15.6	18.8
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.516	0.438	0.438	0.267	0.267	0.21
E2-06 (E4-06)	Motor Leakage Inductance	%	23.5	20.7	20.7	18.8	18.8	19.9
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	586	750	750	925	925	1125
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	S	1.2	1.2	1.2	1.2	1.2	1.5
L2-04	Momentary Power Loss Voltage Recovery Time	S	1	1.1	1.1	1.2	1.2	1.3
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.355	0.323	0.323	0.32	0.32	0.387
L8-02	Overheat Alarm Level	°C	110	110	110	110	110	110
L8-35	Installation Method Selection	_	2	2	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	10	10	10	10
n5-02	Motor Acceleration Time	S	0.355	0.323	0.323	0.32	0.32	0.387

<1> This parameter is available in models 4A0930 and 4A1200.

B.18 Defaults by Drive Model and Duty Rating ND/HD

No.	Name	Unit		Default	Settings	
-	Drive Model	_	5A(0077	5A0	099
00.04	Drive Date Oak effect		HD	ND	HD	ND
C6-01	Drive Duty Selection	_	0	1	0	1
o2-04	Drive Model Selection	Hex.	[03	D	4
E2-11 (E4-11)	Motor Rated Power	kW (HP)	45 (50-60)	55 (75)	55 (75)	75 (100)
b3-04	V/f Gain during Speed Search	%	80	80	80	80
b3-06	Output Current 1 during Speed Search	-	0.5	0.5	0.5	0.5
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	_	-	-	_	_
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5
b3-26 <1>	Start Speed Search Select	_	-	_	_	-
b8-03	Energy Saving Control Filter Time Constant	s	0.5	2	2	2
b8-04	Energy Saving Coefficient Value	_	90.07	80.87	80.87	70.07
C5-17 (C5-37)	Motor Inertia	kgm ²	0.333	0.490	0.49	0.90
C6-02	Carrier Frequency Selection	_	1	7	1	7
E2-01 (E4-01)	Motor Rated Current	A	62	77	77	99
E2-02 (E4-02)	Motor Rated Slip	Hz	1.6	1.46	1.46	1.39
E2-03 (E4-03)	Motor No-Load Current	A	18.8	23.1	23.1	29.7
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.21	0.15	0.15	0.099
E2-06 (E4-06)	Motor Leakage Inductance	%	19.9	20	20	20
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	1125	1260	1260	1600
L2-02	Momentary Power Loss Ride-Thru Time	S	2	2	2	2
L2-03	Momentary Power Loss Minimum Baseblock Time	S	1.5	1.8	1.8	1.8
L2-04	Momentary Power Loss Voltage Recovery Time	S	1.3	1.5	1.5	1.6
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.387	0.317	0.317	0.533
L8-02	Overheat Alarm Level	°C	110	110	110	110
L8-35	Installation Method Selection	-	2	2	2	2
L8-38	Carrier Frequency Reduction Selection	-	2	2	2	2
n1-03	Hunting Prevention Time Constant	ms	10	10	30	30
n5-02	Motor Acceleration Time	S	0.387	0.317	0.317	0.533

<1> This parameter is available in models 4A0930 and 4A1200.

No.	Name	Unit				Default :	Settings				
_	Drive Model	_	5A0)125	5A0	145	5A0	192	192 5A0242		
C6-01	Drive Duty Selection		HD	ND	HD	ND	HD	ND	HD	ND	
C0-01	Drive Duty Selection	_	0	1	0	1	0	1	0	1	
o2-04	Drive Model Selection	Hex.		D5 D6 D7			D9				
E2-11 (E4-11)	Motor Rated Power	kW (HP)	75 (100)	90 (125)	90 (125)	110 (150)	110 (150)	160 (200)	160 (200)	185 (250)	
b3-04	V/f Gain during Speed Search	%	80	80	80	80	80	80	80	80	
b3-06	Output Current 1 during Speed Search	_	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
b3-07 <1>	Output Current 2 during Speed Search (Speed Estimation Type)	-	_	_	_	_	_	_	_	_	
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
b3-26 <1>	Start Speed Search Select	_	_	-	_	-	-	_	-	_	
b8-03	Energy Saving Control Filter Time Constant	s	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
b8-04	Energy Saving Coefficient Value	-	70.07	61.50	61.50	58.67	58.67	49.90	49.90	42.90	
C5-17 (C5-37)	Motor Inertia	kgm ²	0.90	1.10	1.10	1.90	1.90	2.10	3.30	4.10	
C6-02	Carrier Frequency Selection	-	1	7	1	7	1	7	1	7	
E2-01 (E4-01)	Motor Rated Current	A	99	125	130	145	172	192	200	242	
E2-02 (E4-02)	Motor Rated Slip	Hz	1.39	1.39	1.39	1.40	1.40	1.35	1.35	1.35	
E2-03 (E4-03)	Motor No-Load Current	A	29.7	37.5	37.5	43.2	43.2	57.6	57.6	57.6	
E2-05 (E4-05)	Motor Line-to-Line Resistance	Ω	0.099	0.079	0.079	0.060	0.060	0.037	0.037	0.037	
E2-06 (E4-06)	Motor Leakage Inductance	%	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	
E2-10 (E4-10)	Motor Iron Loss for Torque Compensation	W	1600	2150	2150	2150	2150	2850	2850	2850	
L2-02	Momentary Power Loss Ride-Thru Time	S	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
L2-03	Momentary Power Loss Minimum Baseblock Time	S	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
L2-04	Momentary Power Loss Voltage Recovery Time	S	1.6	1.7	1.7	1.8	1.8	2.0	2.0	2.0	
L3-24	Motor Acceleration Time for Inertia Calculations	S	0.533	0.592	0.592	0.646	0.646	0.673	0.777	0.864	
L8-02	Overheat Alarm Level	°C	110	110	110	110	110	110	110	110	
L8-35	Installation Method Selection	_	0	0	0	0	0	0	0	0	
L8-38	Carrier Frequency Reduction Selection	_	2	2	2	2	2	2	2	2	
n1-03	Hunting Prevention Time Constant	ms	30	30	30	30	30	30	30	30	
n5-02	Motor Acceleration Time	s	0.533	0.592	0.592	0.646	0.646	0.673	0.777	0.864	

<1> This parameter is available in models 4A0930 and 4A1200.

The following tables show parameters and default settings that change with the motor code selection E5-01 when Open Loop Vector for PM motors is used.

◆ Yaskawa SMRA Series SPM Motor

Table B.13 200 V, 1800 r/min Type Yaskawa SMRA Series SPM Motor Settings

No.	Name	Unit		Default Settings						
	Motor Code Selection (for PM Motors)	_	0002	0003	0005	0006	0008			
E5-01	Voltage Class	V	200	200	200	200	200			
E3-01	Rated Power	kW	0.4	0.75	1.5	2.2	3.7			
	Rated Speed	r/min	1800	1800	1800	1800	1800			
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7			
E5-03	Motor Rated Current (for PM Motors)	A	2.1	4.0	6.9	10.8	17.4			
E5-04	Number of Motor Poles (for PM Motors)	-	8	8	8	8	8			
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	2.47	1.02	0.679	0.291	0.169			
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	12.7	4.8	3.9	3.6	2.5			
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	12.7	4.8	3.9	3.6	2.5			
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	0	0	0	0	0			
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	62.0	64.1	73.4	69.6	72.2			
E1-04	Maximum Output Frequency	Hz	120	120	120	120	120			
E1-05	Maximum Voltage	V	200.0	200.0	200.0	200.0	200.0			
E1-06	Base Frequency	Hz	120	120	120	120	120			
E1-09	Minimum Output Frequency	Hz	6	6	6	6	6			
C5-17	Motor Inertia	kgm ²	0.0007	0.0014	0.0021	0.0032	0.0046			
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.064	0.066	0.049	0.051	0.044			
n5-02	Motor Acceleration Time	S	0.064	0.066	0.049	0.051	0.044			
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	0	0	0	0	0			

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.14 200 V. 3600 r/min Type Yaskawa SMRA Series SPM Motor Settings

	Table D. 14 200 V,	оооо і/пішт тур	J Tuonawa Civil V C	COLICO CL IVI MICIOL	Octaingo					
No.	Name	Unit		Default Settings						
	Motor Code Selection (for PM Motors)	_	0103	0105	0106	0108				
E5-01	Voltage Class	V	200	200	200	200				
E3-01	Rated Power	kW	0.75	1.5	2.2	3.7				
	Rated Speed	r/min	3600	3600	3600	3600				
E5-02	Motor Rated Power (for PM Motors)	kW	0.75	1.5	2.2	3.7				
E5-03	Motor Rated Current (for PM Motors)	A	4.1	8.0	10.5	16.5				
E5-04	Number of Motor Poles (for PM Motors)	-	8	8	8	8				
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.538	0.20	0.15	0.097				
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	3.2	1.3	1.1	1.1				
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	3.2	1.3	1.1	1.1				
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	0	0	0	0				
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	32.4	32.7	36.7	39.7				
E1-04	Maximum Output Frequency	Hz	240	240	240	240				

_
ø
=
Ψ
_
Œ
- 22
æ
~~
ш

No.	Name	Unit	Default Settings								
E1-05	Maximum Voltage	V	200.0	200.0	200.0	200.0					
E1-06	Base Frequency	Hz	240	240	240	240					
E1-09	Minimum Output Frequency	Hz	12	12	12	12					
C5-17	Motor Inertia	kgm ²	0.0007	0.0014	0.0021	0.0032					
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.137	0.132	0.132	0.122					
n5-02	Motor Acceleration Time	S	0.137	0.132	0.132	0.122					
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	0	0	0	0					

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Yaskawa SSR1 Series IPM Motor (For Derated Torque)

Table B.15 200 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit	Default Settings										
NO.		Unit			ı	Delault	Settings	ı					
	Motor Code Selection (for PM Motors)	_	1202	1203	1205	1206	1208	120A	120B	120D			
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200			
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11			
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750			
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0			
E5-03	Motor Rated Current (for PM Motors)	A	1.77	3.13	5.73	8.44	13.96	20.63	28.13	41.4			
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6			
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	8.233	2.284	1.470	0.827	0.455	0.246	0.198	0.094			
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	54.84	23.02	17.22	8.61	7.20	4.86	4.15	3.40			
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	64.10	29.89	20.41	13.50	10.02	7.43	5.91	3.91			
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	223.7	220.3	240.8	238.0	238.7	239.6	258.2	239.3			
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5			
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0			
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5			
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4			
C5-17	Motor Inertia	kgm ²	0.0011	0.0017	0.0023	0.0043	0.0083	0.014	0.017	0.027			
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.092	0.076	0.052	0.066	0.075	0.083	0.077	0.084			
n5-02	Motor Acceleration Time	s	0.092	0.076	0.052	0.066	0.075	0.083	0.077	0.084			
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-7.6	-11.5	-9.1	-19.0	-18.7	-23.4	-18.5	-10.9			

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.16 200 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

	<u> </u>	Table B.16 200 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor										
No.	Name	Unit				Default	Settings					
	Motor Code Selection (for PM Motors)	_	120E	120F	1210	1212	1213	1214	1215	1216		
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200		
	Rated Power	kW	15	18	22	30	37	45	55	75		
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750		
E5-02	Motor Rated Power (for PM Motors)	kW	15.0	18.00	22.00	30.00	37.00	45.00	55.00	75.00		
E5-03	Motor Rated Current (for PM Motors)	A	55.4	68.2	80.6	105.2	131.3	153.1	185.4	257.3		
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6		
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.066	0.051	0.037	0.030	0.020	0.014	0.012	0.006		
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	2.45	2.18	1.71	1.35	0.99	0.83	0.79	0.44		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mН	3.11	2.55	2.05	1.82	1.28	1.01	0.97	0.56		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	248.1	253.6	250.0	280.9	264.2	280.4	311.9	268.0		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0		
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4		
C5-17	Motor Inertia	kgm ²	0.046	0.55	0.064	0.116	0.140	0.259	0.31	0.42		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.102	0.101	0.098	0.130	0.127	0.193	0.191	0.187		
n5-02	Motor Acceleration Time	S	0.102	0.101	0.098	0.130	0.127	0.193	0.191	0.187		
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-16.5	-11.3	-12.8	-16.8	-15.6	-10.7	-9.6	-13.3		

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.17 400 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit				Default S	Settings			
	Motor Code Selection (for PM Motors)	_	1232	1233	1235	1236	1238	123A	123B	123D
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0
E5-03	Motor Rated Current (for PM Motors)	A	0.89	1.56	2.81	4.27	7.08	10.31	13.65	20.7
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	25.370	9.136	6.010	3.297	1.798	0.982	0.786	0.349
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	169.00	92.08	67.71	34.40	32.93	22.7	16.49	13.17
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	197.50	119.56	81.71	54.00	37.70	26.80	23.46	15.60
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	392.6	440.6	478.3	466.3	478.8	478.1	520.0	481.5

_
_
9
ᇷ
~
=
90
<u>ल</u>
ñ
_

No.	Name	Unit	Default Settings								
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5	
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0	
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5	
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	
C5-17	Motor Inertia	kgm ²	0.0011	0.0017	0.0023	0.0043	0.0083	0.014	0.017	0.027	
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.092	0.076	0.052	0.066	0.075	0.083	0.077	0.084	
n5-02	Motor Acceleration Time	S	0.092	0.076	0.052	0.066	0.075	0.083	0.077	0.084	
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-8.6	-11.5	-10.3	-19.8	-8.5	-11.0	-18.6	-12.5	

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.18 400 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit	Default Settings									
	Motor Code Selection (for PM Motors)	-	123E	123F	1240	1242	1243	1244	1245	1246		
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400		
	Rated Power	kW	15	18	22	30	37	45	55	75		
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750		
E5-02	Motor Rated Power (for PM Motors)	kW	15	18.50	22.00	30.00	37.00	45.00	55.00	75.00		
E5-03	Motor Rated Current (for PM Motors)	A	27.5	33.4	39.8	52.0	65.8	77.5	92.7	126.6		
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6		
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.272	0.207	0.148	0.235	0.079	0.054	0.049	0.029		
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	10.30	8.72	6.81	5.4	4.08	3.36	3.16	2.12		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	12.77	11.22	8.47	7.26	5.12	3.94	3.88	2.61		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	498.8	509.5	503.9	561.7	528.5	558.1	623.8	594.5		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0		
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4		
C5-17	Motor Inertia	kgm ²	0.046	0.055	0.064	0.116	0.140	0.259	0.31	0.42		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.102	0.101	0.098	0.130	0.127	0.193	0.191	0.187		
n5-02	Motor Acceleration Time	S	0.102	0.101	0.098	0.130	0.127	0.193	0.191	0.187		
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-15.5	-17.9	-15.1	-16.8	-14.1	-8.8	-9.6	-10.3		

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.19 400 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit	Default Settings									
140.	Motor Code Selection (for	Offic					Jettings					
	PM Motors)	_	1247	1248	1249	124A	1302	1303	1305	1306		
E5-01	Voltage Class	V	400	400	400	400	200	200	200	200		
	Rated Power	kW	90	110	132	160	0.4	0.75	1.5	2.2		
	Rated Speed	r/min	1750	1750	1750	1750	1450	1450	1450	1450		
E5-02	Motor Rated Power (for PM Motors)	kW	90.00	110.00	132.00	160.00	0.4	0.75	1.5	2.2		
E5-03	Motor Rated Current (for PM Motors)	A	160.4	183.3	222.9	267.7	1.88	3.13	5.63	8.33		
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6		
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.019	0.017	0.012	0.008	3.190	1.940	1.206	0.665		
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	1.54	1.44	1.21	0.97	32.15	26.12	14.72	12.27		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	2.06	2.21	1.46	1.28	41.74	34.30	20.15	14.77		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	524.1	583.7	563.6	601.2	264.3	269.6	284.3	287.1		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	72.5	72.5	72.5	72.5		
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	190.0	190.0	190.0	190.0		
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	72.5	72.5	72.5	72.5		
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	3.6	3.6	3.6	3.6		
C5-17	Motor Inertia	kgm ²	0.56	0.83	0.96	1.61	0.0017	0.0023	0.0043	0.0083		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.208	0.254	0.243	0.338	0.098	0.071	0.066	0.087		
n5-02	Motor Acceleration Time	S	0.208	0.254	0.243	0.338	0.098	0.071	0.066	0.087		
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-17.0	-21.7	-10.9	-13.2	-6.6	-10.9	-13.5	-9.0		

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.20 200 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

	Table B.20 200 V, 1400 Milli Type Taskawa Cott Ceries II M Mictor												
No.	Name	Unit				Default	Settings						
	Motor Code Selection (for PM Motors)	_	1308	130A	130B	130D	130E	130F	1310	1312			
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200			
	Rated Power	kW	3.7	5.5	7.5	11	15	18	22	30			
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450			
E5-02	Motor Rated Power (for PM Motors)	kW	3.7	5.5	7.5	11.0	15.00	18.00	22.00	30.00			
E5-03	Motor Rated Current (for PM Motors)	A	14.17	20.63	27.71	39.6	55.5	65.6	75.1	105.2			
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6			
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.341	0.252	0.184	0.099	0.075	0.057	0.041	0.034			
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	8.27	6.49	6.91	4.07	3.29	2.53	1.98	1.75			
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	9.81	7.74	7.66	4.65	3.84	3.01	2.60	2.17			
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	284.5	298.0	335.0	303.9	311.2	300.9	327.7	354.2			

Ξ
不
퓽
톭
ä
Δ.

No.	Name	Unit	Default Settings								
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0	
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	
C5-17	Motor Inertia	kgm ²	0.0136	0.017	0.027	0.046	0.055	0.064	0.116	0.140	
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.085	0.072	0.084	0.096	0.085	0.080	0.122	0.108	
n5-02	Motor Acceleration Time	S	0.085	0.072	0.084	0.096	0.085	0.080	0.122	0.108	
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-9.5	-10.1	-6.0	-9.3	-10.7	-13.2	-15.7	-11.5	

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.21 200 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

No	Name Unit Default Settings									
No.	Name	Unit				Detault	Seπings			
	Motor Code Selection (for PM Motors)	_	1313	1314	1315	1332	1333	1335	1336	1338
E5-01	Voltage Class	V	200	200	200	400	400	400	400	400
	Rated Power	kW	37	45	55	0.4	0.75	1.5	2.2	3.7
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450
E5-02	Motor Rated Power (for PM Motors)	kW	37.00	45.00	55.00	0.4	0.75	1.5	2.2	3.7
E5-03	Motor Rated Current (for PM Motors)	A	126.0	153.1	186.5	0.94	1.56	2.81	4.27	6.98
E5-04	Number of Motor Poles (for PM Motors)	1	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.023	0.015	0.012	12.760	7.421	4.825	2.656	1.353
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	1.48	1.04	0.87	128.60	85.11	58.87	46.42	31.73
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	1.70	1.31	1.10	166.96	113.19	80.59	60.32	40.45
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	369.6	351.6	374.7	528.6	544.2	568.5	572.8	562.9
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-05	Maximum Voltage	V	190.0	190.0	190.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
C5-17	Motor Inertia	kgm ²	0.259	0.312	0.42	0.0017	0.0023	0.0043	0.0083	0.0136
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.161	0.160	0.175	0.098	0.071	0.066	0.087	0.085
n5-02	Motor Acceleration Time	S	0.161	0.160	0.175	0.098	0.071	0.066	0.087	0.085
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-7.0	-11.8	-10.2	-6.6	-9.2	-13.5	-12.1	-13.7

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.22 400 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit	,	туро т			t Settings			
1101	Motor Code Selection (for	Jill	122.4	122D	122D			1240	1242	1242
	PM Motors)		133A	133B	133D	133E	133F	1340	1342	1343
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400
	Rated Power	kW	5.5	7.5	11	15	18	22	30	37
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450
E5-02	Motor Rated Power (for PM Motors)	kW	5.5	7.5	11.0	15	18.50	22.00	30.00	37.00
E5-03	Motor Rated Current (for PM Motors)	A	10.21	13.85	19.5	27.4	32.9	37.6	52.5	63.2
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.999	0.713	0.393	0.295	0.223	0.164	0.137	0.093
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	26.20	27.06	15.51	12.65	9.87	7.90	7.01	5.93
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	30.94	33.45	19.63	15.87	12.40	10.38	8.68	6.79
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	587.6	670.1	612.7	624.6	610.4	655.4	708.4	739.2
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
C5-17	Motor Inertia	kgm ²	0.017	0.027	0.046	0.055	0.064	0.116	0.140	0.259
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.072	0.084	0.096	0.085	0.080	0.122	0.108	0.161
n5-02	Motor Acceleration Time	S	0.072	0.084	0.096	0.085	0.080	0.122	0.108	0.161
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-10.1	-12.2	-15.5	-15.1	-16.0	-15.7	-11.5	-6.8

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.23 400 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

	Name Linit Default Settings										
No.	Name	Unit				Default	t Settings				
	Motor Code Selection (for PM Motors)	-	1344	1345	1346	1347	1348	1349	1402	1403	
E5-01	Voltage Class	V	400	400	400	400	400	400	200	200	
	Rated Power	kW	45	55	75	90	110	132	0.4	0.75	
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1150	1150	
E5-02	Motor Rated Power (for PM Motors)	kW	45.00	55.00	75.00	90.00	110.00	132.00	0.4	0.75	
E5-03	Motor Rated Current (for PM Motors)	A	76.4	96.1	124.0	153.1	186.5	226.0	1.88	3.02	
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6	
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.059	0.048	0.028	0.024	0.015	0.011	4.832	2.704	
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	4.17	3.11	2.32	2.20	1.45	1.23	48.68	32.31	
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	5.22	4.55	2.97	3.23	1.88	1.67	63.21	40.24	
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	703.0	747.1	639.3	708.0	640.7	677.0	320.4	327.1	

No.	Name	Unit				Default	t Settings			
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	57.5	57.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	190.0	190.0
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.312	0.42	0.56	0.83	0.96	1.61	0.0017	0.0023
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.160	0.175	0.171	0.213	0.201	0.281	0.062	0.044
n5-02	Motor Acceleration Time	S	0.160	0.175	0.171	0.213	0.201	0.281	0.062	0.044
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-11.5	-14.8	-15.8	-19.6	-14.9	-15.1	-8.8	-9.9

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.24 200 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit				Default	Settings			
	Motor Code Selection (for PM Motors)	_	1405	1406	1408	140A	140B	140D	140E	140F
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200
	Rated Power	kW	1.5	2.2	3.7	5.5	7.5	11.0	15	18.00
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	1.5	2.2	3.7	5.5	7.5	11	15	18.5
E5-03	Motor Rated Current (for PM Motors)	A	6.00	8.85	14.27	20.21	26.67	39.9	55.6	63.5
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	1.114	0.511	0.412	0.303	0.165	0.113	0.084	0.066
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	19.22	12.15	7.94	11.13	6.59	4.96	3.83	3.33
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mН	24.38	15.35	11.86	14.06	8.55	6.12	4.65	4.5
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	364.4	344.4	357.5	430.8	391.5	384.4	372.1	421.3
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.0083	0.0136	0.0171	0.027	0.046	0.055	0.064	0.116
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.080	0.090	0.067	0.072	0.088	0.073	0.062	0.091
n5-02	Motor Acceleration Time	S	0.080	0.090	0.067	0.072	0.088	0.073	0.062	0.091
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-9.3	-10.0	-17.7	-12.3	-15.3	-13.9	-14.4	-17.9

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.25 200 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

	1 0010 0.20	_00 1,	00 1/111111 1	JPC I dolla	OO	001100 11 11	11110101			
No.	Name	Unit				Default	Settings			
	Motor Code Selection (for PM Motors)	_	1410	1412	1413	1414	1432	1433	1435	1436
E5-01	Voltage Class	V	200	200	200	200	400	400	400	400
	Rated Power	kW	22.00	30.00	37.00	45.00	0.4	0.75	1.5	2.2
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	22	30	37	45	0.4	0.75	1.5	2.2

No.	Name	Unit	it Default Settings								
E5-03	Motor Rated Current (for PM Motors)	A	74.4	104.2	129.6	154.2	0.94	1.51	3.00	4.43	
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6	
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.048	0.035	0.023	0.016	19.320	10.800	4.456	2.044	
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	2.38	2.04	1.53	1.16	194.70	129.20	76.88	48.60	
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mН	3.15	2.86	2.27	1.54	252.84	160.90	97.52	61.40	
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	410.9	436.1	428.8	433.3	640.9	654.1	728.8	688.9	
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5	
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	380.0	380.0	380.0	380.0	
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5	
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	
C5-17	Motor Inertia	kgm ²	0.14	0.259	0.312	0.418	0.0017	0.0023	0.0083	0.0136	
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.092	0.125	0.122	0.135	0.062	0.044	0.080	0.090	
n5-02	Motor Acceleration Time	S	0.092	0.125	0.122	0.135	0.062	0.044	0.080	0.090	
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-15.9	-17.9	-20.1	-13.7	-8.8	-9.9	-9.3	-10.0	

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.26 400 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit	Default Settings									
	Motor Code Selection (for PM Motors)	-	1438	143A	143B	143D	143E	143F	1440	1442		
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400		
	Rated Power	kW	3.7	5.5	7.5	11	15	18	22	30		
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150	1150		
E5-02	Motor Rated Power (for PM Motors)	kW	3.7	5.5	7.5	11.0	15	18.50	22.00	30.00		
E5-03	Motor Rated Current (for PM Motors)	A	7.08	10.10	13.33	19.9	27.8	31.8	37.2	52.1		
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6		
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	1.483	1.215	0.660	0.443	0.331	0.264	0.192	0.140		
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	37.58	44.54	26.36	19.10	15.09	13.32	9.52	8.16		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	47.65	56.26	34.20	24.67	18.56	18.00	12.60	11.40		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	702.0	861.5	783.0	762.2	749.6	842.7	821.8	872.3		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5		
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0		
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5		
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9		
C5-17	Motor Inertia	kgm ²	0.0171	0.027	0.046	0.055	0.064	0.116	0.140	0.259		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.067	0.072	0.088	0.073	0.062	0.091	0.092	0.125		
n5-02	Motor Acceleration Time	S	0.067	0.072	0.088	0.073	0.062	0.091	0.092	0.125		

No.	Name	Unit	Default Settings								
	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-12.8	-12.3	-15.3	-16.7	-14.9	-17.9	-15.9	-17.7	

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.27 400 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

No.	Name	Unit			Default	Settings		
	Motor Code Selection (for PM Motors)	_	1443	1444	1445	1446	1447	1448
E5-01	Voltage Class	V	400	400	400	400	400	400
	Rated Power	kW	37	45	55	75	90	110
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	37.00	45.00	55.00	75.00	90.00	110.00
E5-03	Motor Rated Current (for PM Motors)	A	64.8	76.6	92.0	127.1	150.5	185.4
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.093	0.063	0.051	0.033	0.027	0.015
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	6.13	4.63	3.96	3.03	2.60	1.89
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	9.10	6.15	5.00	5.14	3.28	2.33
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	857.7	866.6	854.0	823.1	853.4	829.2
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.312	0.418	0.56	0.83	0.96	1.61
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.122	0.135	0.147	0.161	0.154	0.212
n5-02	Motor Acceleration Time	S	0.122	0.135	0.147	0.161	0.154	0.212
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/ PM)	%	-20.1	-13.8	-12.5	-28.8	-13.3	-11.6

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Yaskawa SST4 Series IPM Motor (For Constant Torque)

Table B.28 200 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

	Table B.20 200 V, 1700 I/IIII Type Tablawa CCT+ College II IIII										
No.	Name	Unit				Default	Settings				
	Motor Code Selection (for PM Motors)	-	2202	2203	2205	2206	2208	220A	220B	220D	
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200	
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750	
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0	
E5-03	Motor Rated Current (for PM Motors)	A	1.77	3.54	6.56	8.96	14.79	20.94	29.58	41.1	
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6	
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	2.247	1.132	0.774	0.479	0.242	0.275	0.161	0.111	

No.	Name	Unit	Default Settings									
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	22.32	12.38	8.90	7.39	5.06	5.82	3.86	3.59		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	32.50	15.72	11.96	9.63	6.42	6.74	4.66	4.32		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	215.2	203.9	219.3	230.6	235.1	251.7	235.7	252.0		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0		
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4		
C5-17	Motor Inertia	kgm ²	0.0016	0.0022	0.0042	0.0081	0.0133	0.013	0.017	0.027		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.134	0.099	0.094	0.124	0.121	0.081	0.075	0.082		
n5-02	Motor Acceleration Time	S	0.134	0.099	0.094	0.124	0.121	0.081	0.075	0.082		
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-9.3	-6.4	-10.0	-9.9	-9.7	-8.4	-11.5	-13.1		

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.29 200 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit										
	Motor Code Selection (for PM Motors)	-	220E	220F	2210	2212	2213	2214	2215	2216		
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200		
	Rated Power	kW	15	18	22	30	37	45	55	75		
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750		
E5-02	Motor Rated Power (for PM Motors)	kW	15	18.50	22.00	30.00	37.00	45.00	55.00	75.00		
E5-03	Motor Rated Current (for PM Motors)	A	54.2	68.2	78.6	104.2	129.2	153.1	205.2	260.4		
E5-04	Number of Motor Poles (for PM Motors)	ı	6	6	6	6	6	6	6	6		
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.071	0.049	0.040	0.030	0.020	0.013	0.009	0.006		
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	2.67	1.98	1.69	1.31	0.88	0.77	0.55	0.40		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	3.1	2.41	2.12	1.61	1.14	1.04	0.69	0.50		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	253.7	244.6	256.3	283.1	266.3	260	261.5	259.3		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0		
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4		
C5-17	Motor Inertia	kgm ²	0.044	0.054	0.063	0.113	0.137	0.252	0.30	0.41		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.099	0.098	0.096	0.127	0.124	0.188	0.186	0.184		
n5-02	Motor Acceleration Time	S	0.099	0.098	0.096	0.127	0.124	0.188	0.186	0.184		
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-10.9	-14.3	-15.1	-11.3	-14.1	-18.8	-11.4	-12.2		

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.30 400 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit	Default Settings									
	Motor Code Selection (for PM Motors)	-	2232	2233	2235	2236	2238	223A	223B	223D		
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400		
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11		
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750		
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0		
E5-03	Motor Rated Current (for PM Motors)	A	0.92	1.77	3.33	4.48	7.50	10.42	14.27	20.5		
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6		
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	8.935	4.570	3.096	1.906	0.972	1.103	0.630	0.429		
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	80.14	48.04	35.60	30.31	20.03	23.41	14.86	14.34		
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	110.76	64.88	47.84	38.36	24.97	28.70	17.25	17.25		
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	416.5	399.4	438.5	475.5	463.7	485.8	470.4	513.4		
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0		
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5		
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4		
C5-17	Motor Inertia	kgm ²	0.0016	0.0022	0.0042	0.0081	0.0133	0.013	0.017	0.027		
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.134	0.099	0.094	0.124	0.121	0.081	0.075	0.082		
n5-02	Motor Acceleration Time	S	0.134	0.099	0.094	0.124	0.121	0.081	0.075	0.082		
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-7.5	-8.5	-9.8	-8.2	-9.1	-13.1	-9.2	-12.4		

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.31 400 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

	No. Nome Linit Postula Settings													
No.	Name	Unit				Default	Settings							
	Motor Code Selection (for PM Motors)	-	223E	223F	2240	2242	2243	2244	2245	2246				
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400				
	Rated Power	kW	15	18	22	30	37	45	55	75				
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1750				
E5-02	Motor Rated Power (for PM Motors)	kW	15	18.50	22.00	30.00	37.00	45.00	55.00	75.00				
E5-03	Motor Rated Current (for PM Motors)	A	26.4	34.2	38.8	52.2	65.4	77.6	99.3	130.2				
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6				
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.275	0.196	0.160	0.120	0.077	0.052	0.036	0.023				
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	9.99	7.92	6.82	5.24	3.57	2.98	1.59	1.59				
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	12.37	9.64	8.51	6.44	4.65	3.75	2.78	1.97				
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	505.3	489.2	509.5	566.2	531.6	530.6	515.2	515.2				

No.	Name	Unit	Default Settings										
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5			
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0			
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	87.5			
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4			
C5-17	Motor Inertia	kgm ²	0.044	0.054	0.063	0.113	0.137	0.252	0.30	0.41			
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.099	0.098	0.096	0.127	0.124	0.188	0.186	0.184			
n5-02	Motor Acceleration Time	S	0.099	0.098	0.096	0.127	0.124	0.188	0.186	0.184			
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-15.1	-14.3	-15.3	-11.3	-14.5	-13.2	-22.6	-11.9			

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.32 400 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit	Default Settings								
	Motor Code Selection (for PM Motors)	-	2247	2248	2249	224A	224C	224D	224E	2302	
E5-01	Voltage Class	V	400	400	400	400	400	400	400	200	
	Rated Power	kW	90.00	110	132	160	200	220	300	0.4	
	Rated Speed	r/min	1750	1750	1750	1750	1750	1750	1750	1450	
E5-02	Motor Rated Power (for PM Motors)	kW	90.00	110.00	132.00	160.00	200.00	250.00	300.00	0.4	
E5-03	Motor Rated Current (for PM Motors)	A	153.1	184.4	229.2	269.8	346.9	421.9	520.8	1.77	
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6	
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.019	0.017	0.012	0.008	0.005	0.004	0.002	3.154	
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	1.51	1.43	1.13	0.96	0.65	0.67	0.40	28.46	
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	1.76	1.92	1.54	1.26	0.88	0.74	0.52	39.29	
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	538.3	590.9	548.2	603.9	556.8	593.1	495.4	268.8	
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
E1-04	Maximum Output Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	72.5	
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	190.0	
E1-06	Base Frequency	Hz	87.5	87.5	87.5	87.5	87.5	87.5	87.5	72.5	
E1-09	Minimum Output Frequency	Hz	4.4	4.4	4.4	4.4	4.4	4.4	4.4	3.6	
C5-17	Motor Inertia	kgm ²	0.55	0.82	0.96	1.60	1.95	2.82	3.70	0.0016	
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.205	0.250	0.244	0.336	0.327	0.379	0.414	0.092	
n5-02	Motor Acceleration Time	S	0.205	0.250	0.244	0.336	0.327	0.379	0.414	0.092	
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-8.6	-14.8	-17.5	-12.5	-14.7	-5.1	-16.3	-7.5	

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

В

Table B.33 200 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit	,	ii iype ias		Default s				
	Motor Code Selection (for PM Motors)	-	2302	2303	2305	2306	2308	230A	230B	230D
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0
E5-03	Motor Rated Current (for PM Motors)	A	1.77	3.33	5.94	9.48	14.17	20.42	27.92	39.6
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	3.154	1.835	0.681	0.308	0.405	0.278	0.180	0.098
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	28.46	19.46	10.00	6.88	8.15	5.77	6.32	3.34
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	39.29	25.89	15.20	9.25	10.76	8.60	8.80	4.61
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	268.8	256.9	271.9	260.2	286.8	314.9	300.8	292.3
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
C5-17	Motor Inertia	kgm ²	0.0016	0.0022	0.0081	0.0133	0.0133	0.017	0.027	0.044
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.092	0.068	0.125	0.139	0.083	0.070	0.082	0.092
n5-02	Motor Acceleration Time	S	0.092	0.068	0.125	0.139	0.083	0.070	0.082	0.092
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-7.5	-9.4	-13.9	-10.0	-15.0	-17.9	-22.7	-20.5

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.34 200 V. 1450 r/min Type Yaskawa SST4 Series IPM Motor

	Table B.34 200 V, 1450 I/IIIII Type Yaskawa 5514 Series IPW Motor												
No.	Name	Unit				Default	Settings						
	Motor Code Selection (for PM Motors)	-	230E	230F	2310	2312	2313	2314	2315	2316			
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200			
	Rated Power	kW	15	18	22	30	37	45	55	75			
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450			
E5-02	Motor Rated Power (for PM Motors)	kW	15.0	18.50	22.00	30.00	37.00	45.00	55.00	75.00			
E5-03	Motor Rated Current (for PM Motors)	A	54.2	68.3	75.2	102.0	131.3	160.4	191.7	257.3			
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6			
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.073	0.055	0.048	0.034	0.023	0.016	0.012	0.007			
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	2.94	2.23	2.08	1.67	1.39	0.94	0.82	0.56			
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	3.65	2.85	2.66	2.04	1.73	1.22	1.06	0.76			
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	305.1	297.6	355.8	355.4	324.0	302.4	337.2	323.4			
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5			
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0			

No.	Name	Unit	Default Settings										
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5			
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6			
C5-17	Motor Inertia	kgm ²	0.054	0.063	0.113	0.137	0.252	0.304	0.41	0.55			
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.083	0.079	0.118	0.105	0.157	0.156	0.172	0.169			
n5-02	Motor Acceleration Time	S	0.083	0.079	0.118	0.105	0.157	0.156	0.172	0.169			
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-14.6	-16.4	-11.8	-10.5	-14.5	-17.4	-13.9	-17.5			

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.35 400 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit	1400 1/111111	<u>, , , , , , , , , , , , , , , , , , , </u>		Default S				
	Motor Code Selection (for PM Motors)	-	2332	2333	2335	2336	2338	233A	233B	233D
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0
E5-03	Motor Rated Current (for PM Motors)	A	0.91	1.67	3.02	4.74	7.08	10.21	13.96	20.5
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	12.616	7.340	2.724	1.232	1.509	1.112	0.720	0.393
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	113.84	77.84	40.00	27.52	31.73	23.09	25.28	13.36
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mН	157.16	103.56	60.80	37.00	40.88	34.39	35.20	18.44
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	490.8	513.8	543.7	520.3	580.8	602.7	601.5	584.6
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
C5-17	Motor Inertia	kgm ²	0.0016	0.0022	0.0081	0.0133	0.0133	0.017	0.027	0.044
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.092	0.068	0.125	0.139	0.083	0.070	0.082	0.092
n5-02	Motor Acceleration Time	S	0.092	0.068	0.125	0.139	0.083	0.070	0.082	0.092
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-9.5	-9.4	-13.7	-10.0	-12.9	-19.9	-22.8	-19.8

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.36 400 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit				Default S	Settings			
	Motor Code Selection (for PM Motors)	-	233E	233F	2340	2342	2343	2344	2345	2346
E5-01	Voltage Class	V	400	400	400	400	400	400	400	400
	Rated Power	kW	15	18	22	30	37	45	55	75
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450	1450	1450
E5-02	Motor Rated Power (for PM Motors)	kW	15	18.50	22.00	30.00	37.00	45.00	55.00	75.00

No.	Name	Unit	Default Settings										
E5-03	Motor Rated Current (for PM Motors)	A	27.1	34.2	37.6	50.9	65.4	80.2	96.1	129.2			
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6			
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.291	0.220	0.192	0.136	0.091	0.064	0.048	0.028			
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	11.77	8.94	8.32	6.68	5.30	3.76	3.09	2.24			
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	14.60	11.40	10.64	8.16	6.80	4.88	4.75	3.03			
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	610.3	595.2	711.6	710.8	652.7	604.8	669.1	646.8			
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5			
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0	380.0			
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5			
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6			
C5-17	Motor Inertia	kgm ²	0.054	0.063	0.113	0.137	0.252	0.304	0.41	0.55			
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.083	0.079	0.118	0.105	0.157	0.156	0.172	0.169			
n5-02	Motor Acceleration Time	S	0.083	0.079	0.118	0.105	0.157	0.156	0.172	0.169			
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-14.5	-16.1	-11.8	-10.5	-15.6	-17.4	-21.7	-17.3			

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.37 400 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

		Name Unit Default Settings										
No.	Name	Unit			Default S	Settings						
	Motor Code Selection (for PM Motors)	-	2347	2348	2349	234A	234C	234D				
E5-01	Voltage Class	V	400	400	400	400	400	400				
	Rated Power	kW	90	110	132	160	200	250				
	Rated Speed	r/min	1450	1450	1450	1450	1450	1450				
E5-02	Motor Rated Power (for PM Motors)	kW	90.00	110.00	132.00	160.00	200.00	250.00				
E5-03	Motor Rated Current (for PM Motors)	A	153.1	191.7	226.0	268.8	331.3	422.9				
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6				
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.024	0.015	0.011	0.007	0.006	0.003				
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	2.20	1.34	1.23	0.92	0.84	0.61				
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	3.23	2.16	1.67	1.30	1.25	0.89				
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	708.0	637.8	677.0	661.7	687.1	655.9				
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0				
E1-04	Maximum Output Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5				
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0				
E1-06	Base Frequency	Hz	72.5	72.5	72.5	72.5	72.5	72.5				
E1-09	Minimum Output Frequency	Hz	3.6	3.6	3.6	3.6	3.6	3.6				
C5-17	Motor Inertia	kgm ²	0.82	0.96	1.60	1.95	2.82	3.70				
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.210	0.201	0.279	0.281	0.325	0.341				
n5-02	Motor Acceleration Time	S	0.210	0.201	0.279	0.281	0.325	0.341				

No.	Name	Unit	Default Settings								
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-19.6	-24.1	-15.1	-17.0	-19.8	-19.3			

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.38 200 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit				Default	Settings			
	Motor Code Selection (for PM Motors)	_	2402	2403	2405	2406	2408	240A	240B	240D
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200
E3-01	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0
E5-03	Motor Rated Current (for PM Motors)	A	1.77	3.44	5.94	9.17	14.79	20.21	27.40	39.0
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	2.680	1.520	1.071	0.542	0.362	0.295	0.162	0.115
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	30.55	15.29	17.48	11.98	8.60	9.54	5.31	4.44
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	42.71	24.28	22.51	15.51	10.69	13.84	8.26	5.68
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	313.1	313.1	345.3	342.9	363.8	384.3	379.9	370.2
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.0022	0.0042	0.0081	0.0133	0.0168	0.027	0.044	0.054
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.080	0.081	0.078	0.088	0.066	0.070	0.085	0.071
n5-02	Motor Acceleration Time	S	0.080	0.081	0.078	0.088	0.066	0.070	0.085	0.071
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-8.4	-11.0	-10.7	-10.7	-9.4	-22.5	-22.2	-16.7

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.39 200 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit				Default S	Settings			
	Motor Code Selection (for PM Motors)	_	240E	240F	2410	2412	2413	2414	2415	2416
E5-01	Voltage Class	V	200	200	200	200	200	200	200	200
	Rated Power	kW	15	18	22	30	37	45	55	75
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	15	18.50	22.00	30.00	37.00	45.00	55.00	75.00
E5-03	Motor Rated Current (for PM Motors)	A	55.9	65.4	77.0	103.5	126.0	153.1	188.5	260.4
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.083	0.065	0.052	0.035	0.026	0.019	0.013	0.009
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	3.50	2.92	2.55	2.03	1.59	1.24	0.98	0.70
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mН	4.23	3.79	3.22	2.46	1.92	1.64	1.37	0.97
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	364.5	404.5	445.1	444.4	447.3	470.8	422.4	418.3
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5

No.	Name	Unit	Default Settings							
E1-05	Maximum Voltage	V	190.0	190.0	190.0	190.0	190.0	190.0	190.0	190.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.063	0.113	0.137	0.252	0.304	0.410	0.55	0.82
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.061	0.089	0.090	0.122	0.119	0.132	0.145	0.159
n5-02	Motor Acceleration Time	S	0.061	0.089	0.090	0.122	0.119	0.132	0.145	0.159
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-13.7	-15.2	-10.9	-9.8	-9.3	-11.5	-17.7	-17.1

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.40 400 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit			De	fault Setting	S		
	Motor Code Selection (for PM Motors)	-	2432	2433	2435	2436	2438	243A	243B
E5-01	Voltage Class	V	400	400	400	400	400	400	400
	Rated Power	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5
E5-03	Motor Rated Current (for PM Motors)	A	0.89	1.72	3.02	4.58	7.40	10.21	13.75
E5-04	Number of Motor Poles (for PM Motors)	_	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	10.720	6.080	4.336	2.143	1.428	1.199	0.648
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mН	122.20	61.16	70.24	46.20	33.87	41.67	21.24
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mН	170.80	97.12	90.04	60.28	42.98	69.15	33.04
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	626.1	626.1	703.1	727.6	699.0	861.5	759.7
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.0022	0.0042	0.0081	0.0133	0.0168	0.027	0.044
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.080	0.081	0.078	0.088	0.066	0.070	0.085
n5-02	Motor Acceleration Time	S	0.080	0.081	0.078	0.088	0.066	0.070	0.085
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-8.4	-11.0	-9.9	-9.0	-11.4	-23.2	-22.1

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.41 400 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit		Default Settings					
	Motor Code Selection (for PM Motors)	_	243D	243E	243F	2440	2442	2443	2444
E5-01	Voltage Class	V	400	400	400	400	400	400	400
	Rated Power	kW	11	15	18	22	30	37	45
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	11.0	15	18.50	22.00	30.00	37.00	45.00
E5-03	Motor Rated Current (for PM Motors)	A	19.5	27.7	32.7	39.2	51.8	63.0	76.6

No.	Name	Unit			D	efault Settin	gs		
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.460	0.325	0.260	0.209	0.140	0.106	0.076
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	17.76	12.83	11.68	10.09	8.12	6.43	4.96
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	22.72	17.19	15.16	16.25	9.84	7.71	6.56
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	740.4	716.6	809.1	786.2	888.8	857.7	941.6
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.054	0.063	0.113	0.137	0.252	0.304	0.410
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.071	0.061	0.089	0.090	0.122	0.119	0.132
n5-02	Motor Acceleration Time	S	0.071	0.061	0.089	0.090	0.122	0.119	0.132
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-16.7	-20.2	-15.2	-27.7	-9.8	-10.2	-11.5

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Table B.42 400 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

No.	Name	Unit			D	efault Settin	gs		
	Motor Code Selection (for PM Motors)	-	2445	2446	2447	2448	2449	244A	244C
E5-01	Voltage Class	V	400	400	400	400	400	400	400
	Rated Power	kW	55	75	90k	110	132	160	200
	Rated Speed	r/min	1150	1150	1150	1150	1150	1150	1150
E5-02	Motor Rated Power (for PM Motors)	kW	55.00	75.00	90.00	110.00	132.00	160.00	200.00
E5-03	Motor Rated Current (for PM Motors)	A	93.1	128.1	153.1	186.5	221.9	269.8	336.5
E5-04	Number of Motor Poles (for PM Motors)	-	6	6	6	6	6	6	6
E5-05	Motor Stator Resistance (r1) (for PM Motors)	Ω	0.051	0.032	0.026	0.015	0.012	0.009	0.007
E5-06	Motor d-Axis Inductance (Ld) (for PM Motors)	mH	3.99	2.97	2.44	1.87	1.49	1.41	1.22
E5-07	Motor q-Axis Inductance (Lq) (for PM Motors)	mH	5.39	3.90	3.23	2.46	2.08	1.88	1.51
E5-09	Motor Induction Voltage Constant 1 (Ke) (for PM Motors)	mVs /rad	853.8	829.6	835.6	833.4	848.6	889.1	915.0
E5-24	Motor Induction Voltage Constant 2 (Ke) (for PM Motors)	mV/ (r/min)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E1-04	Maximum Output Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-05	Maximum Voltage	V	380.0	380.0	380.0	380.0	380.0	380.0	380.0
E1-06	Base Frequency	Hz	57.5	57.5	57.5	57.5	57.5	57.5	57.5
E1-09	Minimum Output Frequency	Hz	2.9	2.9	2.9	2.9	2.9	2.9	2.9
C5-17	Motor Inertia	kgm ²	0.55	0.82	0.96	1.60	1.95	2.82	3.70
L3-24 <1>	Motor Acceleration Time for Inertia Calculations	S	0.145	0.159	0.155	0.211	0.214	0.256	0.268
n5-02	Motor Acceleration Time	S	0.145	0.159	0.155	0.211	0.214	0.256	0.268
n8-49	d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM)	%	-16.0	-15.7	-15.7	-14.7	-16.5	-14.1	-10.4

<1> Default setting value varies depending on parameter o2-04, Drive Model Selection.

Appendix: C

MEMOBUS/Modbus Communications

C.1	MEMOBUS/MODBUS CONFIGURATION	714
C.2	COMMUNICATION SPECIFICATIONS	715
C.3	CONNECTING TO A NETWORK	716
C.4	MEMOBUS/MODBUS SETUP PARAMETERS	719
C.5	DRIVE OPERATIONS BY MEMOBUS/MODBUS	722
C.6	COMMUNICATIONS TIMING	723
C.7	MESSAGE FORMAT	724
C.8	MESSAGE EXAMPLES	726
C.9	MEMOBUS/MODBUS DATA TABLE	728
C.10	ENTER COMMAND	744
C.11	COMMUNICATION ERRORS	745
C.12	SELF-DIAGNOSTICS	746

C.1 MEMOBUS/Modbus Configuration

Drives can be controlled from a PLC or other master device via serial communications using the MEMOBUS/Modbus protocol.

MEMOBUS/Modbus communications can be configured using one master (PLC) and up to 255 slaves. The drive has slave functionality only, and serial communication is normally initiated from the master and responded to by the slaves.

The master communicates with the specified slave drive. The address or node for each slave must be set prior so the master can communicate with the slave at that address. A slave that receives a command from the master will perform the specified function and send a response back to the master.

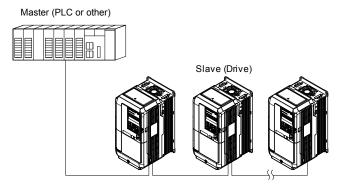


Figure C.1 Connecting Multiple Drives to a PLC

C.2 Communication Specifications

MEMOBUS/Modbus specifications appear in *Table C.1*:

Table C.1 MEMOBUS/Modbus Communications Specifications

Item	Specifications				
Interface	RS-422, RS-485				
Communications Cycle	synchronous (Start-stop synchronization)				
	Communication Speeds Available	1.2; 2.4; 4.8; 9.6; 19.2; 38.4; 57.6; 76.8; 115.2 kbps			
Communication Parameters	Data length	8-bit (fixed)			
Communication Farameters	Parity	Select even, odd, or none			
	Stop bit	1-bit (fixed)			
Protocol	MEMOBUS/Modbus (using RTU mode only)				
Max Number of Slaves	31 drives (RS-485)				

C.3 Connecting to a Network

This section explains how to connect the drive to a MEMOBUS/Modbus network and the network termination required for a connection.

Network Cable Connection

Follow the instructions below to connect the drive to a MEMOBUS/Modbus network.

 With the power shut off, connect the communications cable to the drive and the master. Use terminals TB5 for MEMOBUS/Modbus.

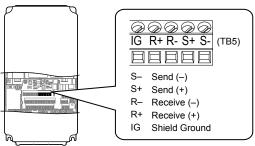


Figure C.2 Serial Communications Cable Connection Terminals (TB5)

Note: Separate the communications cables from the main circuit cables and other wiring and power cables. Use shielded cables for the communications cables, and properly shielded clamps to prevent problems with noise. When using RS-485 communications, connect S+ to R+, and S- to R- as shown in the diagram below.

- 2. Check or set the termination resistor selection at all slaves. Use the description in *Network Termination* on page *718* for slaves that are A1000 drives.
- **3.** Switch the power on.
- **4.** Set the parameters needed for serial communications (H5-01 through H5-12) using the digital operator.
- **5.** Shut the power off and wait until the display on the digital operator goes out completely.
- **6.** Turn the power back on.
- **7.** The drive is now ready to begin communicating with the master.

Wiring Diagram for Multiple Connections

Figure C.3 and Figure C.4 explain the wiring diagrams for multiple connections using MEMOBUS/Modbus communication.

■ RS-485 Interface

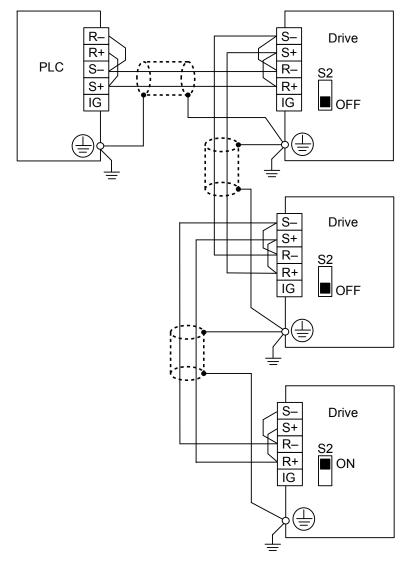


Figure C.3 RS-485 Interface

Note:

- 1. Set DIP switch S2 to the ON position on the drive located at the end of the network. Set DIP switch S2 to the OFF positions on all other slave devices.
- 2. Set H5-07 to 1 when using the RS-485 interface.

■ RS-422 Interface

Figure C.4 RS-422 Interface

Note:

- 1. Set DIP switch S2 to the ON position on the drive located at the end of the network. Set DIP switch S2 to the OFF positions on all other slave devices.
- Set H5-07 to 1 when using the RS-422 interface in a multi-drop circuit. Set H5-07 to 0 when using the RS-422 interface in a point-to-point circuit.

Network Termination

The two ends of the MEMOBUS/Modbus network line have to be terminated. The drive has a built in termination resistor that can be enabled or disabled using DIP switch S2. If a drive is located at the end of a network line, enable the termination resistor by setting DIP switch S2 to the ON position. Disable the termination resistor on all slaves that are not located at the network line end.

MEMOBUS/Modbus Setup Parameters

MEMOBUS/Modbus Serial Communication

Changes to MEMOBUS/Modbus communications settings become effective after restarting the drive.

■ H5-01: Drive Slave Address

Sets the drive slave address used for communications.

Note: Cycle the power after changing this parameter to enable the new setting.

No.	Name	Setting Range	Default
H5-01	Drive Slave Address	0 to FFH <1>	1FH

<1> If the address is set to 0, no response will be provided during communications.

Each slave drive must be assigned a unique slave address for serial communications to work. Setting H5-01 to any value besides 0 assigns the drive its address in the network. Slave addresses do not need to be assigned in sequential order, but no two drives may share the same address.

■ H5-02: Communication Speed Selection

Sets the MEMOBUS/Modbus communications speed.

Note: Cycle the power after changing this parameter to enable the new setting.

No.	Name	Setting Range	Default
H5-02	Communication Speed Selection	0 to 8	3

H5-02	Communication Speed	H5-02	Communication Speed
0	1200 bps	5	38400 bps
1	2400 bps	6	57600 bps
2	4800 bps	7	76800 bps
3	9600 bps	8	115200 bps
4	19200 bps		

■ H5-03: Communication Parity Selection

Sets the parity used for communications.

Cycle the power after changing this parameter to enable the new setting. Note:

No.	Name	Setting Range	Default
H5-03	Communication Parity Selection	0 to 2	0

Setting 0: No parity Setting 1: Even parity Setting 2: Odd parity

■ H5-04: Stopping Method after Communication Error

Selects the stopping method after a communications error (CE) has occurred.

No.	Name	Setting Range	Default
H5-04	Stopping Method after CE	0 to 3	3

Setting 0: Ramp to stop (uses the deceleration time currently enabled)

Setting 1: Cost to stop Setting 2: Fast Stop

Setting 3: Alarm only (continue operation)

■ H5-05: Communication Fault Detection Selection

Enables or disables the CE detection for communications.

C.4 MEMOBUS/Modbus Setup Parameters

No.	Name	Setting Range	Default
H5-05	Communication Fault Detection Selection	0 or 1	1

Setting 0: Disabled

No communication error detection. The drive continues operation.

Setting 1: Enabled

If the drive does not receive data from the master for longer than the time set to H5-09, then a CE fault will be triggered and the drive will operate as determined by parameter H5-04.

■ H5-06: Drive Transmit Wait Time

Sets the time the drive waits after receiving data from a master until responding data.

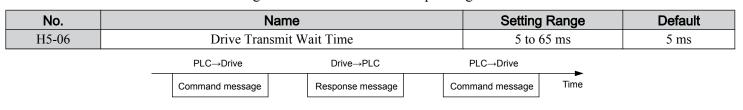


Figure C.5 Drive Transmit Wait Time Setting

■ H5-07: RTS Control Selection

Enables or disables RTS control.

No.	Name	Setting Range	Default
H5-07	RTS Control Selection	0 or 1	1

Setting 0: Disabled. RTS is always on.

Use this setting with point-to-point RS-422 communications.

Setting 1: Enabled. RTS switches while sending.

Use this setting with RS-485 communications or when using multi-drop RS-422 communications.

24 bit length H5-06 setting

■ H5-09: Communications Fault Detection Time

Sets the time the communications must be lost before the drive triggers a CE fault.

No.	Name	Setting Range	Default
H5-09	Communications Fault Detection Time	0.0 to 10.0 s	2.0 s

■ H5-10: Unit Selection for MEMOBUS/Modbus Register 0025H

Sets the unit for the output voltage monitor value in MEMOBUS/Modbus register 0025H.

No.	Name	Setting Range	Default
H5-10	Unit Selection for MEMOBUS/Modbus Register 0025H	0 or 1	0

Setting 0: 0.1 V units Setting 1: 1 V units

■ H5-11: Communications Enter Function Selection

Selects whether an Enter command is necessary to change parameter values via MEMOBUS/Modbus communications. *Refer to Enter Command on page 744*.

No.	Name	Setting Range	Default
H5-11	Communications Enter Function Selection	0 or 1	0

Setting 0: Enter command necessary

Parameter changes become effective after an Enter command. An Enter command must only be sent after the last parameter change, not for each single parameter.

Setting 1: Enter command not necessary

Parameter value changes become effective immediately without the need to send an Enter command.

■ H5-12: Run Command Method Selection

Selects the type of sequence used when the Run command source is set to MEMOBUS/Modbus communications (b1-02, b1-16 = 2).

No.	Name	Setting Range	Default
H5-12	Run Command Method Selection	0 or 1	0

Setting 0: FWD/Stop, REV/Stop

Setting bit 0 of MEMOBUS/Modbus register 0001H will start and stop the drive in the forward direction. Setting bit 1 will start and stop the drive in reverse.

Setting 1: Run/Stop, FWD/REV

Setting bit 0 of MEMOBUS/Modbus register 0001H will start and stop the drive. Setting bit 1 changes the direction.

■ H5-17: Operation Selection when Unable to Write into EEPROM

Selects the operation to be carried out when attempting to write data into EEPROM by MEMOBUS/Modbus communications but writing into EEPROM is not enabled. There is normally no need to change this parameter from the default value.

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
H5-17	Operation Selection when Unable to Write into EEPROM	0, 1	0

Setting 0: Cannot write into EEPROM

Setting 1: Write in RAM only

■ H5-18: Filter Time Constant for Motor Speed Monitoring

Sets the filter time constant for monitoring the motor speed from MEMOBUS/Modbus communications and communication options. Applicable MEMOBUS/Modbus registers are: 3EH, 3FH, 44H, ACH, and ADH

Note: This parameter is not available in models 4A0930 and 4A1200.

No.	Name	Setting Range	Default
H5-18	Filter Time Constant for Motor Speed Monitoring	0 to 100 ms	0 ms

C.5 Drive Operations by MEMOBUS/Modbus

The drive operations that can be performed by MEMOBUS/Modbus communication depend on drive parameter settings. This section explains the functions that can be used and related parameter settings.

Observing the Drive Operation

A PLC can perform the following actions with MEMOBUS/Modbus communications at any time regardless of parameter settings (except for H5-DDparameters):

- observe drive status and drive control terminal status from a PLC.
- read and write parameters.
- · set and reset faults.
- set multi-function inputs.

Note: Input settings from the input terminals (S1 to S8) and from MEMOBUS/Modbus communications are both linked by a logical OR operation.

Controlling the Drive

Select an external reference and adjust the parameters in *Table C.2* accordingly to start and stop the drive or set the frequency reference using MEMOBUS/Modbus communications.

Table C.2 Setting Parameters for Drive Control from MEMOBUS/Modbus

Reference Source	Parameter	Name	Required Setting
External Reference 1	b1-01	Frequency Reference Selection 1	2
External Reference 1	b1-02	Run Command Selection 1	2
Ft1 Bf 2	b1-15	Frequency Reference Selection 2	2
External Reference 2	b1-16	Run Command Selection 2	2

Refer to b1-01: Frequency Reference Selection 1 on page 231 and Refer to b1-02: Run Command Selection 1 on page 232 for details on external reference parameter selections. Refer to Setting 2: External Reference 1/2 Selection on page 322 for instructions on selecting external references 1 and 2.

Communications Timing

To prevent a communications overrun in the slave drive, the master should wait a certain time between sending messages to the same drive. In the same way, the slave drive must wait before sending response messages to prevent an overrun in the master. This section explains the message timing.

Command Messages from Master to Drive

The master must wait for a specified time between receiving a response and resending the same type of command to the same slave drive to prevent overrun and data loss. The minimum wait time depends on the command as shown in *Table C.3*.

Table C.3 Minimum Wait Time for Sending Messages

Command Type	Example	Minimum Wait Time
1	Control command (Run, Stop)Set inputs/outputsRead monitors and parameter values	5 ms
2	Write parameters	H5-11 = 0: 50 ms H5-11 = 1: 200 ms <1>
3	Save changes using an Enter command	200 ms to 2 s, depending on the number of parameters that were changed <1>
4	Enter with storage to drive EEPROM after initialization	5 s

<1> If the drive receives command type 1 data during the minimum wait time, it will perform the command and then respond. However, if it receives a command type 2 or 3 during that time, either a communication error will result or the command will be ignored.

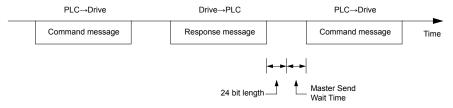


Figure C.6 Minimum Wait Time for Sending Messages

Set a timer in the master to check how long it takes for the slave drive(s) to respond to the master. If no response is received within a certain amount of time, the master should try resending the message.

Response Messages from Drive to Master

If the drive receives a command from the master, it will process the data received and wait for the time set in H5-06 until it responds. Increase H5-06 if the drive response causes overrun in the master.

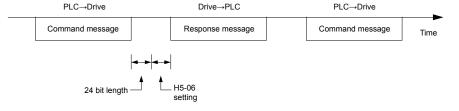


Figure C.7 Minimum Response Wait Time

C.7 Message Format

Message Content

In MEMOBUS/Modbus communications, the master sends commands to the slave, and the slave responds. The message format is configured for both sending and receiving as shown below, and the length of data packets depends on the command (function) content.

SLAVE ADDRESS
FUNCTION CODE
DATA
ERROR CHECK

Slave Address

The slave address in the message defines the note the message is sent to. Use addresses between 0 and FF (hex). If a message with slave address 0 is sent (broadcast), the command from the master will be received by all slaves. The slaves do not provide a response to a broadcast type message.

Function Code

The three types of function codes are shown in the table below.

		Data Length (bytes)					
Function Code	Function Name	Command	l Message	Response Message			
Codo		Minimum	Maximum	Minimum	Maximum		
03H	Read MEMOBUS/Modbus registers	8	8	7	37		
08H	Loopback test	8	8	8	8		
10H	Write to multiple MEMOBUS/Modbus registers	11	41	8	8		

◆ Data

Configure consecutive data by combining the MEMOBUS/Modbus register address (test code in case of a loopback test) and the data the register contains. The data length changes depending on the command details.

A drive MEMOBUS/Modbus register always has a data length of two bytes. Data written into drive registers must also always have a length of two bytes. Register data read out from the drive will always consist of two bytes.

♦ Error Check

The drive uses a CRC-16 (cyclic redundancy check, checksum method) for checking data validity. Use the procedure described below when calculating the CRC-16 checksum for command data or when verifying response data.

Command Data

When the drive receives data, it calculates the CRC-16 checksum from the data and compares it to the CRC-16 value received within the message. Both must match before a command is processed.

An initial value of FFFFH (i.e., all 16 bits equal 1) must be used for CRC-16 calculations in the MEMOBUS/Modbus protocol.

Calculate the CRC-16 checksum using the following steps:

- 1. The starting value is FFFFH.
- 2. Perform an XOR operation of this value and the slave address.
- 3. Right shift the result.
- **4.** When the overflow bit of the shift operation becomes 1, perform an XOR operation of the result from step 3 above and the fix value A001H.
- **5.** Repeat steps 3 and 4 until eight shift operations have been performed.
- **6.** After eight shift operations, perform an XOR operation with the result and the next data in the message (function code, register address, data). Continue with steps 3 to 5 until the last data has been processed.
- 7. The result of the last shift or XOR operation is the checksum.

MEMOBUS/Modl Communications

The example in *Table C.4* shows the CRC-16 calculation of the slave address 02H and the function code 03H, yielding the result D140H.

Note: This example does not show the calculation for a complete MEMOBUS/Modbus command. Normally data would follow in the calculation.

Table C.4 CRC-16 Checksum Calculation Example

Description	Calculation	Overflow	Description	Calculation	Overflow
Initial Value (FFFFH)	1111 1111 1111 1111		Function Code 03H	0000 0000 0000 0011	
Address 02H	0000 0000 0000 0010		XOR w result	1000 0001 0011 1101	
XOR w initial value	1111 1111 1111 1101		Shift 1	0100 0000 1001 1110	1
Shift 1	0111 1111 1111 1110	1	XOR w A001H	1010 0000 0000 0001	
XOR w A001H	1010 0000 0000 0001		XOR result	1110 0000 1001 1111	
XOR result	1101 1111 1111 1111		Shift 2	0111 0000 0100 1111	1
Shift 2	0110 1111 1111 1111	1	XOR w A001H	1010 0000 0000 0001	
XOR w A001H	1010 0000 0000 0001		XOR result	1101 0000 0100 1110	
XOR result	1100 1111 1111 1110		Shift 3	0110 1000 0010 0111	0
Shift 3	0110 0111 1111 1111	0	Shift 4	0011 0100 0001 0011	1
Shift 4	0011 0011 1111 1111	1	XOR w A001H	1010 0000 0000 0001	
XOR w A001H	1010 0000 0000 0001		XOR result	1001 0100 0001 0010	
XOR result	1001 0011 1111 1110		Shift 5	0100 1010 0000 1001	0
Shift 5	0100 1001 1111 1111	0	Shift 6	0010 0101 0000 0100	1
Shift 6	0010 0100 1111 1111	1	XOR w A001H	1010 0000 0000 0001	
XOR w A001H	1010 0000 0000 0001		XOR result	1000 0101 0000 0101	
XOR result	1000 0100 1111 1110		Shift 7	0100 0010 1000 0010	1
Shift 7	0100 0010 0111 1111	0	XOR w A001H	1010 0000 0000 0001	
Shift 8	0010 0001 0011 1111	1	XOR result	1110 0010 1000 0011	
XOR w A001H	1010 0000 0000 0001		Shift 8	0111 0001 0100 0001	1
XOR result	1000 0001 0011 1110		XOR w A001H	1010 0000 0000 0001	
		1	XOR result	1101 0001 0100 0000	
				1101 0001 0100 0000	
Perform operation	ns with next data (function	code)	CRC-16	D 1 4 0 (Lower) (Upper)	
			Continue	from here with next data.	1

■ Response Data

Perform a CRC-16 calculation on the response message data as described above as a validation check. The result should match the CRC-16 checksum received within the response message.

C.8 Message Examples

Below are some examples of command and response messages.

Reading Drive MEMOBUS/Modbus Register Contents

Using the function code 03H (Read), a maximum of 16 MEMOBUS/Modbus registers can be read out at a time.

The following table shows message examples when reading status signals, error details, data link status, and frequency references from the slave 2 drive.

Command Message			Respo	Response Message (normal)			Response Message (fault)			
Slave Address		02H	Slave Address		02H	Slave Address		02H		
Function Code		03H	Function Code		03H	Function Code	;	83H		
Ctantin - Na	Upper	00H	Data Quantity	Data Quantity		Error Code		03H		
Starting No.	Lower	20H	1st storage	Upper	00H	CDC 16	Upper	F1H		
Data Ossantita	Upper	00H	register	Lower	65H	CRC-16	Lower	31H		
Data Quantity	Lower	04H	Next storage	Upper	00H		·			
CDC 16	Upper	45H	register	Lower	00H					
CRC-16	Lower	F0H	Next storage	Upper	00H					
		·	register	Lower	00H					
			Next storage	Upper	01H					
			register	Lower	F4H					
				Upper	AFH					
				Lower	82H					

Loopback Test

Function code 08H performs a loopback test that returns a response message with exactly the same content as the command message. The response message can be used to check communications between the master and slave. User-defined test code and data values can also be set.

The following table shows a message example when performing a loopback test with the slave 1 drive.

Command Message			Response Message (normal)			Response Message (fault)		
Slave Address		01H	Slave Address	Slave Address 01		Slave Address		01H
Function Code		08H	Function Code	Function Code 08H		Function Code		88H
Test Code	Upper	00H	Test Code	Upper	00H	Error Code		01H
	Lower	00H	Test Code	Lower	00H	- CRC-16	Upper	86H
Data	Upper	A5H	Data	Upper	A5H	CKC-16	Lower	50H
Data	Lower	37H	Data	Lower	37H			
CRC-16	Upper	DAH	-CRC-16	Upper	DAH			
	Lower	8DH	CKC-10	Lower	8DH			

Writing to Multiple Registers

Function code 10H allows the user to write multiple drive MEMOBUS/Modbus registers with one message. This process works similar to reading registers, in that the address of the first register to be written and the data quantity are set in the command message. The data to be written must be consecutive so that the register addresses are in order, starting from the specified address in the command message. The data order must be high byte then lower byte.

The following table shows an example of a message where a forward operation has been set with a frequency reference of 60.00 Hz for the slave 1 drive.

If parameter values are changed using the Write command, an Enter command may be necessary to activate or save the data depending on the setting of H5-11. Refer to H5-11: Communications Enter Function Selection on page 721 and Refer to Enter Command on page 744 for detailed descriptions.

Command Message			Response Message (normal)			Response Message (fault)		
Slave Address 01H		Slave Address		01H	Slave Address	Slave Address		
Function Code		10H	Function Code		10H	Function Code		90H
Starting No.	Upper	00H	Starting No.	Upper	00H	Error Code		02H
Starting No.	Lower	01H	Starting No.	Lower	01H	CRC-16	Upper	CDH
Data Ossantita	Upper	00H	Data Oceantita	Upper	00H	- CRC-16	Lower	C1H
Data Quantity	Lower	02H	Data Quantity	Lower	02H			
Number of Byte	es	04H	CDC 16	Upper	10H			
Ctantin - Data	Upper	00H	CRC-16	Lower	08H			
Starting Data	Lower	01H						
Nant Data	Upper	17H]					
Next Data	Lower	70H]					
CDC 16	Upper	63H	1					
CRC-16	Lower	39H						

Note: Double the number of the data quantity for the number of bytes in the command message.

C.9 MEMOBUS/Modbus Data Table

The tables below list all MEMOBUS/Modbus data.

Command Data

It is possible to both read and write command data.

Note: Bits that are not used should be set to 0. Refrain from writing to reserved registers.

Register No.	Contents		
0000Н	Reserved		
	Operation Commands and Multi-function Inputs		
	bit 0	H5-12 = 0: Forward Run Command (0 = Stop, 1 = Forward Run) H5-12 = 1: Run Command (0 = Stop, 1 = Run)	
	bit 1	H5-12 = 0: Reverse Run Command (0 = Stop, 1 = Reverse Run) H5-12 = 1: Forward/Reverse (0 = Forward, 1 = Reverse)	
	bit 2	External Fault (EF0)	
	bit 3	Fault Reset	
		Multi-Function Input 1 Function is ComRef when H1-01 = 40 (Forward/Stop).	
0001H	bit 4	Note: When the bit at ComCtrl is turned on, commands from MEMOBUS/Modbus communications take control of the operation. However, when a communications option card is connected, that option card is given priority.	
	bit 5	Multi-Function Input 2 Function is ComCtrl when H1-02 = 41 (Reverse/Stop).	
	bit 6	Multi-Function Input 3	
	bit 7	Multi-Function Input 4	
	bit 8	Multi-Function Input 5	
	bit 9	Multi-Function Input 6	
	bit A	Multi-Function Input 7	
	bit B	Multi-Function Input 8	
	bit C to F	Reserved	
0002H	Frequency Reference	Units are determined by parameter o1-03.	
0003Н	Output voltage gain/ Unit: 0.1% Range: 20 (2.0%) to 2000 (200.0%), Default when power on: 1000 (100.0%)		
0004H	Torque Reference/Toro	que Limit, 0.1% units, signed (Usable only if Torque Control is enabled)	
0005H	Torque Compensation,	0.1% units, signed (Usable only if Torque Control is enabled)	
0006Н	PID Target, 0.01% uni	ts, signed	
0007H	Analog Output Termin	al FM Setting (10 V / 4000 H)	
0008H	Analog Output Terminal AM Setting (10 V / 4000 H)		
	Settings for Multi-Function Digital Outputs		
	bit 0	Multi-Function Contact Output 1 (terminal M1-M2)	
	bit 1	Multi-Function Contact Output 2 (terminal M3-M4)	
000011	bit 2	Multi-Function Contact Output 3 (terminal M5-M6)	
0009Н	bit 3 to 5	Reserved	
	bit 6	Enables the function in bit 7	
	bit 7	Fault Contact Output (terminal MA/MB-MC)	
	bit 8 to F	Reserved	
000AH	Pulse Output Terminal MP Setting, 1 Hz units, Setting Range: 0 to 32000		
000BH to 000EH	Reserved	Reserved	

Register No.	Contents		
	Control Selection Setting		
	bit 0	Reserved	
	bit 1	PID Setpoint Input	
	bit 2	Torque reference / torque limit input (enables the setting from MEMOBUS/Modbus)	
000FH	bit 3	Torque compensation input (enables the setting from MEMOBUS/Modbus)	
000111	bit 4 to B	Reserved	
	bit C	Enable Terminal S5 Input for Broadcast Data	
	bit D	Enable Terminal S6 Input for Broadcast Data	
	bit E	Enable Terminal S7 Input for Broadcast Data	
	bit F	Enable Terminal S8 Input for Broadcast Data	
0010H to 001AH	Reserved	Reserved	
001BH	Analog Monitor Option AO-A3 Analog Output 1 (10 V/4000 H)		
001CH	Analog Monitor Option AO-A3 Analog Output 2 (10 V/4000 H)		
001DH	Digital Output Option DO-A3 Output (Binary)		
001EH to 001FH	Reserved		

◆ Monitor Data

Monitor data can be read only.

Register No.	Contents		
	Drive Status 1		
	bit 0	During Run	
	bit 1	During Reverse	
	bit 2	Drive Ready	
	bit 3	Fault	
0020H	bit 4	Data Setting Error	
0020П	bit 5	Multi-Function Contact Output 1 (terminal M1-M2)	
	bit 6	Multi-Function Contact Output 2 (terminal M3-M4)	
	bit 7	Multi-Function Contact Output 3 (terminal M5-M6)	
	bit 8 to bit D	Reserved	
	bit E	When ComRef has been enabled	
	bit F	When ComCtrl has been enabled	
	Fault Contents 1		
	bit 0	Overcurrent (oC), Ground fault (GF)	
	bit 1	Drive Overheat Warning (ov)	
	bit 2	Drive Overload (oL2)	
	bit 3	Overheat 1 (oH1), Drive Overheat Warning (oH2)	
	bit 4	Dynamic Braking Transistor Fault (rr), Braking Resistor Overheat (rH)	
	bit 5	Reserved	
	bit 6	PID Feedback Loss (FbL / FbH)	
0021H	bit 7	EF to EF8: External Fault	
VV Z 111	bit 8	CPF□□: Hardware Fault (includes oFx)	
	bit 9	Motor Overload (oL1), Overtorque Detection 1/2 (oL3/oL4), Undertorque Detection 1/2 (UL3/UL4)	
	bit A	PG Disconnected (PGo), PG Hardware Fault (PGoH), Overspeed (oS), Speed Deviation (dEv)	
	bit B	Main Circuit Undervoltage (Uv)	
	bit C	DC Bus Undervoltage (Uv1), Control Power Supply Voltage Fault (Uv2), Undervoltage 3 (Uv3)	
	bit D	Output Phase Loss (LF), Input Phase Loss (PF)	
	bit E	MEMOBUS/Modbus Communication Error (CE), Option Communication Error (bUS)	
	bit F	External Digital Operator Connection Fault (oPr)	

Register No.	Contents		
Ū	Data Link Status		
	bit 0	Writing data or switching motors	
	bit 1	D. I	
	bit 2	Reserved	
	bit 3	Upper or lower limit error	
0022H	bit 4	Data conformity error	
	bit 5	Writing to EEPROM	
	bit 6	0: Write into EEPROM. 1: Write in RAM only. Note: Enabled only when H5-17 = 1.	
	bit 7 to bit F	Reserved	
0023H	Frequency Reference <1>		
0024H	Output Frequency <1>		
0025H	Output Voltage Reference,	0.1 V units (units are determined by parameter H5-10)	
0026Н	Output Current, 0.1 A units		
0027H	Output Power		
0028H	Torque Reference		
	Fault Contents 2		
	bit 0	Output Short Circuit or IGBT Fault (SC)	
	bit 1	Ground Fault (GF)	
	bit 2	Input Phase Loss (PF)	
0029H	bit 3	Output Phase Loss (LF)	
	bit 4	Braking Resistor Overheat (rH)	
	bit 5	Reserved	
	bit 6	Motor Overheat 2 (PTC input) (oH4)	
	bit 7 to bit F	Reserved	
	Alarm Contents 1		
	bit 0, 1	Reserved	
	bit 2	Forward/Reverse Run Command Input Error (EF)	
	bit 3	Drive Baseblock (bb)	
	bit 4	Overtorque Detection 1 (oL3)	
	bit 5	Heatsink Overheat (oH)	
	bit 6	Drive Overheat Warning (ov)	
002AH	bit 7	Undervoltage (Uv)	
	bit 8	Internal Fan Fault (FAn)	
	bit 9	MEMOBUS/Modbus Communication Error (CE)	
	bit A	Option Communication Error (bUS)	
	bit B	Undertorque Detection 1/2 (UL3/UL4)	
	bit C	Motor Overheat (oH3)	
	bit D	PID Feedback Loss (FbL, FbH)	
	bit E	Reserved	
	bit F	Serial Communication Transmission Error (CALL)	

o	ທ
ᄝ	Suo
ĕ	0
Ž	_
ത	<u>8</u>
⊃	.≃
	⊂
Ō	_
О	Ē
÷	⊑
2	╒
ш	≍
₹	50
2	\mathbf{c}

Register No.		Contents
	Input Terminal Statu	IS
	bit 0	Terminal S1 Closed
	bit 1	Terminal S2 Closed
	bit 2	Terminal S3 Closed
	bit 3	Terminal S4 Closed
002BH	bit 4	Terminal S5 Closed
	bit 5	Terminal S6 Closed
	bit 6	Terminal S7 Closed
	bit 7	Terminal S8 Closed
	bit 8 to bit F	Reserved
	Drive Status 2	
	bit 0	During Run
	bit 1	Zero Speed
	bit 2	Speed Agree
	bit 3	User Speed Agree
	bit 4	Frequency Detection 1
	bit 5	Frequency Detection 2
	bit 6	Drive Ready
002CH	bit 7	During Undervoltage
002CH	bit 8	
	bit 9	During Baseblock
		Frequency Reference from Operator Keypad
	bit A	Run Command from Operator Keypad
	bit B	Over/Undertorque Detection 1, 2
	bit C	Frequency Reference Loss
	bit D	During Fault Restart
	bit E	Fault
	bit F	Communication Timeout
	Output Terminal Sta	
	bit 0	Multi-Function Contact Output 1 (terminal M1-M2)
	bit 1	Multi-Function Contact Output 2 (terminal M3-M4)
002DH	bit 2	Multi-Function Contact Output 3 (terminal M5-M6)
	bit 3 to 6	Reserved
	bit 7	Fault Contact Output (terminal MA/MB-MC)
	bit 8 to F	Reserved
002EH	Reserved	
002FH	Frequency Reference	e Bias (from Up/Down 2 Function), 0.1% units
0030H	Reserved	
0031H	DC Bus Voltage, 1 V	/dc units
0032H	Torque Reference (U	J1-09), 1% units
0033H	Reserved	
0034Н	Product Code 1 [AS	CII], Product Type (A0 for A1000)
0035H	Product Code 2 [ASCII], Region Code	
0036Н, 0037Н	Reserved	
0038H	PID Feedback, 0.1%	units, unsigned, 100% / max. output frequency
0039H	PID Input, 0.1% unit	ts, signed, 100% / max. output frequency
003AH	PID Output, 0.1% units, signed, 100% / max. output frequency	
003BH, 003CH	Reserved	

Register No.		Contents	
	Communications Error Cont	ents <3>	
	bit 0	CRC Error	
	bit 1	Data Length Error	
	bit 2	Reserved	
003DH	bit 3	Parity Error	
	bit 4	Overrun Error	
	bit 5	Framing Error	
	bit 6	Timeout	
	bit 7 to bit F	Reserved	
003EH	0	r/min <4>	
003FH	Output Frequency	0.01% units	
0040H to 004AH	Used for various monitors U	1-□□. <i>Refer to U: Monitors on page 661</i> for parameter details.	
	Drive status (U1-12)		
	bit 0	During Run	
	bit 1	During Zero Speed	
	bit 2	During Reverse Run	
	bit 3	During Fault Reset Signal Input	
	bit 4	During Speed Agree	
	bit 5	Drive Ready	
004BH	bit 6	Alarm	
	bit 7	Fault	
	bit 8	During Operation Error (oPE□□)	
	bit 9	During Momentary Power Loss	
	bit A	Motor 2 selected	
	bit B	Reserved	
	bit E	ComRef status, NetRef status	
	bit F	ComCtrl status, NetCtrl status	
004CH to 007EH	Used for monitors U1-□□, History on page 665 for para	U4-□□, U5-□□ and U6-□□. <i>Refer to U2: Fault Trace on page 663</i> and <i>Refer to U3: Fault</i> ameter details.	
007FH	Minor Fault Code, Refer to Alarm Register Contents on page 743 for Minor Fault codes.		
0080H to 0097H	Used for monitors U2-□□, Contents on page 741 for re	Used for monitors U2-\$\square\$ 0.3-\$\square\$ 0.3. Refer to U: Monitors on page 661 for parameter details and Refer to Fault Trace Contents on page 741 for register value descriptions.	
0098Н, 0099Н	U4-01 (Cumulative Operation Time) Example: When U4-01 (Cumulative Operation Time) is 12345 hours, then 0098H = 1234 and 0099H = 5.		
009AH, 009BH	U4-03 (Cooling Fan Operation Time) Example: When U4-03 (Cooling Fan Operation Time) is 12345 hours, then 009AH = 1234 and 009BH = 5.		
009CH to 00AAH	Reserved		
00ABH	Drive Rated Current <2>		
00ACH		r/min units 💝	
00ADH	Motor Speed (U1-05)	0.01% units	
00AEH, 00AFH	Reserved		

Register No.	Contents			
00В0Н	Option Code Connected to CN5-A	Register contains ASCII code of the option card. AI-A3 = 0003H AO-A3 = 0004H DI-A3 = 0001H DO-A3 = 0002H PG-B3 = 0011H PG-RT3 = 0023H PG-X3 = 0012H SI-B3 = 1002H SI-B3 = 1006H SI-EM3 = 1006H SI-EN3 = 1006H SI-ES3 = 1001H SI-ET3 = 1004H SI-N3 = 534EH SI-N3 = 5350H SI-S3 = 5353H SI-S3 = 5353H SI-T3 = 5354H SI-W3 = 1003H		
00B1H	Reserved			
00B2H	Option Code Connected to C			
00B3H	Option Code Connected to C	N5-C		
00B4H	Reserved	Reserved		
00B5H	Frequency Reference After	r/min units <4>		
00B6H	Soft-starter (U1-16)	0.01% units		
00B7H	- Frequency Reference	r/min <4>		
00B8H	- Frequency Reference	0.01% units		
00B9H to 00BEH	Reserved			
00BFH	Lists the last two digits of op	peration error code oPE□□.		
	Fault Contents 3			
	bit 1	DC Bus Undervoltage (Uv1)		
	bit 2	Control Power Supply Undervoltage (Uv2)		
	bit 3	Undervoltage 3 (Soft-Charge Bypass Circuit Fault) (Uv3)		
	bit 4	Output Short-Circuit or IGBT Fault (SC)		
	bit 5	Ground Fault (GF)		
	bit 6	Overcurrent (oC)		
00С0Н	bit 7	Drive Overheat Warning (ov)		
ocom	bit 8	Heatsink Overheat (oH)		
	bit 9	Overheat 1 (oH1)		
	bit A	Motor Overload (oL1)		
	bit B	Drive Overload (oL2)		
	bit C	Overtorque Detection 1 (oL3)		
	bit D	Overtorque Detection 2 (oL4)		
	bit E	Dynamic Braking Transistor Fault (rr)		
	bit F	Braking Resistor Overheat (rH)		

Register No.		Contents	
	Fault Contents 4		
	bit 0	External Fault at input terminal S3 (EF3)	
	bit 1	External Fault at input terminal S4 (EF4)	
	bit 2	External Fault at input terminal S5 (EF5)	
	bit 3	External Fault at input terminal S6 (EF6)	
	bit 4	External Fault at input terminal S7 (EF7)	
	bit 5	External Fault at input terminal S8 (EF8)	
	bit 6	Internal Fan Fault (FAn)	
00C1H	bit 7	Overspeed (os)	
	bit 8	Excessive Speed Deviation (dEv)	
	bit 9	PG Disconnected (PGo)	
	bit A	Input Phase Loss (PF)	
	bit B	Output Phase Loss (LF)	
	bit C	Motor Overheat (PTC input) (oH3)	
	bit D	External Digital Operator Connection Fault (oPr)	
	bit E	EEPROM Write Error (Err)	
	bit F	Motor Overheat Fault (PTC input) (oH4)	
	Fault Contents 5		
	bit 0	MEMOBUS/Modbus Communication Error (CE)	
	bit 1	Option Communication Error (bUS)	
	bit 2, 3	Reserved	
	bit 4	Control Fault (CF)	
	bit 5	Zero Servo Fault (SvE)	
00C2H	bit 6	Option External Fault (EF0)	
	bit 7	PID Feedback Loss (FbL)	
	bit 8	Undertorque Detection 1 (UL3)	
	bit 9	Undertorque Detection 2 (UL4)	
	bit A	High Slip Braking Overload (oL7)	
	bit B to E	Reserved	
	bit F	Hardware Fault (includes oFx)	
	Fault Contents 6		
	bit 0	Reserved	
	bit 1	Z Pulse Fault (dv1)	
	bit 2	Z Pulse Noise Fault Detection (dv2)	
	bit 3	Inversion Detection (dv3)	
	bit 4	Inversion Prevention Detection (dv4)	
00C3H	bit 5	Output Current Imbalance (LF2)	
	bit 6	Pullout Detection (STo)	
	bit 7	PG Hardware Fault (PGoH)	
	bit 8	MECHATROLINK Watchdog Timer Error (E5)	
	bit 9	Reserved	
	bit A	Too many speed search restarts (SEr)	
	bit B to F	Reserved	

Register No.	Contents		
	Fault Contents 7		
	bit 0	PID Feedback Loss (FbH)	
	bit 1	External Fault 1, input terminal S1 (EF1)	
	bit 2	External Fault 2, input terminal S2 (EF2)	
	bit 3	Mechanical Weakening Detection 1 (oL5)	
	bit 4	Mechanical Weakening Detection 2 (UL5)	
	bit 5	Current Offset Fault (CoF)	
00C4H	bit 6, 7	Reserved	
	bit 8	DriveWorksEZ Fault (dWFL)	
	bit 9	EEPROM Memory DriveWorksEZ Data Error (dWF1)	
	bit A to B	Reserved	
	bit C	Output Voltage Detection Fault (voF)	
	bit D	Braking Resistor Fault (rF)	
	bit E	Braking Transistor Overload Fault (boL)	
	bit F	Motor Overheat (NTC Input) (oH5)	
	Fault Contents 8		
	bit 0	LSo Fault (LSo)	
	bit 1	Node Setup Fault (nSE)	
	bit 2	Thermistor Disconnect (THo)	
00C5H	bit 3 to 9	Reserved	
	bit A	Initial Polarity Estimation Timeout (dv7)	
	bit B to D	Reserved	
	bit E	Power Unit Output Phase Loss 3 (LF3)	
	bit F	Current Unbalance (UnbC)	
	Fault Contents 9		
00C6H	bit 0	Gate Drive Board Undervoltage (Uv4)	
	bit 1 to F	Reserved	
00C7H	Reserved	<u>'</u>	
	Alarm Contents 2		
	bit 0	Undervoltage (Uv)	
	bit 1	Drive Overheat Warning (ov)	
	bit 2	Heatsink Overheat (oH)	
	bit 3	Drive Overheat Warning (oH2)	
	bit 4	Overtorque 1 (oL3)	
	bit 5	Overtorque 2 (oL4)	
	bit 6	Run Commands Input Error (EF)	
00C8H	bit 7	Drive Baseblock (bb)	
	bit 8	External Fault 3, input terminal S3 (EF3)	
	bit 9	External Fault 4, input terminal S4 (EF4)	
	bit A	External Fault 5, input terminal S5 (EF5)	
	bit B	External Fault 6, input terminal S6 (EF6)	
	bit C	External Fault 7, input terminal S7 (EF7)	
	bit D	External Fault 8, input terminal S8 (EF8)	
	bit E	Internal Fan Fault (FAn)	
	bit F	Overspeed (oS)	
	OIL I	O resupeed (OO)	

Register No.		Contents	
	Alarm Contents 3		
	bit 0	Speed Deviation (dEv)	
	bit 1	PG Disconnected (PGo)	
	bit 2	External Digital Operator Connection Fault (oPr)	
	bit 3	MEMOBUS/Modbus Communication Error (CE)	
	bit 4	Option Communication Error (bUS)	
	bit 5	Serial Communication Transmission Error (CALL)	
	bit 6	Motor Overload (oL1)	
00C9H	bit 7	Drive Overload (oL2)	
	bit 8	Reserved	
	bit 9	Option Card External fault (EF0)	
	bit A	Motor 2 Switch command input during run (rUn)	
	bit B	Reserved	
	bit C	Serial Communication Transmission Error (CALL)	
	bit D	Undertorque Detection 1 (UL3)	
	bit E	Undertorque Detection 2 (UL4)	
	bit F	MEMOBUS/Modbus Communication Test Mode Error (SE)	
	Alarm Contents 4		
	bit 0	Reserved	
	bit 1	Motor Overheat 1 (PTC Input) (oH3)	
	bit 2 to 5	Reserved	
00CAH	bit 6	PID Feedback Loss (FbL)	
	bit 7	PID Feedback Loss (FbH)	
	bit 9	Drive Disabled (dnE)	
	bit A	PG Disconnected (PGo)	
	bit B to F	Reserved	
	Alarm Contents 5		
	bit 0	MECHATROLINK Watchdog Timer Error (E5)	
	bit 1	Station Address Setting Error (AEr)	
	bit 2	MECHATROLINK Comm. Cycle Setting Error (CyC)	
	bit 3	High Current Alarm (HCA)	
	bit 4	Cooling Fan Maintenance Time (LT-1)	
	bit 5	Soft Charge Bypass Relay Maintenance Time (LT-2)	
	bit 6	Reserved	
00CBH	bit 7	SI-S EEPROM Error (EEP)	
	bit 8	External Fault 1 (input terminal S1) (EF1)	
	bit 9	External Fault 2 (input terminal S2) (EF2)	
	bit A	Safe Disable Input (HbbF) <5>	
	bit B	Safe Disable Input (Hbb) <5>	
	bit C	Mechanical Weakening Detection 1 (oL5)	
	bit D	Mechanical Weakening Detection 1 (0L5) Mechanical Weakening Detection 2 (UL5)	
	bit E, F	Reserved	

Register No.		Contents
	Alarm Contents 6	
	bit 0	Output Voltage Detection Fault (VoF)
	bit 1	IGBT Maintenance Time (90%) (TrPC)
	bit 2	Capacitor Maintenance Time (LT-3)
	bit 3	IGBT Maintenance Time (50%) (LT-4)
000077	bit 4	Braking Transistor Overload Fault (boL)
00CCH	bit 5 to 6	Reserved
	bit 7	Motor Overheat (NTC Input) (oH5)
	bit 8	DriveWorksEZ Fault (dWAL)
	bit 9 to B	Reserved
	bit C	Thermistor Disconnect (THo)
	bit D to F	Reserved
00CDH to 00CFH	Reserved	
	CPF Contents 1	
	bit 0, 1	Reserved
	bit 2	A/D Conversion Error (CPF02)
	bit 3	PWM Data Fault (CPF03)
	bit 4, 5	Reserved
	bit 6	EEPROM Memory Data Error (CPF06)
	bit 7	Terminal Board Connection Error (CPF07)
00D0H	bit 8	EEPROM Serial Communications Fault (CPF08)
	bit 9, A	Reserved
	bit B	RAM Fault (CPF11)
	bit C	FLASH Memory Fault (CPF12)
	bit D	Watchdog Circuit Exception (CPF13)
	bit E	Control Circuit Fault (CPF14)
	bit F	Reserved
	CPF Contents 2	<u> </u>
	bit 0	Clock Fault (CPF16)
	bit 1	Timing Fault (CPF17)
	bit 2	Control Circuit Fault (CPF18)
	bit 3	Control Circuit Fault (CPF19)
	bit 4	Hardware fault at power up (CPF20)
	bit 5	Hardware fault at communication start up (CPF21)
	bit 6	A/D Conversion Fault (CPF22)
00D1H	bit 7	PWM Feedback Fault (CPF23)
	bit 8	Drive Unit Signal Fault (CPF24)
	bit 9	Terminal board is not properly connected. (CPF25)
	bit A	ASIC BB Circuit Error (CPF26)
	bit B	ASIC PWM Setting Register Error (CPF27)
	bit C	ASIC PWM Pattern Error (CPF28)
	bit D	ASIC On-delay Error (CPF29)
	bit E	ASIC BBON Error (CPF30)
	bit F	ASIC Code Error (CPF31)

Register No.		Contents	
	CPF Contents 3		
	bit 0	ASIC Start-up Error (CPF32)	
	bit 1	Watch-dog Error (CPF33)	
	bit 2	ASIC Power/Clock Error (CPF34)	
	bit 3	External A/D Converter Error (CPF35)	
	bit 4 to 7	Reserved	
00D2H	bit 8	Control Circuit Error (CPF40)	
	bit 9	Control Circuit Error (CPF41)	
	bit A	Control Circuit Error (CPF42)	
	bit B	Control Circuit Error (CPF43)	
	bit C	Control Circuit Error (CPF44)	
	bit D	Control Circuit Error (CPF45)	
	bit E, F	Reserved	
00D3H to 00D7H	Reserved		
	oFA0□ Contents (CN5-A)		
	bit 0	Option Compatibility Error (oFA00)	
	bit 1	Option not properly connected (oFA01)	
00D8H	bit 2	Same type of option card already connected (oFA02)	
00D611	bit 3, 4	Reserved	
	bit 5	A/D Conversion Error (oFA05)	
	bit 6	Option Response Error (oFA06)	
	bit 7 to F	Reserved	
	oFA1□ Contents (CN5-A)		
	bit 0	Option RAM Fault (oFA10)	
	bit 1	Option Operation Mode Fault (SLMOD) (oFA11)	
	bit 2	Drive Receive CRC Error (oFA12)	
00D9H	bit 3	Drive Receive Frame Error (oFA13)	
000711	bit 4	Drive Receive Abort Error (oFA14)	
	bit 5	Option Receive CRC Error (oFA15)	
	bit 6	Option Receive Frame Error (oFA16)	
	bit 7	Option Receive Abort Error (oFA17)	
	bit 8 to F	Reserved	
00DAH to 00DBH	Reserved		
	oFA3□ Contents (CN5-A)		
	bit 0	Comm. ID Error (oFA30)	
	bit 1	Model Code Error (oFA31)	
	bit 2	Sumcheck Error (oFA32)	
	bit 3	Comm. option timeout waiting for response (oFA33)	
	bit 4	MEMOBUS Timeout (oFA34)	
	bit 5	Drive timeout waiting for response (oFA35)	
00DBH	bit 6	CI Check Error (oFA36)	
OODDII	bit 7	Drive timeout waiting for response (oFA37)	
	bit 8	Control Command Selection Error (oFA38)	
	bit 9	Drive timeout waiting for response (oFA39)	
	bit A	Control Response Selection 1 Error (oFA40)	
	bit B	Drive timeout waiting for response (oFA41)	
	bit C	Control Response Selection 2 Error (oFA42)	
	bit D	Control Response Selection Error (oFA43)	
	bit E, F	Reserved	

Register No.		Contents	
	oFb0□ Contents (CN5-B)		
00DCH	bit 0	Option compatibility error (oFb00)	
	bit 1	Option not properly connected (oFb01)	
	bit 2	Same type of option card already connected (oFb02)	
ООДСП	bit 3, 4	Reserved	
	bit 5	A/D Conversion Fault (oFb05)	
	bit 6	Option Response Error (oFb06)	
	bit 7 to F	Reserved	
	oFb1□ Contents (CN5-B)		
	bit 0	Option RAM Fault (oFb10)	
	bit 1	Option Operation Mode Fault (SLMOD) (oFb11)	
	bit 2	Drive Receive CRC Error (oFb12)	
00DDH	bit 3	Drive Receive Frame Error (oFb13)	
OODDII	bit 4	Drive Receive Abort Error (oFb14)	
	bit 5	Option Receive CRC Error (oFb15)	
	bit 6	Option Receive Frame Error (oFb16)	
	bit 7	Option Receive Abort Error (oFb17)	
	bit 8 to F	Reserved	
00DEH to 00DFH	Reserved		
	oFb3□ Contents (CN5-B)		
	bit 0	Comm. ID Error (oFb30)	
	bit 1	Model Code Error (oFb31)	
	bit 2	Sumcheck Error (oFb32)	
	bit 3	Comm. option timeout waiting for response (oFb33)	
	bit 4	MEMOBUS Timeout (oFb34)	
	bit 5	Drive timeout waiting for response (oFb35)	
00E0H	bit 6	CI Check Error (oFb36)	
002011	bit 7	Drive timeout waiting for response (oFb37)	
	bit 8	Control Command Selection Error (oFb38)	
	bit 9	Drive timeout waiting for response (oFb39)	
	bit A	Control Response Selection 1 Error (oFb40)	
	bit B	Drive timeout waiting for response (oFb41)	
	bit C	Control Response Selection 2 Error (oFb42)	
	bit D	Control Response Selection Error (oFb43)	
	bit E, F	Reserved	
	oFC0□ Contents (CN5-C)		
	bit 0	Option compatibility error (oFC00)	
	bit 1	Option not properly connected (oFC01)	
00E1H	bit 2	Same type of option card already connected (oFC02)	
	bit 3, 4	Reserved	
	bit 5	A/D Conversion Fault (oFC05)	
	bit 6	Option Response Error (oFC06)	
	bit 7 to F	Reserved	

Register No.	Contents		
	oFC1□ Contents (CN5-C)		
	bit 0	Option RAM Fault (oFC10)	
	bit 1	Option Operation Mode Fault (SLMOD) (oFC11)	
	bit 2	Drive Receive CRC Error (oFC12)	
00E2H	bit 3	Drive Receive Frame Error (oFC13)	
00E2H	bit 4	Drive Receive Abort Error (oFC14)	
	bit 5	Option Receive CRC Error (oFC15)	
	bit 6	Option Receive Frame Error (oFC16)	
	bit 7	Option Receive Abort Error (oFC17)	
	bit 8 to F	Reserved	
00E3H	Reserved		
	oFC5□ Contents (CN5-C)		
	bit 0	Encoder Option AD Conversion Error (oFC50)	
	bit 1	Encoder Option Analog Circuit Error (oFC51)	
00E4H	bit 2	Encoder Communication Timeout (oFC52)	
00L411	bit 3	Encoder Communication Data Error (oFC53)	
	bit 4	Encoder Error (oFC54)	
	bit 5	Resolver Error (oFC55)	
	bit 6 to F	Reserved	
00E5H to 00FAH	Reserved		
00FBH	Output Current		
00FFH	Reserved		

- <1> Parameter o1-03, Digital Operator Display Selection, determines the units.
- <2> Display is in the following units:
 - 2A0004 to 2A0040, 4A0002 to 4A0023, and 5A0007 to 5A0017: 0.01 A units.
 - 2A0056 to 2A0415, 4A0031 to 4A0675, and 5A0022 to 5A0242: 0.1 A units.
 - 4A0930 and 4A1200: 1 A units.
- <3> Communication error contents are saved until the fault is reset.
- <4> Set the number of motor poles to parameter E2-04, E4-04, or E5-04 depending on the motor being used.
- <5> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Broadcast Messages

Data can be written from the master to all slave devices at the same time.

The slave address in a broadcast command message must be set to 00H. All slaves will receive the message, but will not respond.

Register No.	Contents	
	Digital Input Command	
	bit 0	Forward Run (0: Stop 1: Run)
	bit 1 Direction Command (0: Forward, 1: Reverse)	
	bit 2, 3	Reserved
	bit 4 External Fault	
0001H	bit 5	Fault Reset
	bit 6 to B	Reserved
	bit C	Multi-Function Digital Input S5
	bit D	Multi-Function Digital Input S6
	bit E	Multi-Function Digital Input S7
	bit F	Multi-Function Digital Input S8
0002H	Frequency Reference	30000/100%

Fault Trace Contents

The table below shows the fault codes that can be read out by MEMOBUS/Modbus commands from the U2- $\Box\Box$ monitor parameters.

Table C.5 Fault Trace / History Register Contents

Fault Code	Fault Name	
0002H	DC Bus Undervoltage (Uv1)	
0003H	Control Power Supply Voltage Fault (Uv2)	
0004H	Undervoltage 3 (Uv3)	
0005H <1>	Output Short-Circuit or IGBT Fault (SC)	
0006Н	Ground Fault (GF)	
0007H	Overcurrent (oC)	
0008H	Drive Overheat Warning (ov)	
0009Н	Heatsink Overheat (oH)	
000AH	Overheat 1 (oH1)	
000BH	Motor Overload (oL1)	
000CH	Drive Overload (oL2)	
000DH	Overtorque Detection 1 (oL3)	
000EH	Overtorque Detection 2 (oL4)	
000FH	Dynamic Braking Transistor (rr)	
0010H	Braking Resistor Overheat (rH)	
0011H	External Fault at Input Terminal S3 (EF3)	
0012H	External Fault at Input Terminal S4 (EF4)	
0013H	External Fault at Input Terminal S5 (EF5)	
0014H	External Fault at Input Terminal S6 (EF6)	
0015H	External Fault at Input Terminal S7 (EF7)	
0016H	External Fault at Input Terminal S8 (EF8)	
0017H	Internal Fan Fault (FAn)	
0018H	Overspeed (oS)	
0019H	Speed Deviation (dEv)	
001AH	PG Disconnect (PGo)	
001BH	Input Phase Loss (PF)	
001CH	Output Phase Loss (LF)	
001DH	Motor Overheat (PTC input) (oH3)	
001EH	Digital Operator Connection (oPr)	
001FH	EEPROM Write Error (Err)	
0020H	Motor Overheat (PTC input) (oH4)	
0021H	MEMOBUS/Modbus Communication Error (CE)	
0022H	Option Communication Error (bUS)	
0025H	Control Fault (CF)	
0026Н	Zero-Servo Fault (SvE)	
0027H	Option External Fault (EF0)	
0028H	PID Feedback Loss (FbL)	
0029Н	Undertorque Detection 1 (UL3)	
002AH	Undertorque Detection 2 (UL4)	
002BH	High Slip Braking Overload (oL7)	
0030H	Hardware Fault (including oFx)	
0032H	Z Pulse Fault (dv1)	
0033H	Z Pulse Noise Fault Detection (dv2)	
0034H	Inversion Detection (dv3)	
0035H	Inversion Prevention Detection (dv4)	
	*** (** /	

Fault Code	Fault Name	
0036Н	Output Current Imbalance (LF2)	
0037H	Pullout Detection (Sto)	
0038H	PG Hardware Fault (PGoH)	
0039H	MECHATROLINK Watchdog Timer Error (E5)	
003BH	Too Many Speed Search Restarts (SEr)	
0041H	PID Feedback Loss (FbH)	
0042H	External Fault 1, Input Terminal S1 (EF1)	
0043H	External Fault 2, Input Terminal S2 (EF2)	
0044H	Mechanical Weakening Detection 1 (oL5)	
0045H	Mechanical Weakening Detection 2 (UL5)	
0046Н	Current Offset Fault (CoF)	
0047H	PLC Detection Error 1 (PE1)	
0048H	PLC Detection Error 2 (PE2)	
0049H	DriveWorksEZ Fault (dWFL)	
004AH <2>	EEPROM Memory DriveWorksEZ Data Error (dWF1)	
004DH	Output Voltage Detection Fault (voF)	
004EH	Braking Resistor Transistor Fault (rF)	
004FH	Braking Transistor Overload Fault (boL)	
0050H	Motor Overheat (NTC Input) (oH5)	
0051H	LSo Fault (LSo)	
0052H	Node Setup Fault (nSE)	
0053H	Thermistor Disconnect (THo)	
005BH <1>	Initial Polarity Estimation Timeout (dv7)	
005FH	Power Unit Output Phase Loss 3 (LF3)	
0060Н	Current Unbalance (UnbC)	
0061H	Power Supply Module Undervoltage (Uv4)	
0083H	A/D Conversion Error (CPF02)	
0084H	PWM Data Fault (CPF03)	
0087H	EEPROM Memory Data Error (CPF06)	
0088H	Terminal Board Connection Error (CPF07)	
0089Н	EEPROM Serial Communication Fault (CPF08)	
008CH	RAM Fault (CPF11)	
008DH	Flash Memory Circuit Exception (CPF12)	
008EH	Watchdog Circuit Exception (CPF13)	
008FH	Control Circuit Fault (CPF14)	
0091H	Clock Fault (CPF16)	
0092Н	Timing Fault (CPF17)	
0093H	Control Circuit Fault (CPF18)	
0094H	Control Circuit Fault (CPF19)	
0095H	Hardware Fault at Power Up (CPF20)	
0096Н	Hardware Fault at Communication Start Up (CPF21)	
0097Н	A/D Conversion Fault (CPF22)	
0098H	PWM Feedback Fault (CPF23)	
0099Н	Drive Unit Signal Fault (CPF24)	
009AH	Terminal Board is Not Properly Connected. (CPF25)	

Fault Code	Fault Name	
009BH	ASIC BB Circuit Error (CPF26)	
009CH	ASIC PWM Setting Register Error (CPF27)	
009DH	ASIC PWM Pattern Error (CPF28)	
009EH	ASIC On-delay Error (CPF29)	
009FH	ASIC BBON Error (CPF30)	
00A0H	ASIC Code Error (CPF31)	
00A1H	ASIC Start-up Error (CPF32)	
00A2H	Watch-dog Error (CPF33)	
00A3H	ASIC Power/Clock Error (CPF34)	
00A4H	External A/D Converter Error (CPF35)	
00A9H	Control Circuit Error (CPF40)	
00AAH	Control Circuit Error (CPF41)	
00ABH	Control Circuit Error (CPF42)	
00ACH	Control Circuit Error (CPF43)	
00ADH	Control Circuit Error (CPF44)	
00AEH	Control Circuit Error (CPF45)	
0101H	Option Compatibility Error (oFA00)	
0102H	Option Not Properly Connected (oFA01)	
0103H	Same Type of Option Card Already Connected (oFA02)	
0106Н	A/D Conversion Error (oFA05)	
0107H	Option Response Error (oFA06)	
0111H	Option RAM Fault (oFA10)	
0112H	Option Operation Mode Fault (SLMOD) (oFA11)	
0113H	Drive Receive CRC Error (oFA12)	
0114H	Drive Receive Frame Error (oFA13)	
0115H	Drive Receive Abort Error (oFA14)	
0116H	Option Receive CRC Error (oFA15)	
0117H	Option Receive Frame Error (oFA16)	
0118H	Option Receive Abort Error (oFA17)	
0131H	Comm. ID Error (oFA30)	
0132H	Model Code Error (oFA31)	
0133H	Sumcheck Error (oFA32)	
0134Н	Comm. Option Timeout Waiting for Response (oFA33)	
0135H	MEMOBUS Timeout (oFA34)	
0136H	Drive Timeout Waiting for Response (oFA35)	
0137H	CI Check Error (oFA36)	
0138H	Drive Timeout Waiting for Response (oFA37)	
0139Н	Control Command Selection Error (oFA38)	
013AH	Drive Timeout Waiting for Response (oFA39)	
013BH	Control Response Selection 1 Error (oFA40)	
013CH	Drive Timeout Waiting for Response (oFA41)	
013DH	Control Response Selection 2 Error (oFA42)	
013EH	Control Response Selection Error (oFA43)	
0201H	Option Compatibility Error (oFB00)	
0202H	Option Connection Error (oFb01)	
	drive software versions PRG: 1015 and later	

Fault Code	Fault Name	
0203Н	Same Type of Option Card Already Connected (oFb02)	
0206Н	A/D Conversion Error (oFb05)	
0207H	Option Response Error (oFb06)	
0211H	Option RAM Fault (oFb10)	
0212H	Option Operation Mode Fault (SLMOD) (oFb11)	
0213H	Drive Receive CRC Error (oFb12)	
0214H	Drive Receive Frame Error (oFb13)	
0215H	Drive Receive Abort Error (oFb14)	
0216H	Option Receive CRC Error (oFb15)	
0217H	Option Receive Frame Error (oFb16)	
0218H	Option Receive Abort Error (oFb17)	
0231H	Comm. ID Error (oFb30)	
0232H	Model Code Error (oFb31)	
0233H	Sumcheck Error (oFb32)	
0234H	Comm. option Timeout Waiting for Response (oFb33)	
0235H	MEMOBUS Timeout (oFb34)	
0236H	Drive Timeout Waiting for Response (oFb35)	
0237H	CI Check Error (oFb36)	
0238H	Drive Timeout Waiting for Response (oFb37)	
0239H	Control Command Selection Error (oFb38)	
023AH	Drive Timeout Waiting for Response (oFb39)	
023BH	Control Response Selection 1 Error (oFb40)	
023CH	Drive Timeout Waiting for Response (oFb41)	
023DH	Control Response Selection 2 Error (oFb42)	
023EH	Control Response Selection Error (oFb43)	
0301H	Option Compatibility Error (oFC00)	
0303H	Option Not Properly Connected (oFC01)	
0304Н	Same Type of Option Card Already Connected (oFC02)	
0306Н	A/D Conversion Error (oFC05)	
0307H	Option Response Error (oFC06)	
0311H	Option RAM Fault (oFC10)	
0312H	Option Operation Mode Fault (SLMOD) (oFC11)	
0313H	Drive Receive CRC Error (oFC12)	
0314H	Drive Receive Frame Error (oFC13)	
0315H	Drive Receive Abort Error (oFC14)	
0316Н	Option Receive CRC Error (oFC15)	
0317H	Option Receive Frame Error (oFC16)	
0318H	Option Receive Abort Error (oFC17)	
0351H	Encoder Option AD Conversion Error (oFC50)	
0352H	Encoder Option Analog Circuit Error (oFC51)	
0353H	Encoder Communication Timeout (oFC52)	
0354H	Encoder Communication Data Error (oFC53)	
0355H	Encoder Error (oFC54)	
0356Н	Resolver Error (oFC55)	

<1> Available in drive software versions PRG: 1015 and later.

<2> Available in drive software versions PRG: 1018 and later.

Alarm Register Contents

The table below shows the alarm codes that can be read out from MEMOBUS/Modbus register 007FH.

Table C.6 Alarm Register 007FH Contents

	Table C.o Alarm R		
Fault Code	Fault Name		
0001H	Undervoltage (Uv)		
0002H	Drive Overheat Warning (ov)		
0003H	Heatsink Overheat (oH)		
0004H	Drive Overheat Warning (oH2)		
0005H	Overtorque 1 (oL3)		
0006Н	Overtorque 2 (oL4)		
0007H	Run commands input error (EF)		
0008H	Drive Baseblock (bb)		
0009Н	External Fault 3, input terminal S3 (EF3)		
000AH	External Fault 4, input terminal S4 (EF4)		
000BH	External Fault 5, input terminal S5 (EF5)		
000CH	External Fault 6, input terminal S6 (EF6)		
000DH	External Fault 7, input terminal S7 (EF7)		
000EH	External Fault 8, input terminal S8 (EF8)		
000FH	Internal Fan Fault (FAn)		
0010H	Overspeed (oS)		
0011H	Speed Deviation (dEv)		
0012H	PG Disconnected (PGo)		
0014H	MEMOBUS/Modbus Communication Error (CE)		
0015H	Option Communication Error (bUS)		
0016H	Serial Communication Transmission Error (CALL)		
0017H	Motor Overload (oL1)		
0018H	Drive Overload (oL2)		
001AH	Option Card External Fault (EF0)		
001BH	Motor Switch command input during run (rUn)		
001DH	Serial Communication Transmission Error (CALL)		
001EH	Undertorque Detection 1 (UL3)		
001FH	Undertorque Detection 2 (UL4)		
0020Н	MEMOBUS/Modbus Communication Test Mode Error (SE)		

Fault Code	Fault Name	
0022H	Motor Overheat (oH3)	
0027H	PID Feedback Loss (FbL)	
0028H	PID Feedback Loss (FbH)	
002AH	Drive Disabled (dnE)	
002BH	PG Disconnected (PGo)	
0031H	MECHATROLINK Watchdog Timer Error (E5)	
0032H	Station Address Setting Error (AEr)	
0033Н	MECHATROLINK Comm. Cycle Setting Error (CyC)	
0034H	High Current Alarm (HCA)	
0035H	Cooling Fan Maintenance Time (LT-1)	
0036Н	Capacitor Maintenance Time (LT-2)	
0038H	SI-S EEPROM Error (EEP)	
0039Н	External Fault (input terminal S1) (EF1)	
003AH	External Fault (input terminal S2) (EF2)	
003BH	Safe Disable Input (HbbF) <1>	
003CH	Safe Disable Input (Hbb) <1>	
003DH	Mechanical Weakening Detection 1 (oL5)	
003EH	Mechanical Weakening Detection 2 (UL5)	
003FH	PLC Alarm (PA1)	
0040H	PLC Alarm (PA2)	
0041H	Output Voltage Detection Fault (voF)	
0042H	IGBT Maintenance Time (90%) (TrPC)	
0043H	Soft Charge Bypass Relay Maintenance Time (LT-3)	
0044H	IGBT Maintenance Time (50%) (LT-4)	
0045H	Braking Transistor Overload (boL)	
0048H	Motor Overheat (NTC Input) (oH5)	
0049H	DriveWorksEZ Fault (dWAL)	
004DH	Thermistor Disconnect (THo)	

Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

C.10 Enter Command

When writing parameters to the drive from the PLC using MEMOBUS/Modbus communication, parameter H5-11 determines whether an Enter command must be issued to enable these parameters. This section describes the types and functions of the Enter commands.

Enter Command Types

The drive supports two types of Enter commands as shown in *Table C.7*. An Enter command is enabled by writing 0 to register numbers 0900H or 0910H. It is only possible to write to these registers; attempting to read from these registers will cause an error.

Table C.7 Enter Command Types

Register No.	Description
1 0900H	Simultaneously writes data into the EEPROM (non-volatile memory) of the drive and enables the data in RAM. Parameter changes remain after cycling power.
0910H	Writes data in the RAM only. Parameter changes are lost when the drive is shut off.

Note:

The EEPROM can only be written to 100,000 times, so it is recommended to limit the number of times writing to the EEPROM. The Enter command registers are write-only and if these registers are read, the register address will be invalid (Error code: 02H). An Enter command is not required when reference or broadcast data are sent to the drive.

Enter Command Settings when Upgrading the Drive

When replacing previous Yaskawa drive models with the A1000 and keeping the MEMOBUS/Modbus communications settings, set parameter H5-11 in accordance with the Enter command configuration in the older drive. H5-11 determines whether an Enter command is necessary to activate parameter changes in the drive.

- If upgrading from a G7 or F7 series drive to an A1000, set parameter H5-11 to 0.
- If upgrading from a V7 series drive to an A1000, set parameter H5-11 to 1.

■ H5-11 and the Enter Command

An enter command is not required when writing registers 0000H to 001FH. Changes to those registers take effect immediately, independent of the setting in parameter H5-11.

H5-11 Settings	H5-11 = 0	H5-11 = 1
Drive being replaced	G7, F7	V7
How parameter settings are enabled	When the Enter command is received from the master.	As soon as the value is changed.
Upper/lower limit check	Upper/lower limit check is performed, taking the settings of related parameters into account.	Checks only the upper/lower limits of the parameters that were changed.
Default value of related parameters	Not affected. The settings of related parameters remain unchanged. They must be changed manually if needed.	Default settings of related parameters are changed automatically.
Error handling when setting multiple parameters	Data is accepted even if one setting is invalid. The invalid setting will be discarded. No error message occurs.	Error occurs if only one setting is invalid. All data that was sent are discarded.

C.11 Communication Errors

MEMOBUS/Modbus Error Codes

A list of MEMOBUS/Modbus errors appears below.

When an error occurs, remove whatever caused the error and restart communications.

F Code	Error Name				
Error Code	Cause				
01H	Function Code Error				
VIII	Attempted to set a function code from a PLC other than 03H, 08H, and 10H.				
	Register Number Error				
02H	 A register number specified in the command message does not exist. Attempted to send a broadcast message using other register numbers than 0001H or 0002H. 				
	Bit Count Error				
03H	Read data or write data is greater than 16 bits. Invalid command message quantity.				
0311	• In a write message, the "Number of Data Items" contained within the message does not equal twice the amount of data words (i.e., the total of Data 1+ Data 2, etc.).				
	Data Setting Error				
21H	Control data or parameter write data is outside the allowable setting range.				
	Attempted to write a contradictory parameter setting.				
	Write Mode Error				
	During run, the user attempted to write a parameter that cannot be written to during run.				
22H	• During an EEPROM memory data error (CPF06), the master attempted to write to a parameter other than A1-00 to A1-05, E1-03, or o2-04.				
	Attempted to write to read-only data.				
23H	DC Bus Undervoltage Write Error				
2311	During an undervoltage situation, the master attempted to write to parameters that cannot be written to during undervoltage.				
24H	Write Error During Parameter Process				
2411	Master attempted writing to the drive while the drive was processing parameter data.				
	Writing into EEPROM Disabled				
25H	An attempt was made to write data into EEPROM by MEMOBUS/Modbus communications when writing EEPROM is not possible. (When this error code occurs, an error message is displayed and the drive continues operation.)				

Slave Not Responding

In the following situations, the slave drive will ignore the command message sent from the master, and not send a response message:

- When a communications error (overrun, framing, parity, or CRC-16) is detected in the command message.
- When the slave address in the command message and the slave address in the drive do not match (remember to set the slave address for the drive using H5-01).
- When the gap between two blocks (8-bit) of a message exceeds 24 bits.
- When the command message data length is invalid.

Note: If the slave address specified in the command message is 00H, all slaves execute the write function, but do not return response messages to the master.

C.12 Self-Diagnostics

The drive has a built-in self-diagnosing function of the serial communication interface circuits. To perform the self-diagnosis function, use the following procedure.

DANGER! Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait at least one minute after all indicators are OFF and measure the DC bus voltage level to confirm safe level.

- 1. Turn on the power to the drive.
- 2. Note the present terminal S6 function selection setting (H1-06) and set it for the communications test mode (H1-06 = 67).
- **3.** Turn off the power to the drive.
- **4.** With the power off, wire the drive as shown in *Figure C.8*, connecting terminals R+ and S+, R- and S-, and S6 and SN.

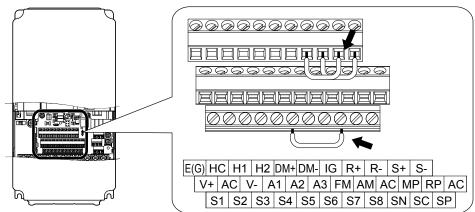


Figure C.8 Terminal Connections for Communication Self-Diagnostics

- **5.** Verify that terminals SC to SP are connected by wire jumper.
- **6.** Turn the power to the drive back on.
- During normal operation, the drive will display "Pass" to indicate that the communications test mode is operating normally.
 - When a fault occurs, the drive will display "CE" on the keypad display.
- **8.** Turn off the power supply.
- **9.** Remove the wire jumpers from terminal R+, R-, S+, S-, and S6-SN. Reset jumper SC to SP to its original position and set terminal S6 to its original function.
- **10.**Return to normal operation.

Appendix: D

Standards Compliance

This appendix explains the guidelines and criteria for maintaining CE and UL standards.

D.1	SECTION SAFETY	748
	EUROPEAN STANDARDS	
D.3	UL AND CSA STANDARDS	760
D.4	SAFE DISABLE INPUT FUNCTION	779

D.1 Section Safety

WARNING

Electrical Shock Hazard

Do not connect or disconnect wiring while the power is on.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; After all indicators are OFF, measure the DC bus voltage level to confirm it has reached a safe level.

Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before wiring terminals, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and servicing must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

Fire Hazard

Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

Do not use improper combustible materials.

Failure to comply could result in death or serious injury by fire.

Attach the drive to metal or other noncombustible material.

D

NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

Do not use unshielded wire for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

Do not allow unqualified personnel to use the product.

Failure to comply could result in damage to the drive or braking circuit.

Carefully review instruction manual TOBPC72060000 when connecting a braking option to the drive.

Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for modification of the product made by the user. This product must not be modified.

Check all the wiring to ensure that all connections are correct after installing the drive and connecting other devices. Failure to comply could result in damage to the drive.

If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices.

Contact your supplier if the cause cannot be identified after checking the above.

Do not restart the drive immediately operate the peripheral devices if a fuse is blown or a GFCI is tripped.

Check the wiring and the selection of peripheral devices to identify the cause. Contact your supplier before restarting the drive or the peripheral devices if the cause cannot be identified.

D.2 European Standards

Figure D.1 CE Mark

The CE mark indicates compliance with European safety and environmental regulations. It is required for engaging in business and commerce in Europe.

European standards include the Machinery Directive for machine manufacturers, the Low Voltage Directive for electronics manufacturers, and the EMC guidelines for controlling noise.

This drive displays the CE mark based on the EMC guidelines and the Low Voltage Directive.

• Low Voltage Directive: 2006/95/EC

EMC Guidelines: 2004/108/EC

Devices used in combination with this drive must also be CE certified and display the CE mark. When using drives displaying the CE mark in combination with other devices, it is ultimately the responsibility of the user to ensure compliance with CE standards. After setting up the device, verify that conditions meet European standards.

Note: 600 V class drives (models 5 \(\sigma \sqrt{\pi} \sqrt{\pi} \sqrt{\pi} \)) are not compliant with European Standards.

CE Low Voltage Directive Compliance

This drive has been tested according to European standard IEC/EN 61800-5-1, and it fully complies with the Low Voltage Directive.

To comply with the Low Voltage Directive, be sure to meet the following conditions when combining this drive with other devices:

Area of Use

Do not use drives in areas with pollution higher than severity 2 and overvoltage category 3 in accordance with IEC/EN 664.

■ Factory Recommended Branch Circuit Protection

Yaskawa recommends installing one of the following types of branch circuit protection to maintain compliance with UL508C. Semiconductor protective type fuses are preferred. Alternate branch circuit protection devices are also listed in *Table D.1*.

NOTICE: If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa before restarting the drive or the peripheral devices if the cause cannot be identified.

	Table B.1 Tablely Recommended Bill	VO Branch Choult Frotoston				
	Fuse Type					
Drive Model	Manufacturer: Bussmann					
	Model	Fuse Ampere Rating (A)				
Three-Phase 200 V Class						
2A0004	FWH-70B	70				
2A0006	FWH-70B	70				
2A0008	FWH-70B	70				
2A0010	FWH-70B	70				
2A0012	FWH-70B	70				
2A0018	FWH-90B	90				
2A0021	FWH-90B	90				
2A0030	FWH-100B	100				
2A0040	FWH-200B	200				
2A0056	FWH-200B	200				
2A0069	FWH-200B	200				
2A0081	FWH-300A	300				
2A0110	FWH-300A	300				

Table D.1 Factory Recommended Drive Branch Circuit Protection

D

	Fuse Type			
Drive Model	Manufacturer: Bussmann			
	Model	Fuse Ampere Rating (A)		
2A0138	FWH-350A	350		
2A0169	FWH-400A	400		
2A0211	FWH-400A	400		
2A0250	FWH-600A	600		
2A0312	FWH-700A	700		
2A0360	FWH-800A	800		
2A0415	FWH-1000A	1000		
	Three-Phase 400 V	Class		
4A0002	FWH-40B	40		
4A0004	FWH-50B	50		
4A0005	FWH-70B	70		
4A0007	FWH-70B	70		
4A0009	FWH-90B	90		
4A0011	FWH-90B	90		
4A0018	FWH-80B	80		
4A0023	FWH-100B	100		
4A0031	FWH-125B	125		
4A0038	FWH-200B	200		
4A0044	FWH-250A	250		
4A0058	FWH-250A	250		
4A0072	FWH-250A	250		
4A0088	FWH-250A	250		
4A0103	FWH-250A	250		
4A0139	FWH-350A	350		
4A0165	FWH-400A	400		
4A0208	FWH-500A	500		
4A0250	FWH-600A	600		
4A0296	FWH-700A	700		
4A0362	FWH-800A	800		
4A0414	FWH-800A	800		
4A0515	FWH-1000A	1000		
4A0675	FWH-1200A	1200		
4A0930	FWH-1200A	1200		
4A1200	FWH-1600A	1600		
	Three-Phase 600 V	Class		
5A0003 <1>	FWP-50B	50		
5A0004 <1>	FWP-50B	50		
5A0006 <1>	FWP-60B	60		
5A0009 <1>	FWP-60B	60		
5A0011 <1>	FWP-70B	70		
5A0011	FWP-100B	100		
5A0022	FWP-100B	100		
5A0027 <1>	FWP-125A	125		
5A0032 <1>	FWP-125A	125		
5A0041 <1>	FWP-175A	175		
5A0052 <1>	FWP-175A	175		

	Fuse Type			
Drive Model	Manufacturer: Bussmann			
	Model	Fuse Ampere Rating (A)		
5A0062 <1>	FWP-250A	250		
5A0077 <1>	FWP-250A	250		
5A0099 <1>	FWP-250A	250		
5A0125 <1>	FWP-350A	350		
5A0145 <1>	FWP-350A	350		
5A0192 <1>	FWP-600A	600		
5A0242 <1>	FWP-600A	600		

<1> 600 V class drives are not compliant with European Standards.

■ Grounding

The drive is designed to be used in T-N (grounded neutral point) networks. If installing the drive in other types of grounded systems, contact your Yaskawa representative for instructions.

■ CE Standards Compliance for DC Power Supply Input

Install the fuses in the following tables to meet CE standards.

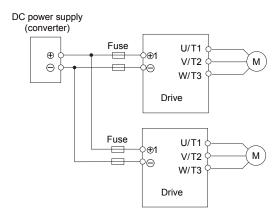


Figure D.2 Example of DC Power Supply Input (Two Drives Connected in Series)

Note:

- 1. When connecting multiple drives together, make sure that each drive has its own fuse. Replace all fuses when one fuse blows.
- 2. Refer to Standard Connection Diagram on page 138 for an AC power supply.
- 3. The recommended fuses and fuse holders are made by Fuji Electric.

Table D.2 200 V Class Fuses and Fuse Holders

	DC Power Supply Input				
Drive Model	Fuse			Fuse Holder	
2c model	Туре	Rated Short Circuit Braking Current (kA)	Qty.	Туре	Qty.
2A0004					
2A0006	CR2LS-30	2			1
2A0008					
2A0010	CR2LS-50		2	CM-1A	
2A0012	CK2LS-30				
2A0018	CR2LS-75				
2A0021	CR2LS-100				
2A0030	CR2L-125				
2A0040	CR2L-150	100	2	CM-2A	1
2A0056	CR2L-175	100			
2A0069	CR2L-225				
2A0081	CR2L-260				
2A0110	CR2L-300			<1>	
2A0138	CR2L-350		2		
2A0169	CR2L-400				
2A0211	2A0211 CR2L-450 2A0250 CR2L-600				
2A0250					
2A0312					
2A0360	CR2L-600	200			
2A0415	CS5F-1200	200			

<1> Manufacturer does not recommend a specific fuse holder for this fuse. Contact Yaskawa or your nearest sales representative for fuse dimensions.

Table D.3 400 V Class Fuses and Fuse Holders

	DC Power Supply Input				
Drive Model	Fuse			Fuse Holder	
Diffe Model	Туре	Rated Short Circuit Braking Current (kA)	Qty.	Туре	Qty.
4A0002	CR6L-20				
4A0004	CR6L-30				
4A0005			2	CMS-4	2
4A0007	CR6L-50		2		
4A0009					
4A0011					
4A0018	CR6L-75				
4A0023	CR6L-/5				
4A0031	CR6L-100	100	2	CMS-5	2
4A0038	CR6L-150				
4A0044	CK6L-150				
4A0058	CR6L-200				
4A0072	CR6L-250				
4A0088	CROL-230				
4A0103	CR6L-300				
4A0139	CR6L-350				
4A0165	CR6L-400				
4A0208					
4A0250	CS5F-600	_	2	<1>	/>
4A0296					
4A0362	CS5F-800				
4A0414	C331-800	200			
4A0515	CS5F-1200				
4A0675	CS5F-1500				
4A0930	CS5F-1200				
4A1200	CS5F-1500				

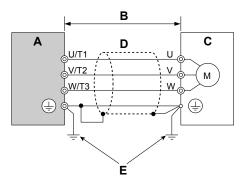
<1> Manufacturer does not recommend a specific fuse holder for this fuse. Contact Yaskawa or your nearest sales representative for fuse dimensions.

■ Guarding Against Harmful Materials

When installing IP00/Open Type enclosure drives, use an enclosure that prevents foreign material from entering the drive from above or below.

◆ EMC Guidelines Compliance

This drive is tested according to European standards IEC/EN 61800-3: 2004.


■ EMC Filter Installation

The following conditions must be met to ensure continued compliance with guidelines. *Refer to EMC Filters on page* 757 for EMC filter selection.

Installation Method

Verify the following installation conditions to ensure that other devices and machinery used in combination with this drive also comply with EMC guidelines.

- 1. Install an EMC noise filter to the input side specified by Yaskawa for compliance with European standards.
- 2. Place the drive and EMC noise filter in the same enclosure.
- 3. Use braided shield cable for the drive and motor wiring, or run the wiring through a metal conduit.
- 4. Keep wiring as short as possible. Ground the shield on both the drive side and the motor side.

- A Drive
- B 10 m max cable length between drive and motor
- C Motor

- D Metal conduit
- E Ground wire should be as short as possible.

Figure D.3 Installation Method

Make sure the protective earthing conductor complies with technical standards and local safety regulations.

WARNING! Electrical Shock Hazard. Because the leakage current exceeds 3.5 mA in models 4A0414 to 4A1200, IEC/EN 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor, or a protective earthing conductor with a cross-section of at least 10 mm² (Cu) or 16 mm² (Al) must be used. Failure to comply may result in death or serious injury.

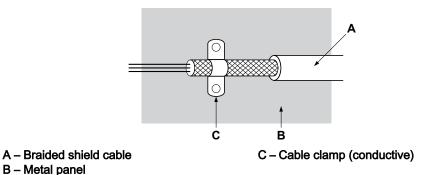
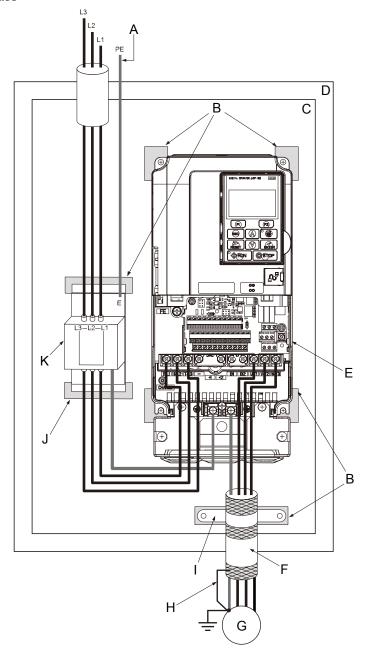



Figure D.4 Ground Area

6. Connect a DC link choke to minimize harmonic distortion. Refer to DC Link Chokes for IEC/EN 61000-3-2 Compliance on page 759.

Three-Phase 200 V / 400 V Class

- A Make sure the ground wire is grounded
- B Grounding surface (remove any paint or sealant)
- C Metal plate
- D Enclosure panel
- E Drive
- F Motor cable (braided shield cable, max. 10 m)
- G Motor
- H Cable shield ground
- I Cable clamp
- J Ground plate (scrape off any visible paint)
- K EMC noise filter

Figure D.5 EMC Filter and Drive Installation for CE Compliance (Three-Phase 200 V / 400 V Class)

■ EMC Filters

Install the drive with the EMC filters listed in *Table D.4* to comply with the IEC/EN 61800-3 requirements.

Table D.4 IEC/EN 61800-3 Filters

	Туре			Dimensions		
Drive Model	Manufacturer: Schaffner	Rated Current (A)	Weight (lb)	[W x D x H] (in)	Y x X (in)	Figure
		Thre	e-Phase 200 V Class	3		
2A0004	_					
2A0006	FS5972-10-07	10	2.6	$5.6 \times 1.8 \times 13.0$	4.5 × 12.3	
2A0008						
2A0010	FS5972-18-07	18	2.9	$5.6 \times 1.8 \times 13.0$	4.5 × 12.3	
2A0012						1
2A0018	PG5052 25 05	25	4.6	0.1.20.110	60.100	
2A0021	FS5972-35-07	35	4.6	$8.1 \times 2.0 \times 14.0$	6.9 × 13.2	
2A0030						-
2A0040 2A0056	FS5972-60-07	60	8.8	$9.3 \times 2.6 \times 16.1$	8.1 × 15.4	
2A0050 2A0069						
2A0089 2A0081	FS5972-100-35	100	7.5	$3.5 \times 5.9 \times 13.0$	2.6 × 10.0	
2A0001 2A0110						-
2A0110	FS5972-170-40	170	13.2	$4.7 \times 6.7 \times 17.8$	4.0 × 14.4	2
2A0169						-
2A0211	FS5972-250-37	250	25.8	$5.1 \times 9.5 \times 24.0$	3.5 × 19.6	
2A0250						
2A0312	FS5972-410-99	410	23.1	$10.2 \times 4.5 \times 15.2$	9.3 × 4.7	
2A0360		500				3
2A0415	FS5972-600-99	600	24.3	$10.2 \times 5.3 \times 15.2$	9.3 × 4.7	
		Thre	e-Phase 400 V Class	3		
4A0002						
4A0004	FS5972-10-07	10	2.7	5.6 × 1.8 × 13.0	4.5 × 12.3	
4A0005	133972-10-07	10	2.7	3.0 ^ 1.8 ^ 13.0	4.5 ^ 12.5	
4A0007						
4A0009	FS5972-18-07	18	2.9	5.6 × 1.8 × 13.0	4.5 × 12.3	
4A0011			-12			1
4A0018	_					
4A0023	FS5972-35-07	35	4.6	$8.1 \times 2.0 \times 14.0$	6.9 × 13.2	
4A0031						
4A0038	F05052 60 05		0.0	0.2.26.161	0.0.15.4	
4A0044	FS5972-60-07	60	8.8	$9.3 \times 2.6 \times 16.1$	8.0 × 15.4	
4A0058						
4A0072	FS5972-100-35	100	16.5	$3.5 \times 5.9 \times 13.0$	2.6 × 10.0	
4A0088 4A0103						
4A0103 4A0139	FS5972-170-35	170	10.4	4.7 × 6.7 × 17.8	4.0 × 14.4	2
4A0165	1.03912-170-33	1/0	10.4	7./ ^ 0./ ^ 1/.0	4.0 ^ 14.4	
4A0103 4A0208	FS5972-250-37	250	25.8	5.1 × 9.5 × 24.0	3.5 × 19.6	
4AU2U0	F33772-230-37	230	23.8	3.1 ^ 3.3 ^ 24.0	3.3 ^ 19.0	

D

	Туре			Dimensions		
Drive Model	Manufacturer: Schaffner	Rated Current (A)	Weight (lb)	Dimensions [W x D x H] (in)	YxX (in)	Figure
4A0250						
4A0296	FS5972-410-99	410	23.1	$10.2 \times 4.5 \times 15.2$	9.3 × 4.7	
4A0362						
4A0414	ES5072 (00 00	(00	24.2	$10.2 \times 5.3 \times 15.2$	0.2 × 4.7	3
4A0515	FS5972-600-99	600	24.3	10.2 × 5.5 × 15.2	9.3 × 4.7	
4A0675	FS5972-800-99	800	69.4	11.8 × 6.3 × 28.2	10.8 × 8.3	
4A0930	FS5972-600-99 <1>	600	24.3	$10.2 \times 5.3 \times 15.2$	9.3 × 4.7	
4A1200	FS5972-800-99 <1>	800	69.4	11.8 × 28.2 × 6.3	10.8 × 8.3	4

<1> Connect two of the same filters in parallel.

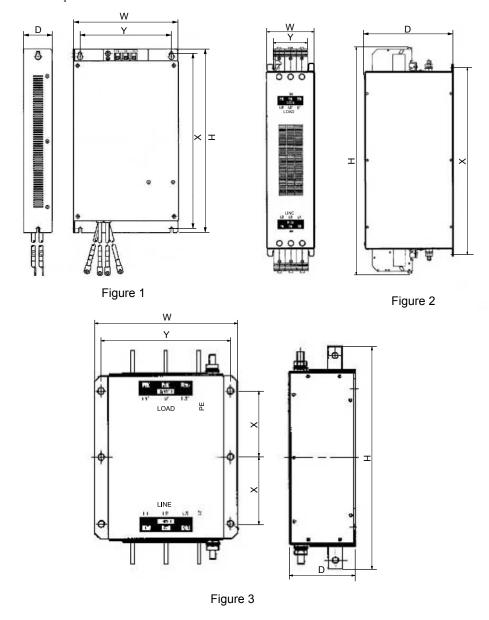


Figure D.6 EMC Filter Dimensions

■ DC Link Chokes for IEC/EN 61000-3-2 Compliance

Table D.5 DC Link Chokes for Harmonic Reduction

Drive Madel	DC Link Chokes						
Drive Model	Model	Rating					
200 V Three-Phase Units							
2A0004	UZDA-B	5.4 A					
2A0006	ULDA-B	8 mH					
	400 V Three-Phase Units						
4A0002	UZDA-B	3.2 A					
4A0004	ULDA-D	28 mH					

Note: DC link chokes are not required for other models to comply with EMC.

D.3 UL and CSA Standards

◆ UL Standards Compliance

The UL/cUL mark applies to products in the United States and Canada. It indicates that UL has performed product testing and evaluation, and determined that their stringent standards for product safety have been met. For a product to receive UL certification, all components inside that product must also receive UL certification.

Figure D.7 UL/cUL Mark

This drive is tested in accordance with UL standard UL508C and complies with UL requirements. The conditions described below must be met to maintain compliance when using this drive in combination with other equipment:

■ Installation Area

Note:

Do not install the drive to an area greater than pollution degree 2 (UL standard).

■ Ambient Temperature

IP20/NEMA Type 1 Enclosure: -10 to +40 °C IP00 Open Type Enclosure: -10 to +50 °C

■ Main Circuit Terminal Wiring

Yaskawa recommends using closed-loop crimp terminals on all drive models. To maintain UL/cUL approval, UL Listed closed-loop crimp terminals are specifically required when wiring the drive main circuit terminals on models 2A0110 to 2A0415, 4A0058 to 4A0675, (4A1200 series-dependent), and 5A0041 to 5A0242. Use only the tools recommended by the terminal manufacturer for crimping. Refer to *Closed-Loop Crimp Terminal* section of the drive Technical Manual for closed-loop crimp terminal recommendations.

The wire gauges listed in the following tables are Yaskawa recommendations. Refer to local codes for proper wire gauge selections.

The
mark indicates the terminals for protective ground connection as defined in IEC/EN 60417-5019.

Grounding impedance: 200 V: 100 Ω or less 400 V: 10 Ω or less 600 V: 10 Ω or less

Wire Gauges and Tightening Torques

Table D.6 Wire Gauge and Torque Specifications (Three-Phase 200 V Class)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	14	14 to 10		
2A0004	U/T1, V/T2, W/T3	14	14 to 10		1.2 to 1.5 (10.6 to 13.3)
2A0006 2A0008	⊖, ⊕1, ⊕2	-	14 to 10	M4	
2A0010	B1, B2	_	14 to 10		
		10 <1>	14 to 10		
	R/L1, S/L2, T/L3	12	14 to 10	M4	
	U/T1, V/T2, W/T3	14	14 to 10		
2A0012	⊖, ⊕1, ⊕2	-	14 to 10		1.2 to 1.5 (10.6 to 13.3)
	B1, B2	_	14 to 10		(10.0 to 15.5)
	\(\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 <1>	14 to 10		

D

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torqu N·m (lb.in.)
	R/L1, S/L2, T/L3	10	12 to 10		
	U/T1, V/T2, W/T3	10	14 to 10		
2A0018	$\Theta, \oplus 1, \oplus 2$	_	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
	B1, B2	_	14 to 10		(10.0 to 15.5)
		10 <1>	14 to 10		
	R/L1, S/L2, T/L3	10	12 to 10		
	U/T1, V/T2, W/T3	10	12 to 10		
2A0021	Θ , \oplus 1, \oplus 2	-	12 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
	B1, B2	_	14 to 10		(10.0 to 13.3)
	(4)	10 <1>	12 to 10		
	R/L1, S/L2, T/L3	8	10 to 6		
	U/T1, V/T2, W/T3	8	10 to 6	7	2.1 to 2.3
2A0030	Θ , $\oplus 1$, $\oplus 2$	-	10 to 6	M4	(18.6 to 20.4)
2A0030	B1, B2	_	14 to 10		
	(a)	8 <2>	10 to 8	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	6	8 to 6		· · · · · · · · · · · · · · · · · · ·
	U/T1, V/T2, W/T3	8	8 to 6		2.1 to 2.3
210010	\ominus , \oplus 1, \oplus 2	_	6	M4	(18.6 to 20.4)
2A0040	B1, B2	_	12 to 10		
	(a)	8 <2>	10 to 8	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	4	6 to 4	-	5.4 to 6.0
	U/T1, V/T2, W/T3	4	6 to 4	Mo	(47.8 to 53.1)
2A0056	\ominus , \oplus 1, \oplus 2	-	6 to 4		2.7 to 2.0
	B1, B2	-	10 to 6	M5	2.7 to 3.0 (23.9 to 26.6)
		6	8 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	3	4 to 3		9.9 to 11.0 (87.6 to 97.4)
	U/T1, V/T2, W/T3	3	4 to 3	M8	
24,0060	⊖, ⊕1, ⊕2	-	4 to 3		
2A0069	B1, B2	-	8 to 6	M5	2.7 to 3.0 (23.9 to 26.6)
		6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	2	3 to 2		
	U/T1, V/T2, W/T3	2	3 to 2	M8	9.9 to 11.0 (87.6 to 97.4)
	\ominus , \oplus 1, \oplus 2	-	3 to 2		(07.0 10 57.1)
2A0081	B1, B2	-	6	M5	2.7 to 3.0 (23.9 to 26.6)
	(a)	6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	1/0	3 to 1/0		` '
	U/T1, V/T2, W/T3	1/0	3 to 1/0	7	
2A0110	⊖, ⊕1	_	2 to 1/0	M8	9 to 11
	B1, B2	-	6 to 1/0	- 1710	(79.7 to 97.4)
	+	6	6 to 4	7	
	R/L1, S/L2, T/L3	2/0	1 to 2/0		
	U/T1, V/T2, W/T3	2/0	1 to 2/0	1	18 to 23
0.1.6125	Θ, ⊕1	_	1/0 to 3/0	M10	(159 to 204)
2A0138	B1, B2	_	4 to 2/0	1	(137 to 204)
	⊕	4	4	M8	9 to 11
		, ·	7	1410	(79.7 to 97.4)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	4/0	2/0 to 4/0		
	U/T1, V/T2, W/T3	4/0	3/0 to 4/0		40
2A0169	⊖, ⊕1	-	1 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	1/0 to 4/0		(*** ** =* *)
		4	4 to 2		
	R/L1, S/L2, T/L3	1/0 × 2P	1/0 to 2/0		
	U/T1, V/T2, W/T3	1/0 × 2P	1/0 to 2/0		
2A0211	⊖, ⊕1	-	1 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	_	1/0 to 4/0		(137 to 204)
	(-)	4	4 to 1/0		
	R/L1, S/L2, T/L3	3/0 × 2P	3/0 to 300		
	U/T1, V/T2, W/T3	3/0 × 2P	3/0 to 300	M12	32 to 40 (283 to 354)
	Θ, ⊕1	_	3/0 to 300	1	
2A0250	⊕3	-	2 to 300	M10	18 to 23 (159 to 204)
	(a)	3	3 to 300	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	4/0 × 2P	3/0 to 300		
	U/T1, V/T2, W/T3	3/0 × 2P	3/0 to 300	M12	32 to 40 (283 to 354)
	⊖, ⊕1	_	3/0 to 300		(203 to 334)
2A0312	⊕3	-	3/0 to 300	M10	18 to 23 (159 to 204)
	(a)	2	2 to 300	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	250 × 2P	4/0 to 600		
	U/T1, V/T2, W/T3	4/0 × 2P	4/0 to 600	M12	32 to 40 (283 to 354)
	⊖, ⊕1	-	250 to 600		(203 to 30 1)
2A0360	⊕3	-	3/0 to 600	M10	18 to 23 (159 to 204)
	(a)	1	1 to 350	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	350 × 2P	250 to 600		
	U/T1, V/T2, W/T3	300 × 2P	300 to 600	M12	32 to 40 (283 to 354)
	⊖, ⊕1	_	300 to 600		(203 10 334)
2A0415	⊕3	-	3/0 to 600	M10	18 to 23 (159 to 204)
	⊕	1	1 to 350	M12	32 to 40 (283 to 354)

<1> Install a GFCI when using this wire gauge in accordance with IEC/EN 61800-5-1.

<2> Install a GFCI, or use 10 mm² (AWG 8) copper wire when using this wire gauge in accordance with IEC/EN 61800-5-1.

Table D.7 Wire Gauge and Torque Specifications (Three-Phase 400 V Class)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	14	14 to 10		,
	U/T1, V/T2, W/T3	14	14 to 10		
4A0002 4A0004	$\Theta, \oplus 1, \oplus 2$	-	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
4A0004	B1, B2	-	14 to 10		(10.0 to 15.5)
		12 <1>	14 to 12		
	R/L1, S/L2, T/L3	14	14 to 10		
4A0005	U/T1, V/T2, W/T3	14	14 to 10		
4A0007	\ominus , \oplus 1, \oplus 2	-	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
4A0009	B1, B2	_	14 to 10		(10.0 to 15.5)
		10 <1>	14 to 10		
	R/L1, S/L2, T/L3	12	14 to 10		
	U/T1, V/T2, W/T3	14	14 to 10		
4A0011	$\Theta, \oplus 1, \oplus 2$	_	14 to 10	M4	1.2 to 1.5 (10.6 to 13.3)
	B1, B2	-	14 to 10		(**************************************
	a	10 <1>	14 to 10		
	R/L1, S/L2, T/L3	10	12 to 6		
	U/T1, V/T2, W/T3	10	12 to 6	M4	2.1 to 2.3
4A0018	Θ , $\oplus 1$, $\oplus 2$	-	12 to 6		(18.6 to 20.4)
	B1, B2	-	12 to 10		
	⊕	10 <1>	14 to 10	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	10	10 to 6		
	U/T1, V/T2, W/T3	10	10 to 6	M4	2.1 to 2.3
4A0023	$\Theta, \oplus 1, \oplus 2$	_	12 to 6		(18.6 to 20.4)
	B1, B2	-	12 to 10		
		10 <1>	12 to 10	M5	2.0 to 2.5 (17.7 to 22.1)
	R/L1, S/L2, T/L3	8	8 to 6		3.6 to 4.0 (31.8 to 35.4)
	U/T1, V/T2, W/T3	8	10 to 6		
44.0021	Θ , \oplus 1, \oplus 2	-	10 to 6	M5	(23.0.0000)
4A0031	B1, B2	-	10 to 8		2.7 to 3.0 (23.9 to 26.6)
		8 <2>	10 to 8	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	8 to 6		
	U/T1, V/T2, W/T3	8	8 to 6		3.6 to 4.0 (31.8 to 35.4)
	\ominus , \oplus 1, \oplus 2	-	6	M5	(51.0 to 55.1)
4A0038	B1, B2	-	10 to 8		2.7 to 3.0 (23.9 to 26.6)
	(a)	6	10 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	6 to 4		
	U/T1, V/T2, W/T3	6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
	$\Theta, \oplus 1, \oplus 2$	-	6 to 4		(47.8 to 53.1)
4A0044	B1, B2	-	10 to 8	M5	2.7 to 3.0 (23.9 to 26.6)
	(a)	6	8 to 6	M6	5.4 to 6.0 (47.8 to 53.1)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	4	6 to 4		
	U/T1, V/T2, W/T3	4	6 to 4		
4A0058	⊖, ⊕1	_	6 to 1	M8	9 to 11 (79.7 to 97.4)
	B1, B2	-	8 to 4		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		6	8 to 6		
	R/L1, S/L2, T/L3	3	4 to 3		
	U/T1, V/T2, W/T3	3	4 to 3		
4A0072	⊖, ⊕1	_	4 to 1	M8	9 to 11 (79.7 to 97.4)
	B1, B2	_	6 to 3		(,
		6	6		
	R/L1, S/L2, T/L3	2	3 to 1/0		
	U/T1, V/T2, W/T3	2	3 to 1/0		
4A0088	⊖, ⊕1	_	3 to 1/0	M8	9 to 11 (79.7 to 97.4)
	⊕3	_	6 to 1/0		(13.7 10 37.1)
	(4)	4	6 to 4		
	R/L1, S/L2, T/L3	1/0	2 to 1/0		
	U/T1, V/T2, W/T3	1	2 to 1/0		9 to 11 (79.7 to 97.4)
4A0103	⊖, ⊕1	_	3 to 1/0	M8	
	⊕3	_	4 to 1/0	1	
	=	4	6 to 4		
	R/L1, S/L2, T/L3	3/0	1/0 to 4/0		
	U/T1, V/T2, W/T3	2/0	1/0 to 4/0		
4A0139	⊖, ⊕1	_	1/0 to 4/0	M10	18 to 23
	⊕3	_	3 to 4/0		(159 to 204)
	+	4	4		
	R/L1, S/L2, T/L3	4/0	3/0 to 4/0		
	U/T1, V/T2, W/T3	4/0	3/0 to 4/0		18 to 23 (159 to 204)
4A0165	⊖, ⊕1	_	1 to 4/0	M10	
	⊕3	_	1/0 to 4/0		
	+	4	4 to 2		
	R/L1, S/L2, T/L3	300	2 to 300		
	U/T1, V/T2, W/T3	300	2 to 300		
4A0208	⊖, ⊕1	_	1 to 250	M10	18 to 23
	⊕3	_	3 to 3/0		(159 to 204)
	(4	4 to 300		
	R/L1, S/L2, T/L3	400	1 to 600		
	U/T1, V/T2, W/T3	400	1/0 to 600		
4A0250	⊖, ⊕1	-	3/0 to 600	M10	18 to 23
110230	⊕3	_	1 to 325	- 14110	(159 to 204)
	(a)	2	2 to 350	\dashv	
	R/L1, S/L2, T/L3	500	2/0 to 600		
	U/T1, V/T2, W/T3	500	2/0 to 600	M12	32 to 40
	⊖, ⊕1	-	3/0 to 600	19112	(283 to 354)
4A0296	⊕3	-	1 to 325	M10	18 to 23 (159 to 204)
	(a)	2	2 to 350	M12	32 to 40 (283 to 354)

Orive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torqu N·m (lb.in.)
	R/L1, S/L2, T/L3	$4/0 \times 2P$	3/0 to 600		
	U/T1, V/T2, W/T3	4/0 × 2P	3/0 to 600	M12	32 to 40 (283 to 354)
	⊖, ⊕1	-	4/0 to 600		(203 to 35 1)
4A0362	⊕3	-	3/0 to 600	M10	18 to 23 (159 to 204)
	(4)	1	1 to 350	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	$300 \times 2P$	4/0 to 300		
	U/T1, V/T2, W/T3	300 × 2P	4/0 to 300		
4A0414	⊖, ⊕1	-	3/0 to 300	M12	32 to 40 (283 to 354)
	⊕3	-	3/0 to 300		(203 to 334)
	(-)	1	1 to 3/0		
	R/L1, S/L2, T/L3	3/0 × 4P	3/0 to 300		32 to 40 (283 to 354)
	U/T1, V/T2, W/T3	$4/0 \times 4P$	3/0 to 300	M12	
4A0515	⊖, ⊕1	_	1/0 to 300		
	⊕3	_	1/0 to 300	7	
	(4)	1/0	1/0 to 300	7	
	R/L1, S/L2, T/L3	300 × 4P	4/0 to 300	M12	32 to 40 (283 to 354)
	U/T1, V/T2, W/T3	300 × 4P	4/0 to 300		
4A0675	⊖, ⊕1	_	1/0 to 300		
	⊕3	-	1/0 to 300		
	(4)	2/0	2/0 to 300	7	
	R/L1, S/L2, T/L3, R1/L11, S1/L21, T1/L31	$4/0 \times 4P \times 2$	3/0 to 300		
	U/T1, V/T2, W/T3	$4/0 \times 4P \times 2$	3/0 to 300	7	32 to 40
4A0930	⊖, ⊕1	-	4/0 to 300	M12	(283 to 354)
	⊕3	-	4/0 to 300	7	
	(4)	3/0	3/0 to 250		
	R/L1, S/L2, T/L3, R1/L11, S1/L21, T1/L31	300 × 4P×2	4/0 to 300		
	U/T1, V/T2, W/T3	300 × 4P×2	4/0 to 300	M12	32 to 40
4A1200	⊖, ⊕1	_	250 to 300		(283 to 354)
	⊕3	_	4/0 to 300		
	+	4/0	4/0 to 250		

Install a GFCI or use 10 mm ² (AWG 8) copper wire when using this wire gauge in accordance with IEC/EN 61800-5-1.

Table D.8 Wire Gauge and Torque Specifications (Three-Phase 600 V Class)

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N⋅m (lb.in.)
	R/L1, S/L2, T/L3	14	14 to 10		,
5A0003 5A0004	U/T1, V/T2, W/T3	14	14 to 10		
	⊖, ⊕1, ⊕2	_	14 to 10		1.2 to 1.5
5A0006	B1, B2	_	14 to 10		(10.6 to 13.3)
	(b)	10	14 to 10		
	R/L1, S/L2, T/L3	14	14 to 10		
	U/T1, V/T2, W/T3	14	14 to 10		
5A0009	⊖, ⊕1, ⊕2	_	14 to 10	M4	1.2 to 1.5
	B1, B2	_	14 to 10		(10.6 to 13.3)
	(b)	10	12 to 10		
	R/L1, S/L2, T/L3	10	14 to 6		
	U/T1, V/T2, W/T3	14	14 to 6		2.1 to 2.3
7.4.001.1	$\Theta, \oplus 1, \oplus 2$	_	14 to 6	M4	(18.6 to 20.4)
5A0011	B1, B2	_	14 to 10		
	(a)			3.65	2.0 to 2.5
		8	12 to 8	M5	(17.7 to 22.1)
	R/L1, S/L2, T/L3	10	10 to 6		264 40
	U/T1, V/T2, W/T3	10	10 to 6		3.6 to 4.0 (31.8 to 35.4)
540017	⊖, ⊕1, ⊕2	_	10 to 6	M5	
5A0017	B1, B2	_	10 to 8		2.7 to 3.0 (23.9 to 26.6)
		8	12 to 8	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	8	10 to 6		
	U/T1, V/T2, W/T3	10	10 to 6		3.6 to 4.0 (31.8 to 35.4)
	\ominus , \oplus 1, \oplus 2	_	10 to 6	M5	(31.0 to 35.1)
5A0022	B1, B2	_	10 to 8		2.7 to 3.0 (23.9 to 26.6)
		8	10 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	6 to 4		
	U/T1, V/T2, W/T3	6	6 to 4	M6	5.4 to 6.0 (47.8 to 53.1)
5A0027	Θ , $\oplus 1$, $\oplus 2$	_	6 to 4		
5A0032	B1, B2	_	10 to 8	M5	2.7 to 3.0 (23.9 to 26.6)
		6	10 to 6	M6	5.4 to 6.0 (47.8 to 53.1)
	R/L1, S/L2, T/L3	6	10 to 3		
	U/T1, V/T2, W/T3	6	10 to 3		
5A0041	⊖, ⊕1	-	6 to 1	M8	9.0 to 11 (79.7 to 97.4)
	B1, B2	_	12 to 3		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	+	6	6		
	R/L1, S/L2, T/L3	4	10 to 3		
	U/T1, V/T2, W/T3	6	10 to 3		
5A0052	⊖, ⊕1	-	6 to 1	M8	9.0 to 11 (79.7 to 97.4)
	B1, B2	-	8 to 3		(12.1 10 21.4)
	(a)	6	6		
	R/L1, S/L2, T/L3	4	10 to 4/0		
	U/T1, V/T2, W/T3	4	10 to 4/0		
5A0062	⊖, ⊕1	_	4 to 4/0	M10	18 to 23
	⊕3	-	6 to 4/0		(159 to 204)
			+	—	

Drive Model	Terminal	Recomm. Gauge AWG, kcmil	Wire Range AWG, kcmil	Screw Size	Tightening Torque N·m (lb.in.)
	R/L1, S/L2, T/L3	3	10 to 4/0		
	U/T1, V/T2, W/T3	3	10 to 4/0		
5A0077	⊖, ⊕1	-	3 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	6 to 4/0		(10) to 201)
	+	4	4		
	R/L1, S/L2, T/L3	1/0	10 to 4/0		
	U/T1, V/T2, W/T3	1	10 to 4/0		
5A0099	⊖, ⊕1	-	2 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	4 to 4/0		(13) to 204)
		4	4		
	R/L1, S/L2, T/L3	2/0	1 to 300		
	U/T1, V/T2, W/T3	2/0	1 to 300		18 to 23 (159 to 204)
5A0125	⊖, ⊕1	-	2/0 to 3/0	M10	
	⊕3	-	1 to 1/0		
	(a)	3	4 to 300		
	R/L1, S/L2, T/L3	3/0	2/0 to 300		
	U/T1, V/T2, W/T3	3/0	2/0 to 300		
5A0145	⊖, ⊕1	-	3/0 to 4/0	M10	18 to 23 (159 to 204)
	⊕3	-	1/0 to 2/0		(13) to 204)
	(3	4 to 300		
	R/L1, S/L2, T/L3	300	2/0 to 600		
	U/T1, V/T2, W/T3	250	2/0 to 600	M12	32 to 40 (283 to 354)
	⊖, ⊕1	-	2/0 to 400		(203 to 33 1)
5A0192	⊕3	-	2/0 to 250	M10	18 to 23 (159 to 204)
		1	1 to 350	M12	32 to 40 (283 to 354)
	R/L1, S/L2, T/L3	400	2/0 to 600		22 : 40
	U/T1, V/T2, W/T3	350	2/0 to 600	M12	32 to 40 (283 to 354)
540040	⊖, ⊕1	_	2/0 to 500		(======================================
5A0242	⊕3	-	250 to 300	M10	18 to 23 (159 to 204)
		1	1 to 350	M12	32 to 40 (283 to 354)

Closed-Loop Crimp Terminal Recommendations

To maintain UL/cUL approval, UL Listed closed-loop crimp terminals are specifically required when wiring the drive main circuit terminals on models 2A0110 to 2A0415, 4A0058 to 4A1200, and 5A0041 to 5A0242. Use only the tools recommended by the terminal manufacturer for crimping. Yaskawa recommends UL listed crimp terminals made by JST and Tokyo DIP (or equivalent) for the insulation cap. *Table D.9* matches the wire gauges and terminal screw sizes with Yaskawa-recommended crimp terminals, tools, and insulation caps. Refer to the appropriate Wire Gauge and Torque Specifications table for the wire gauge and screw size for your drive model. Place orders with a Yaskawa representative or the Yaskawa sales department.

Wire gauge values shown in **bold italic** are the recommended values. Refer to local codes for proper selections.

Table D.9 Closed-Loop Crimp Terminal Size

	Wire Gauge (AWG, kcmil)		Screw	_Crimp			Insulation Cap	4	
Drive Model	R/L1, S/L2, T/L3	U/T1, V/T2, W/T3		Terminal Model Number	Machine No.	Die Jaw	Model No.	Code <1>	
200 V Class									
2A0004	1	14		R2-4		AD-900	TP-003	100-054-028	
2A0006 2A0008	1	2	M4	D5.5.4	YA-4		TD 005	100-054-029	
2A0010	1	.0		R5.5-4			TP-005		

	Wire Gauge	(AWG, kcmil)		Crimp	To	ool		
Drive Model	R/L1, S/L2, T/L3	U/T1, V/T2, W/T3	Screw Size	Terminal Model Number	Machine No.	Die Jaw	Insulation Cap Model No.	Code <1>
	14	14		R2-4			TP-003	100-054-028
2A0012	12	0	M4	R5.5-4	YA-4	AD-900	TP-005	100-054-029
	- 14			R2-4			TP-003	100-054-028
2A0018	12 10		M4	R5.5-4	YA-4	AD-900	TP-005	100-054-029
2A0021		2	M4	R5.5-4	YA-4	AD-900	TP-005	100-054-029
	1	0		R5.5-4		AD-900	TP-005	100-054-029
2A0030		8	M4	8-4	YA-4	AD-901	TP-008	100-054-031
	(5		14-NK4		AD-902	TP-014	100-054-033
240040	8	8	244	8-4	37.4.4	AD-901	TP-008	100-054-031
2A0040	6	6	M4	14-NK4	YA-4	AD-902	TP-014	100-054-033
210056	(5	3.66	R14-6	***	AD-952	TP-014	100-051-261
2A0056	4	4	M6	R22-6	YA-5	AD-953	TP-022	100-051-262
	4	4	3.60	R22-8	**	AD-953	TP-022	100-051-263
2A0069		3	M8	R38-8	YA-5	AD-954	TP-038	100-051-264
2A0081	3 2		M8	R38-8	YA-5	AD-954	TP-038	100-051-264
2A0110	3 2 1		M8	R38-8	YA-5	AD-954	TP-038	100-051-264
	1.	/0		R60-8	YA-5	AD-955	TP-060	100-051-265
		1		R38-10		TD-321,	TD 060	100-061-114
2A0138	1.	/0	M10	R60-10	YF-1 YET-300-1	TD-311	TP-060	100-051-266
2/10/20	2.	/0	14110	70-10		TD-323, TD-312	TP-080	100-054-036
	2/0	_		70-10		TD-323,	TP-080	100-054-036
2A0169	3.	/0	M10	80-10	YF-1	TD-312	1P-080	100-051-267
	4.	/0		R100-10	YET-300-1	TD-324, TD-312	TP-100	100-051-269
2A0211	1/0	× 2P	M10	R60-10	YF-1	TD-321, TD-311	TP-060	100-051-266
2/10211	2/0	× 2P	14110	70-10	YET-300-1	TD-323, TD-312	TP-080	100-054-036
	3/0	× 2P		80-L12		TD-323, TD-312	TP-080	100-051-558
2A0250	4/0	× 2P	M12	100-L12	YF-1 YET-300-1	TD-324, TD-312	TP-100	100-051-560
	_	250 × 2P		150-L12	1 E I - 300-1	TD 225	TP-150	100-051-562
	250 –			R150-12		TD-325, TD-313	TP-150	100-051-273
	3/0 × 2P	3/0 × 2P		80-L12		TD-323, TD-312	TP-080	100-051-558
2A0312	4/0 × 2P	4/0 × 2P	M12	100-L12	YF-1 YET-300-1	TD-324, TD-312	TP-100	100-051-560
		× 2P × 2P		150-L12		TD-325, TD-313	TP-150	100-051-562

	Wire Gauge (AWG, kcmil)			Crimp	То	ol		
Drive Model	R/L1, S/L2, T/L3	U/T1, V/T2, W/T3	Screw Size	Terminal Model Number	Machine No.	Die Jaw	Insulation Cap Model No.	Code <1>
	4/0 × 2P	4/0 × 2P		100-L12		TD-324, TD-312	TP-100	100-051-560
	250 × 2P	250 × 2P × 2P		150-L12	-	TD-325, TD-313	TP-150	100-051-562
2A0360		× 2P	M12	180-L12	YF-1 YET-300-1			100-066-688
		× 2P		200-L12	1 1 1 - 300 - 1	TD-327, TD-314	TP-200	100-000-088
		× 2P		200-L12	+			100-031-304
	600	600 × 2P		325-12		TD-328, TD-315	TP-325	100-051-277
	250 × 2P 300 × 2P	- 300 × 2P		150-L12		TD-325, TD-313	TP-150	100-051-562
	350 × 2P	350 × 2P		180-L12	NE 1	TD 227		100-066-688
2A0415		× 2P	M12	200-L12	YF-1 YET-300-1	TD-327, TD-314	TP-200	100-000-068
				200-L12	-	TD 220		100-031-304
		$\frac{500 \times 2P}{600 \times 2P}$		325-12		TD-328, TD-315	TP-325	100-051-277
				400 V Class				
4A0002 4A0004	1	14		R2-4			TP-003	100-054-028
4A0004 4A0005 4A0007 4A0009		0	M4	R5.5-4	YA-4	AD-900	TP-005	100-054-029
	14	14		R2-4			TP-003	100-054-028
4A0011	12	0	M4	R5.5-4	YA-4	AD-900	TP-005	100-054-029
	12			R5.5-4		AD-900	TP-005	100-054-029
4A0018	10	M4 8.4		YA-4				
		8	8-4		-	AD-901	TP-008	100-054-031
		6		14-NK4		AD-902	TP-014	100-054-033
44.0022		0	3.64	R5.5-4	YA-4	AD-900	TP-005	100-054-029
4A0023		8	M4	8-4		AD-901	TP-008	100-054-031
		10		14-NK4 R5.5-5		AD-902 AD-900	TP-014 TP-005	100-054-033
4A0031	_	8	M5	RS.5-3	YA-4	AD-900 AD-901	TP-003	100-034-030
4A0031		6	IVIS	R14-5	1 A-4	AD-901 AD-902	TP-008	100-034-032
	8	8		R14-3		AD-902 AD-901	TP-008	100-034-034
4A0038	6	6	M5	R14-5	YA-4	AD-902	TP-014	100-054-034
		6		R14-6		AD-952	TP-014	100-054-054
4A0044		4	M6	R22-6	YA-5	AD-953	TP-022	100-051-262
		6		R14-8		AD-952	TP-014	100-054-035
4A0058		4	M8	R22-8	YA-5	AD-953	TP-022	100-051-263
		4		R22-8		AD-953	TP-022	100-051-263
4A0072	3		M8	R38-8	YA-5	AD-954	TP-038	100-051-264
4A0088	3 2		M8	R38-8	YA-5	AD-954	TP-038	100-051-264
		/0		R60-8	ļ	AD-955	TP-060	100-051-265
4A0103	1	2	M8	R38-8	YA-5	AD-954	TP-038	100-051-264
4A0103	1/0	1/0		R60-8	Y A-3	AD-955	TP-060	100-051-265

	Wire Gauge	auge (AWG, kcmil)		Crimp	То	ol		
Drive Model	R/L1, S/L2, T/L3	U/T1, V/T2, W/T3	Screw Size	Terminal Model Number	Machine No.	Die Jaw	Insulation Cap Model No.	Code <1>
	1	/0		R60-10		TD-321, TD-311	TP-060	100-051-266
44.0120	2/0	2/0	3.610	70-10	YF-1	TD-323,	TD 000	100-054-036
4A0139	3/0	3/0	M10	80-10	YET-300-1	TD-312	TP-080	100-051-267
	4/0			R100-10		TD-324, TD-312	TP-100	100-051-269
4A0165	3/0		M10	80-10	YF-1	TD-323, TD-312	TP-080	100-051-267
4A0105			IVIIO	R100-10	YET-300-1	TD-324, TD-312	TP-100	100-051-269
		2P 2P		38-L10		TD-224, TD-212	TP-038	100-051-556
		× 2P		80-L10	YF-1	TD-227, TD-214	TP-080	100-051-557
4A0208	4	/0	M10	R100-10	YET-150-1	TD-228, TD-214	TP-100	100-051-269
		50		R150-10		TD-229, TD-215	TP-150	100-051-272
	1 × 2P	-		38-L10		TD-224, TD-212	TP-038	100-051-556
	3/0 × 2P	× 2P		80-L10	YF-1	TD-227, TD-214	TP-080	100-051-557
4A0250	4/0	4/0 × 2P		100-L10	YET-150-1	TD-228, TD-214	TP-100	100-051-559
	250	× 2P	M10	150-L10		TD-229,	TP-150	100-051-561
	300		R150-10		TD-215	TP-150	100-051-272	
	3	50		180-10		TD-327,	TP-200	100-066-687
	4	00	200-10 325-10	YF-1	TD-314	11-200	100-051-563	
		00		325-10	YET-300-1	TD-328, TD-315	TP-325	100-051-565
	3/0	× 2P		80-L12		TD-323, TD-312	TP-080	100-051-558
	4/0	× 2P		100-L12		TD-324, TD-312	TP-100	100-051-560
44.000		× 2P × 2P		150-L12	YF-1	TD-325, TD-313	TP-150	100-051-562
4A0296	_	350 × 2P	M12	180-L12	YET-300-1			100-066-688
	350	_		180-12		TD-327, TD-314	TP-200	100-066-689
	4	00		R200-12		1D-314		100-051-275
		00		325-12		TD-328, TD-315	TP-325	100-051-277
		× 2P		80-L12		TD-323, TD-312	TP-080	100-051-558
	4/0	× 2P		100-L12		TD-312 TD-324, TD-312	TP-100	100-051-560
4A0362	$250 \times 2P$ $300 \times 2P$		M12	150-L12	YF-1	TD-325, TD-313	TP-150	100-051-562
		× 2P × 2P	M12	180-L12	YET-300-1			100-066-688
	-	× 2P		200-L12		TD-327, TD-314	TP-200	100-000-088
		00				TD-328,		
		00		325-12		TD-315	TP-325	100-051-277

•	Ľ
Ċ	ļ
è	=
-7	r
	•
7	5
•	=
è	
7	
,	۲
L	j
9	į
ţ	
de	
do part	2
Spr. Ch	
Sprage	•
opardouc.	•
tondorde	0
Ctondondo	•
Ctondondo	0

	Wire Gauge	Wire Gauge (AWG, kcmil)		Crimon	To	ool		
Drive Model	R/L1, S/L2, T/L3	U/T1, V/T2, W/T3	Screw Size	Crimp Terminal Model Number	Machine No.	Die Jaw	Insulation Cap Model No.	Code <1>
	4/0 × 2P $250 \times 2P$ $300 \times 2P$			100-L12	YF-1	TD-324, TD-312	TP-100	100-051-560
4A0414			M12	150-L12	YET-300-1	TD-325, TD-313	TP-150	100-051-562
	3/0 × 4P	3/0 × 4P		80-L12		TD-323, TD-312	TP-080	100-051-558
4A0515	4/0 × 4P	4/0 × 4P	M12	100-L12	YF-1 YET-300-1	TD-324, TD-312	TP-100	100-051-560
		× 4P × 2P		150-L12		TD-325, TD-313	TP-150	100-051-562
	4/0	× 4P	M12 100-L12 150-L12	100-L12	YF-1	TD-324, TD-312	TP-100	100-051-560
4A0675		× 4P × 4P		YET-300-1	TD-325, TD-313	TP-150	100-051-562	
	3/0	× 8P		80-L12		TD-323, TD-312	TP-080	100-051-558
4A0930	4/0 × 8P		M12	100-L12	YF-1 YET-300-1	TD-324, TD-312	TP-100	100-051-560
		× 8P × 8P		150-L12		TD-325, TD-313	TP-150	100-051-562
		× 8P		100-L12	YF-1	TD-324, TD-312	TP-100	100-051-560
4A1200		× 8P	M12	150-L12	YET-300-1	TD-325, TD-313	TP-150	100-051-562

Codes refer to a set of three crimp terminals and three insulation caps. Prepare input and output wiring using two sets for each connection. Example 1: Models with 300 kcmil for both input and output require one set for input terminals and one set for output terminals, so the user should order two sets of [100-051-272].

Example 2: Models with 4/0 AWG × 2P for both input and output require two sets for input terminals and two sets for output terminals, so the user should order four sets of [100-051-560].

Note: Use crimp insulated terminals or insulated shrink tubing for wiring connections. Wires should have a continuous maximum allowable temperature of 75 °C 600 Vac UL-approved vinyl-sheathed insulation.

Factory Recommended Branch Circuit Protection for UL Compliance

NOTICE: If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices. Check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa before restarting the drive or the peripheral devices if the cause cannot be identified.

Yaskawa recommends installing one of the following types of branch circuit protection to maintain compliance with UL508C. Semiconductor protective type fuses are preferred. Alternate branch circuit protection devices are also listed in the tables below.

Table D.10 Factory Recommended Drive Branch Circuit Protection (Normal Duty)

	Normal Duty									
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)				
	200 V Class									
2A0004	0.75	3.9	15	6.25	10	FWH-70B (70)				
2A0006	1 - 1.5	7.3	15	12	20	FWH-70B (70)				
2A0008	2	8.8	15	15	25	FWH-70B (70)				
2A0010	3	10.8	20	17.5	30	FWH-70B (70)				
2A0012	3	13.9	25	20	40	FWH-70B (70)				
2A0018	5	18.5	35	30	50	FWH-90B (90)				
2A0021	7.5	24	45	40	70	FWH-90B (90)				
2A0030	10	37	60	60	110	FWH-100B (100)				

	Normal Duty								
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps <1>	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)			
2A0040	15	52	100	90	150	FWH-200B (200)			
2A0056	20	68	125	110	200	FWH-200B (200)			
2A0069	25	80	150	125	225	FWH-200B (200)			
2A0081	30	96	175	150	275	FWH-300A (300)			
2A0110	40	111	200	175	300	FWH-300A (300)			
2A0138	50	136	250	225	400	FWH-350A (350)			
2A0169	60	164	300	250	450	FWH-400A (400)			
2A0211	75	200	400	350	600	FWH-400A (400)			
2A0250	100	271	500	450	800	FWH-600A (600)			
2A0312	125	324	600	500	800	FWH-700A (700)			
2A0312 2A0360	150	394	700	600	1000 <5>	FWH-800A (800)			
						` ′			
2A0415	175	471	900	800	1400 <5>	FWH-1000A (1000)			
4A0002	1	2.1	400 V Class	2.5	6	EWIL 40D (40)			
	1	2.1	15	3.5		FWH-40B (40)			
4A0004	2	4.3	15	7.5	12	FWH-50B (50)			
4A0005	3	5.9	15	10	17.5	FWH-70B (70)			
4A0007	3	8.1	15	12	20	FWH-70B (70)			
4A0009	5	9.4	15	15	25	FWH-90B (90)			
4A0011	7.5	14	25	20	40	FWH-90B (90)			
4A0018	10	20	40	35	60	FWH-80B (80)			
4A0023	15	24	45	40	70	FWH-100B (100)			
4A0031	20	38	75	60	110	FWH-125B (125)			
4A0038	25	44	75	75	125	FWH-200B (200)			
4A0044	30	52	100	90	150	FWH-250A (250)			
4A0058	40	58	100	100	150	FWH-250A (250)			
4A0072	50	71	125	110	200	FWH-250A (250)			
4A0088	60	86	150	150	250	FWH-250A (250)			
4A0103	75	105	200	175	300	FWH-250A (250)			
4A0139	100	142	250	225	400	FWH-350A (350)			
4A0165	125	170	300	250	500	FWH-400A (400)			
4A0208	150	207	400	350	600	FWH-500A (500)			
4A0250	200	248	450	400	700	FWH-600A (600)			
4A0296	250	300	600	500	800	FWH-700A (700)			
4A0362	300	346	600	600	1000 <5>	FWH-800A (800)			
4A0414	350	410	800	700	1200 <5>	FWH-800A (800)			
4A0515	400 - 450	465	900	800	1350 <5>	FWH-1000A (1000)			
4A0675	500 - 600	657	1200	1100 <5>	1800 <5>	FWH-1200A (1200)			
4A0930	700 - 800	922			1000	FWH-1200A (1200)			
4A1200	900 - 1000	1158		Not Applicable		FWH-1600A (1600)			
			600 V Class			,			
5A0003	2	3.6	15	6.25	10	FWP-50B (50)			
5A0004	3	5.1	15	8	15	FWP-50B (50)			
5A0006	5	8.3	15	12	20	FWP-60B (60)			
5A0009	7.5	12	20	20	35	FWP-60B (60)			
5A0011	10	16	30	25	45	FWP-70B (70)			
5A0017	15	23	40	40	60	FWP-100B (100)			

٠,	3
•	
0	۵
	į
2	2
٤	
7	5
Č	۱
•	•
0	ņ
Ţ	7
ō	ľ
τ	Ž
•	
9	Q
å	=
ť	

Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)
5A0022	20	31	60	50	90	FWP-100B (100)
5A0027	25	38	75	60	110	FWP-125A (125)
5A0032	30	45	75	75	125	FWP-125A (125)
5A0041	40	44	75	75	125	FWP-175A (175)
5A0052	50	54	100	90	150	FWP-175A (175)
5A0062	60	66	125	110	175	FWP-250A (250)
5A0077	75	80	150	125	225	FWP-250A (250)
5A0099	100	108	175	175	300	FWP-250A (250)
5A0125	125	129	225	225	350	FWP-350A (350)
5A0145	150	158	300	275	450	FWP-350A (350)
5A0192	200	228	400	350	600	FWP-600A (600)
5A0242	250	263	500	450	700	FWP-600A (600)

- <1> Maximum MCCB Rating is 15 A, or 200 % of drive input current rating, whichever is larger. MCCB voltage rating must be 600 VAC or greater.
- Maximum Time Delay fuse is 175% of drive input current rating. This covers any Class CC, J or T class fuse.
- Maximum Non-time Delay fuse is 300% of drive input current rating. This covers any CC, J or T class fuse.
- When using semiconductor fuses, Bussman FWH and FWP are required for UL compliance. Select FWH for 200 V Class and 400 V Class models and FWP fuses for 600 V models.
- Class L fuse is also approved for this rating.

Table D.11 Factory Recommended Drive Branch Circuit Protection (Heavy Duty)

	Heavy Duty										
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)					
	200 V Class										
2A0004	0.75	2.9	15	5	8	FWH-70B (70)					
2A0006	1	5.8	15	10	15	FWH-70B (70)					
2A0008	2	7	15	12	17.5	FWH-70B (70)					
2A0010	2	7.5	15	12	20	FWH-70B (70)					
2A0012	3	11	20	17.5	30	FWH-70B (70)					
2A0018	3	15.6	25	25	40	FWH-90B (90)					
2A0021	5	18.9	35	30	50	FWH-90B (90)					
2A0030	7.5	28	50	40	75	FWH-100B (100)					
2A0040	10	37	60	60	100	FWH-200B (200)					
2A0056	15	52	100	90	150	FWH-200B (200)					
2A0069	20	68	125	110	200	FWH-200B (200)					
2A0081	25	80	150	125	225	FWH-300A (300)					
2A0110	30	82	150	125	225	FWH-300A (300)					
2A0138	40	111	200	175	250	FWH-350A (350)					
2A0169	50	136	250	225	350	FWH-400A (400)					
2A0211	60	164	300	250	450	FWH-400A (400)					
2A0250	75	200	400	350	600	FWH-600A (600)					
2A0312	100	271	500	450	800	FWH-700A (700)					
2A0360	125	324	600	500	900 <4>	FWH-800A (800)					
2A0415	150	394	700	600	1100 <4>	FWH-1000A (1000)					
			400 V Class								
4A0002	0.75	1.8	15	3	5	FWH-40B (40)					

	Heavy Duty								
Drive Model	Nominal Output Power HP	AC Drive Input Amps	MCCB Rating Amps <1>	Time Delay Fuse Rating Amps	Non-time Delay Fuse Rating Amps	Bussmann Semi- conductor Fuse Rating (Fuse Ampere)			
4A0004	1 - 2	3.2	15	5	9	FWH-50B (50)			
4A0005	3	4.4	15	7	12	FWH-70B (70)			
4A0007	3	6	15	10	17.5	FWH-70B (70)			
4A0009	5	8.2	15	12	20	FWH-90B (90)			
4A0011	5	10.4	20	17.5	30	FWH-90B (90)			
4A0018	7.5 - 10	15	30	25	40	FWH-80B (80)			
4A0023	10	20	40	35	60	FWH-100B (100)			
4A0031	15	29	50	50	80	FWH-125B (125)			
4A0038	20	39	75	60	110	FWH-200B (200)			
4A0044	25 - 30	47	75	75	125	FWH-250A (250)			
4A0058	30	43	75	75	125	FWH-250A (250)			
4A0072	40	58	100	100	150	FWH-250A (250)			
4A0088	60	71	125	110	200	FWH-250A (250)			
4A0103	60	86	150	150	250	FWH-250A (250)			
4A0139	75	105	175	175	300	FWH-350A (350)			
4A0165	100	142	225	225	400	FWH-400A (400)			
4A0208	125 - 150	170	250	250	500	FWH-500A (500)			
4A0250	150	207	350	350	600	FWH-600A (600)			
4A0296	200	248	400	400	700	FWH-700A (700)			
4A0362	250	300	500	500	800	FWH-800A (800)			
4A0414	300	346	600	600	1000 <4>	FWH-800A (800)			
4A0515	350	410	700	700	1200 <4>	FWH-1000A (1000)			
4A0675	400 - 500	584	1000	1000 <4>	1600 <4>	FWH-1200A (1200)			
4A0930	600 - 700	830		NI-4 A1:1.1.		FWH-1200A (1200			
4A1200	800 - 900	1031		Not Applicable		FWH-1600A (1600)			
		,	600 V Class						
5A0003	1	1.9	15	3	5	FWP-50B (50)			
5A0004	2	3.6	15	6.25	10	FWP-50B (50)			
5A0006	3	5.1	15	8	15	FWP-60B (60)			
5A0009	5	8.3	15	12	20	FWP-60B (60)			
5A0011	7.5	12	20	20	35	FWP-70B (70)			
5A0017	10	16	30	25	45	FWP-100B (100)			
5A0022	15	23	40	40	60	FWP-100B (100)			
5A0027	20	31	60	50	90	FWP-125A (125)			
5A0032	25	38	75	60	100	FWP-125A (125)			
5A0041	30	33	60	50	90	FWP-175A (175)			
5A0052	40	44	75	75	125	FWP-175A (175)			
5A0062	50	54	100	90	150	FWP-250A (250)			
5A0077	60	66	125	110	175	FWP-250A (250)			
5A0099	75	80	150	125	225	FWP-250A (250)			
5A0125	100	108	175	175	300	FWP-350A (350)			
5A0145	125	129	250	225	350	FWP-350A (350)			
5A0192	150	158	300	250	400	FWP-600A (600)			
5A0242	200	228	400	350	600	FWP-600A (600)			

<1> Maximum MCCB Rating is 15 A, or 200 % of drive input current rating, whichever is larger. MCCB voltage rating must be 600 VAC or greater.

<2> Maximum Time Delay fuse is 175% of drive input current rating. This covers any Class CC, J or T class fuse.

<3> Maximum Non-time Delay fuse is 300% of drive input current rating. This covers any CC, J or T class fuse.

<4> Class L fuse is also approved for this rating.

Wiring Fuses for Models 4A0930 and 4A1200

NOTICE: If a fuse is blown or an Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa before restarting the drive or the peripheral devices if the cause cannot be identified.

Install a fuse on the input side to protect drive wiring and prevent other secondary damage. Wire the fuse so that leakage current in the upper controller power supply will trigger the fuse and shut off the power supply.

Select the appropriate fuse from *Table 3.2*.

Table D.12 Input Fuses for Models 4A0930 and 4A1200

Voltage Class		Selection		Input Fuse (Example)				
	Model	Input Voltage	Current	Pre-arc l ² t (A ² s)	Model	Manufacturer	Rating	Pre-arc I ² t (A ² s)
Three-	4A0930	480 V	1500 A	140000 to 3100000	CS5F-1200	Fuji Electric	AC500 V, 1200 A	276000
Phase					FWH-1200A	Bussman	AC500 V, 1200 A	_
400 V	4A1200	4A1200 480 V 1500 A	1500 A	320000 to	CS5F-1500	Fuji Electric	AC500 V, 1500 A	351000
Class			3100000	FWH-1600A	Bussman	AC500 V, 1600 A	-	

■ Low Voltage Wiring for Control Circuit Terminals

Wire low voltage wires with NEC Class 1 circuit conductors. Refer to national state or local codes for wiring. The external power supply shall be a UL listed Class 2 power supply source or equivalent only.

Table D.13 Control Circuit Terminal Power Supply

		• • •
Input / Output	Terminal Signal	Power Supply Specifications
Open Collector Outputs	P1, P2, PC, DM+, DM-	Requires class 2 power supply
Digital inputs	S1 to S8, SC, HC, H1, H2	Use the internal LVLC power supply of the drive. Use class 2 for external power supply.
Analog inputs / outputs	+V, -V, A1, A2, A3, AC, AM, FM	Use the internal LVLC power supply of the drive. Use class 2 for external power supply.

■ Drive Short Circuit Rating

The drive is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, 240 Vac maximum (200 V Class), 480 Vac maximum (400 V Class), and 600 Vac maximum (600 V Class) when protected by Bussmann Type FWH or FWP fuses as specified in *Factory Recommended Branch Circuit Protection* on page 750.

◆ CSA Standards Compliance

Figure D.8 CSA Mark

■ CSA for Industrial Control Equipment

The drive is CSA-certified as Industrial Control Equipment Class 3211.

Specifically, the drive is certified to: CAN/CSA C22.2 No. 04-04 and CAN/CSA C22.2 No.14-05.

◆ Drive Motor Overload Protection

Set parameter E2-01 (motor rated current) to the appropriate value to enable motor overload protection. The internal motor overload protection is UL listed and in accordance with the NEC and CEC.

■ E2-01: Motor Rated Current

Setting Range: Model-dependent

Default Setting: Model-dependent

Parameter E2-01 protects the motor when parameter L1-01 is not set to 0. The default for L1-01 is 1, which enables protection for standard induction motors.

If Auto-Tuning has been performed successfully, the motor data entered to T1-04 is automatically written to parameter E2-01. If Auto-Tuning has not been performed, manually enter the correct motor rated current to parameter E2-01.

■ L1-01: Motor Overload Protection Selection

The drive has an electronic overload protection function (oL1) based on time, output current, and output frequency that protects the motor from overheating. The electronic thermal overload function is UL-recognized, so it does not require an external thermal relay for single motor operation.

This parameter selects the motor overload curve used according to the type of motor applied.

Table D.14 Overload Protection Settings

Setting		Description
0	Disabled	Disabled the internal motor overload protection of the drive.
1	Standard fan-cooled motor (default)	Selects protection characteristics for a standard self-cooled motor with limited cooling capabilities when running below the rated speed. The motor overload detection level (oL1) is automatically reduced when running below the motor rated speed.
2	Drive duty motor with a speed range of 1:10	Selects protection characteristics for a motor with self-cooling capability within a speed range of 10:1. The motor overload detection level (oL1) is automatically reduced when running below 1/10 of the motor rated speed.
3	Vector motor with a speed range of 1:100	Selects protection characteristics for a motor capable of cooling itself at any speed including zero speed (externally cooled motor). The motor overload detection level (oL1) is constant over the entire speed range.
4	Permanent Magnet motor with variable torque	Selects protection characteristics for a variable torque PM motor. The motor overload detection level (oL1) is automatically reduced when running below the motor rated speed.
5	Permanent Magnet motor with constant torque	Selects protection characteristics for a constant torque PM motor. The motor overload detection level (oL1) is constant over the whole speed range.
6	Standard fan-cooled motor (50 Hz)	Selects protection characteristics for a standard self-cooled motor with limited cooling capabilities when running below the rated speed. The motor overload detection level (oL1) is automatically reduced when running below the motor rated speed.

When connecting the drive to more than one motor for simultaneous operation, disable the electronic overload protection (L1-01 = 0) and wire each motor with its own motor thermal overload relay.

Enable motor overload protection (L1-01 = 1 to 6) when connecting the drive to a single motor, unless another motor overload preventing device is installed. The drive electronic thermal overload function causes an oL1 fault, which shuts off the output of the drive and prevents additional overheating of the motor. The motor temperature is continually calculated while the drive is powered up.

■ L1-02: Motor Overload Protection Time

Setting Range: 0.1 to 5.0 min Factory Default: 1.0 min

Parameter L1-02 determines how long the motor is allowed to operate before the oL1 fault occurs when the drive is running a hot motor at 60 Hz and at 150% of the full load amp rating (E2-01) of the motor. Adjusting the value of L1-02 can shift the set of oL1 curves up the y axis of the diagram below, but will not change the shape of the curves.

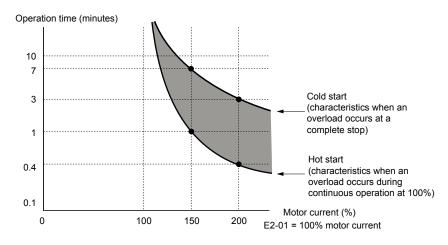
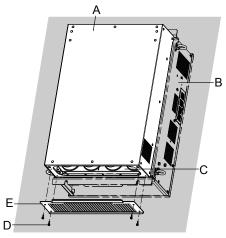


Figure D.9 Motor Overload Protection Time

Precautionary Notes on External Heatsink (IP00/Open Type Enclosure)

When using an external heatsink, UL compliance requires covering exposed capacitors in the main circuit to prevent injury to surrounding personnel.

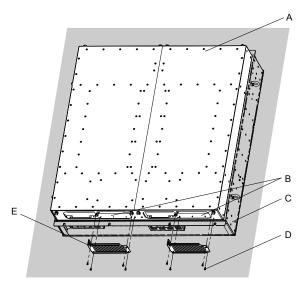
The portion of the external heatsink that projects out can be protected with the enclosure or with the appropriate capacitor cover after completing drive installation. Use *Table D.15* to match drive models with available capacitor covers. Order capacitor covers from a Yaskawa representative or directly from the Yaskawa sales department.


Table D.15 Capacitor Cover

Drive Model	Code Number	Figure
2A0110	100-061-273	
2A0138	100-061-274	
2A0169	100-061-275	
2A0211	100-001-273	
2A0250	100-061-277	
2A0312	100-001-277	
2A0360	100-061-278	
2A0415	100-001-278	
4A0058	100-061-273	
4A0072	100-061-274	
4A0088	100-061-276	Figure D.10
4A0103	100-001-270	
4A0139	100-061-275	
4A0165	100-001-273	
4A0208	100-061-277	
4A0250		
4A0296	100-061-278	
4A0362		
4A0414	100-061-279	
4A0515	100-061-280	
4A0675	100-001-280	
4A0930	100 0(1 201 <1>	Figure D 11
4A1200	100-061-281 < <i>I</i> >	Figure D.11

Drive Model	Code Number	Figure	
5A0041	100-061-274		
5A0052	100-001-274	Figure D.10	
5A0062			
5A0077	100-061-275		
5A0099			
5A0125	100-061-277		
5A0145	100-001-277		
5A0192	100-061-278		
5A0242	100-001-278		

<1> Requires two sets.


Note: Model 4A1200 is UL compliant when the air entering the drive-installed panel or cabinet is 45 °C or cooler. For more information, contact your nearest Yaskawa representative or our sales office.

- A Drive (outside panel)
- B Drive (inside panel)
- C Opening to capacitors

- D Installation screws
- E Capacitor cover

Figure D.10 Capacitor Cover

- A Drive (outside panel)
- B Opening to capacitors
- C Drive (inside panel)

- D Installation screws
- E Capacitor cover

Figure D.11 Capacitor Cover (Models 4A0930, 4A1200)

D.4 Safe Disable Input Function

Specifications

Inputs/Outputs		Two Safe Disable inputs and one EDM output according to ISO/EN 13849-1 Cat. 3 PLd, IEC/EN 61508 SIL2.
Operati	on Time	Time from input open to drive output stop is less than 1 ms.
	Demand Rate Low	$PFD = 5.15E^{-5}$
Failure Probability	Demand Rate High/ Continuous	$PFH = 1.2E^{-9}$
Performance Level		The Safe Disable inputs satisfy all requirements of Performance Level (PL) d according to ISO/EN 13849-1 (DC from EDM considered). <1>

<1> Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Precautions

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

DANGER! Sudden Movement Hazard. Improper use of the Safe Disable function can result in serious injury or even death. Make sure the whole system or machinery in which the Safe Disable function is used complies with safety requirements. When implementing the Safe Disable function into the safety system of a machine, perform a thorough risk assessment for the entire system to assure compliance with relevant safety norms.

DANGER! Sudden Movement Hazard. When using a PM motor, even if the drive output is shut off by the Safe Disable function, a breakdown of two output transistors can cause current to flow through the motor winding, resulting in a rotor movement for a maximum angle of 180 degrees (electrically). Make sure such a situation would have no effect on the safety of the application when using the Safe Disable function.

DANGER! Sudden Movement Hazard. The Safe Disable function can switch off the drive output, but does not cut the drive power supply and cannot electrically isolate the drive output from the input. Always shut off the drive power supply when performing maintenance or installations on the drive input side as well as the drive output side.

WARNING! Sudden Movement Hazard. When using the Safe Disable inputs, make sure to remove the wire links between terminals H1, H2, and HC that were installed prior to shipment. Failing to do so will keep the Safe Disable circuit from operating properly and can cause injury or even death.

NOTICE: All safety features (including Safe Disable) should be inspected daily and periodically. If the system is not operating normally, there is a risk of serious personal injury.

NOTICE: Only a qualified technician with a thorough understanding of the drive, the instruction manual, and safety standards should be permitted to wire, inspect, and maintain the Safe Disable input.

NOTICE: From the moment terminal inputs H1 and H2 have opened, it takes up to 1 ms for drive output to shut off completely. The sequence set up to trigger terminals H1 and H2 should make sure that both terminals remain open for at least 1 ms in order to properly interrupt drive output.

NOTICE: The Safe Disable Monitor (output terminals DM+ and DM-) should not be used for any other purpose than to monitor the Safe Disable status or to discover a malfunction in the Safe Disable inputs. The monitor output is not considered a safe output.

NOTICE: When utilizing the Safe Disable function, an EMC filter must be used. Use only the EMC filters recommended in the drive Technical Manual.

◆ Using the Safe Disable Function

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

The Safe Disable inputs provide a stop function in compliance with "Safe Torque Off" as defined in the IEC/EN 61800-5-2. Safe Disable inputs have been designed to meet the requirements of the ISO/EN 13849-1, Category 3 PLd, and IEC/EN 61508, SIL2.

A Safe Disable Status Monitor for error detection in the safety circuit is also provided.

■ Safe Disable Circuit

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

The Safe Disable circuit consists of two independent input channels that can block the output transistors and provide a monitoring channel to indicate the status of those input channels.

The input can use the internal power supply of the drive or an external power supply and it will support Sink mode or Source mode. the mode selected for the digital input terminals S1 to S8 by switch S3 will also be used for the Safe Disable inputs. **Refer to Sinking/Sourcing Mode for Digital Inputs on page 170** for more information.

The Safe Disable Monitor uses a single channel photocoupler output. *Refer to Output Terminals on page 165* for signal specifications when using this output.

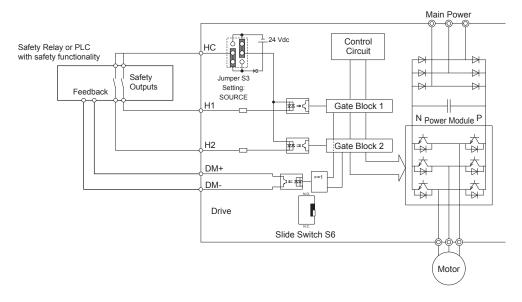


Figure D.12 Safe Disable Function Wiring Example (SINK Mode)

■ Disabling and Enabling the Drive Output ("Safe Torque Off")

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Figure D.13 illustrates the Safe Disable input operation.

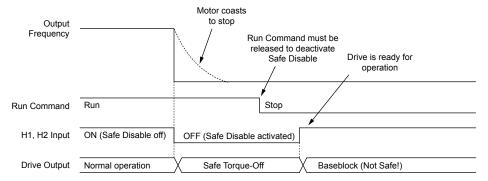


Figure D.13 Safe Disable Operation

Entering the "Safe Torque Off" State

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Whenever either one Safe Disable input or both inputs open, the motor torque is shut off by switching off the drive output. If the motor was running before the Safe Disable inputs opened, then the motor will coast to stop, regardless of the stopping method set in parameter b1-03.

Notice that the "Safe Torque Off" state can only be achieved using the Safe Disable function. Removing the Run command stops the drive and shuts the output off (baseblock), but does not create a "Safe Torque Off" status.

Note: To avoid an uncontrolled stop during normal operation, make sure that the Safe Disable inputs are opened first when the motor has completely stopped.

Returning to Normal Operation after Safe Disable

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

The Safe Disable function can only be deactivated when a Run command is not active.

If Safe Disable was activated during stop, turn on both Safe Disable inputs by deactivating "Safe Torque Off" to resume normal operation.

If Safe Disable was activated during run, remove the Run command then turn on the Safe Disable inputs before restarting the drive.

■ Safe Disable Monitor Output Function and Digital Operator Display

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Table D.16 explains the drive output and Safe Disable monitor state depending on the Safe Disable inputs.

Table D.16 Safety Input and EDM Terminal Status

Safe Disable	Input Status		Safe Disable Status Monitor, DM+ DM-		Digital Operator
Input 1, H1-HC	Input 2, H2-HC	S6 Switch = "N.C."	S6 Switch = "N.O."	·	Display
OFF	OFF	OFF	ON	Safely disabled, "Safe Torque Off"	Hbb (flashes)
ON	OFF	ON	OFF	Safely disabled, "Safe Torque Off"	HbbF (flashes)
OFF	ON	ON	OFF	Safely disabled, "Safe Torque Off"	HbbF (flashes)
ON	ON	ON	OFF	Baseblock, ready for operation	Normal display

Safe Disable Status Monitor

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

Slide Switch S6 controls the polarity of this signal. Refer to *Table D.16* for functionality.

With the Safe Disable monitor output (terminals DM+ and DM-), the drive provides a safety status feedback signal. This signal should be read by the device that controls the Safe Disable inputs (PLC or a safety relay) in order to prohibit leaving the "Safe Torque Off" status in case the safety circuit malfunctions. Refer to the instruction manual of the safety device for details on this function.

Digital Operator Display

Note: Terminals H1, H2, DM+, and DM- on 600 V class models are designed to the functionality, but are not certified to IEC/EN 61800-5-1, ISO/EN 13849 Cat. 3, IEC/EN 61508 SIL2, Insulation coordination: class 1.

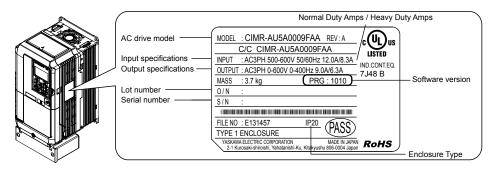
When both Safe Disable inputs are open, "Hbb" will flash in the digital operator display.

If one Safe Disable channel is on while the other is off, "HbbF" will flash in the display to indicate that there is a problem in the safety circuit or in the drive. This display should not appear under normal conditions if the Safe Disable circuit is utilized properly. *Refer to Alarm Codes, Causes, and Possible Solutions on page 443* to resolve possible errors.

D.4 Safe Disable Input Function

This Page Intentionally Blank

Appendix: E


Quick Reference Sheet

This section provides tables to keep record of the drive specifications, motor specifications, and drive settings. Fill in the table data after commissioning the application and have them ready when contacting Yaskawa for technical assistance.

E.1	DRIVE AND MOTOR SPECIFICATIONS	784
E.2	BASIC PARAMETER SETTINGS	786
E.3	USER SETTING TABLE	788

E.1 Drive and Motor Specifications

Drive Specifications

Items	Description
Model	CIMR-A
Serial Number	
Software Version (PRG)	
Options used	
Date of Usage	

Motor Specifications

■ Induction Motor

Items	Description		Items	Description	
Manufacturer			Motor Rated Current (T1-04)		A
Model			Motor Base Frequency (T1-05)		Hz
Motor Rated Power (T1-02)		HP	Number of Motor Poles (T1-06)		
Motor Rated Voltage (T1-03)		V	Motor Base Speed (T1-07)		r/min

Note: These values must be entered as part of the Auto-Tuning process.

■ Permanent Magnet Motor

Items	Description		Items	Description	
Manufacturer			Induction Voltage Constant		mVs/rad
Model			Induction Voltage Constant		mV/(r/min)
PM Motor Rated Power (T2-04)		kW	PM Motor Rated Current (T2-06)		A
PM Motor Rated Voltage (T2-05)		V	PM Motor Base Frequency (T2-07)		Hz
q-Axis Inductance		mH	Number of PM Motor Poles (T2-08)		

x-Axis Inductance			PM Motor Base Speed (T2-09)		r/min
----------------------	--	--	-----------------------------------	--	-------

Note: These values must be entered as part of the Auto-Tuning process.

■ Motor Speed Encoder (if used)

Items	Description	Items	Description
Manufacturer		Resolution	
Interface			

E.2 Basic Parameter Settings

Use the following tables to keep records of important parameters. Have this data available when contacting Yaskawa technical support.

◆ Basic Setup

Item	Setting Value	Memo
Control Mode	A1-02 =	
Normal/Heavy Duty Selection	C6-01 =	
Frequency Reference Source	b1-01 =	
Run Command Source	b1-02 =	

♦ V/f Pattern Setup

Item	Setting Value	Memo
V/f Pattern Selection	E1-03 =	
Max. Output Frequency	E1-04 =	
Max. Voltage	E1-05 =	
Base Frequency	E1-06 =	
Mid. Output Frequency	E1-07 =	
Mid. Output Frequency Volt.	E1-08 =	
Min. Output Frequency	E1-09 =	
Min. Output Frequency Volt.	E1-10 =	

◆ Motor Setup

Motor Type	Item	Setting Value	Memo
	Motor Rated Current	E2-01 =	
	Motor Rated Slip	E2-02 =	
	Motor No-Load Current	E2-03 =	
Induction	No. of Motor Poles	E2-04 =	
	Line-to-Line Resistance	E2-05 =	
	Motor Leakage Inductance	E2-06 =	
	Motor Code Selection	E5-01 =	
	Motor Rated Power	E5-02 =	
	Motor Rated Current	E5-03 =	
	No. of Motor Poles	E5-04 =	
Permanent	Motor Stator Resistance	E5-05 =	
Magnet	Motor d-Axis Inductance	E5-06 =	
	Motor q-Axis Inductance	E5-07 =	
	Induction Volt. Const. 1	E5-09 =	
	Encoder Z-pulse Offset	E5-11 =	
	Induction Volt. Const. 2	E5-24 =	

◆ Multi-Function Digital Inputs

Terminal	Input Used	Setting Value and Function Name	Memo
S1		H1-01 =	
S2		H1-02 =	
S3		H1-03 =	
S4		H1-04 =	
S5		H1-05 =	
S6		H1-06 =	
S7		H1-07 =	
S8		H1-08 =	

◆ Pulse Train Input/Analog Inputs

Terminal	Input Used	Setting Value and Function Name	Memo
RP		H6-01 =	
A1		H3-02 =	
A2		H3-10 =	
A3		H3-06 =	

◆ Multi-Function Digital Outputs

Terminal	Output Used	Setting Value and Function Name	Memo
M1-M2		H2-01 =	
M3-M4		H2-02 =	
M5-M6		H2-03 =	

♦ Monitor Outputs

Terminal	Output Used	Setting Value and Function Name	Memo
FM		H4-01 =	
AM		H4-04 =	
MP		H6-06 =	

E.3 User Setting Table

Use the Verify Menu to determine which parameters have been changed from their original default settings

below the parameter number indicates that the parameter setting can be changed during run.

Parameter names in **bold face type** are included in the Setup Group of parameters, which can be set by A1-06 = 0.

A1-00 A1-01 Access Level Selection A1-02 Control Method Selection A1-03 Initialize Parameters A1-04 Password A1-05 Password Setting A1-06 Application Preset A1-07 DriveWorksEZ Function Selection A2-01 to A2-02 to A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection vhile in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command at Power Up Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Start Frequency b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Start b2-04 DC Injection Brake Time at Stop b2-18 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search b3-05 Speed Search Delay Time	No.	Name	User Setting
Access Level Selection Al-02 Control Method Selection Al-03 Initialize Parameters Al-04 Password Al-05 Password Setting Al-06 Application Preset Al-07 DriveWorksEZ Function Selection A2-01 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-18 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command Selection 2 b1-18 Run Command Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Start Frequency b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Start b2-05 Short Circuit Brake Time at Start b2-11 Short Circuit Brake Time at Start b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Start b3-01 Speed Search Deceleration Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search		Language Selection	
A1-03 Initialize Parameters A1-04 Password A1-05 Password Setting A1-06 Application Preset A1-07 DriveWorksEZ Function Selection A2-01 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 I Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Start b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Start b3-01 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search		Access Level Selection	
A1-04 Password A1-05 Password Setting A1-06 Application Preset A1-07 DriveWorksEZ Function Selection A2-01 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command Selection 2 b1-18 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Start b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Start b3-01 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	A1-02	Control Method Selection	
A1-05 Password Setting A1-06 Application Preset A1-07 DriveWorksEZ Function Selection A2-01 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command Selection 2 b1-18 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Start b3-01 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	A1-03	Initialize Parameters	
Al-06 Application Preset Al-07 DriveWorksEZ Function Selection A2-01 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection bl-01 Frequency Reference Selection 1 bl-02 Run Command Selection bl-04 Reverse Operation Selection bl-05 Action Selection below Minimum Output Frequency bl-06 Digital Input Reading bl-07 LOCAL/REMOTE Run Selection bl-08 Run Command Selection while in Programming Mode bl-14 Phase Order Selection bl-15 Frequency Reference Selection 2 bl-16 Run Command Selection 2 bl-17 Run Command A Power Up bl-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	A1-04	Password	
A1-07 DriveWorksEZ Function Selection A2-01 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection 1 b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Time at Start b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Deactivation Current b3-02 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	A1-05	Password Setting	
A2-31 to A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Time at Start b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Deactivation Current b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	A1-06	Application Preset	
A2-32 User Parameters, 1 to 32 A2-33 User Parameter Automatic Selection b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection 1 b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Start b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Deactivation Current b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	A1-07	DriveWorksEZ Function Selection	
b1-01 Frequency Reference Selection 1 b1-02 Run Command Selection b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search		User Parameters, 1 to 32	
b1-02 Run Command Selection b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time	A2-33	User Parameter Automatic Selection	
b1-03 Stopping Method Selection b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command Selection 2 b1-19 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-01	Frequency Reference Selection 1	
b1-04 Reverse Operation Selection b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 > Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Selection at Start b3-02 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-02	Run Command Selection 1	
b1-05 Action Selection below Minimum Output Frequency b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 >>> Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time	b1-03	Stopping Method Selection	
b1-06 Digital Input Reading b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 > Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Stort b3-01 Speed Search Selection at Start b3-02 Speed Search Deceleration Time b3-03 Speed Search Deceleration Time	b1-04	Reverse Operation Selection	
b1-07 LOCAL/REMOTE Run Selection b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 > Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Stop b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Brake Time at Start b3-01 Speed Search Selection at Start b3-02 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-05	Action Selection below Minimum Output Frequency	
b1-08 Run Command Selection while in Programming Mode b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-06	Digital Input Reading	
b1-14 Phase Order Selection b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 > Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-07	LOCAL/REMOTE Run Selection	
b1-15 Frequency Reference Selection 2 b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21	b1-08	Run Command Selection while in Programming Mode	
b1-16 Run Command Selection 2 b1-17 Run Command at Power Up b1-21 > Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-14	Phase Order Selection	
b1-17 Run Command at Power Up b1-21 <1> Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-15	Frequency Reference Selection 2	
b1-21 b1-21 Start Condition Selection at Closed Loop Vector Control b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-16	Run Command Selection 2	
b2-01 DC Injection Braking Start Frequency b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-17	Run Command at Power Up	
b2-02 DC Injection Braking Current b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b1-21 <1>	Start Condition Selection at Closed Loop Vector Control	
b2-03 DC Injection Braking Time at Start b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-01	DC Injection Braking Start Frequency	
b2-04 DC Injection Braking Time at Stop b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-02	DC Injection Braking Current	
b2-08 Magnetic Flux Compensation Value b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-03	DC Injection Braking Time at Start	
b2-12 Short Circuit Brake Time at Start b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-04	DC Injection Braking Time at Stop	
b2-13 Short Circuit Brake Time at Stop b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-08	Magnetic Flux Compensation Value	
b2-18 Short Circuit Braking Current b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-12	Short Circuit Brake Time at Start	
b3-01 Speed Search Selection at Start b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-13	Short Circuit Brake Time at Stop	
b3-02 Speed Search Deactivation Current b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b2-18	Short Circuit Braking Current	
b3-03 Speed Search Deceleration Time b3-04 V/f Gain during Speed Search	b3-01	Speed Search Selection at Start	
b3-04 V/f Gain during Speed Search	b3-02	Speed Search Deactivation Current	
	b3-03	Speed Search Deceleration Time	
b3-05 Speed Search Delay Time	b3-04	V/f Gain during Speed Search	
	b3-05	Speed Search Delay Time	

	,	
No.	Name	User Setting
b3-06	Output Current 1 during Speed Search	
b3-07	Output Current 2 during Speed Search (Speed Estimation Type)	
b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	
b3-10	Speed Search Detection Compensation Gain	
b3-12	Minimum Current Detection Level during Speed Search	
b3-14	Bi-Directional Speed Search Selection	
b3-17	Speed Search Restart Current Level	
b3-18	Speed Search Restart Detection Time	
b3-19	Number of Speed Search Restarts	
b3-24	Speed Search Method Selection	
b3-25	Speed Search Wait Time	
b3-26	Direction Determining Level	
b3-27	Start Speed Search Select	
b3-29 <1>	Speed Search Induced Voltage Level	
b3-33	Speed Search Selection when Run Command is Given during Uv	
b4-01	Timer Function On-Delay Time	
b4-02	Timer Function Off-Delay Time	
b4-03 <1>	H2-01 ON Delay Time	
b4-04 <1>	H2-01 OFF Delay Time	
b4-05 <1>	H2-02 ON Delay Time	
b4-06 <1>	H2-03 OFF Delay Time	
b4-07 <1>	H2-03 ON Delay Time	
b4-08 <1>	H2-03 OFF Delay Time	
b5-01	PID Function Setting	
b5-02 •◆RUN	Proportional Gain Setting (P)	
b5-03 •◆RUN	Integral Time Setting (I)	
b5-04 ◆ RUN	Integral Limit Setting	
b5-05 ◆RUN	Derivative Time (D)	
b5-06 ◆ RUN	PID Output Limit	
b5-07 ◆ RUN	PID Offset Adjustment	

No.	Name	User Setting
b5-08 ♣ RUN	PID Primary Delay Time Constant	
b5-09	PID Output Level Selection	
b5-10 <2>	PID Output Gain Setting	
b5-11	PID Output Reverse Selection	
b5-12	PID Feedback Loss Detection Selection	
b5-13	PID Feedback Loss Detection Level	
b5-14	PID Feedback Loss Detection Time	
b5-15	PID Sleep Function Start Level	
b5-16	PID Sleep Delay Time	
b5-17	PID Accel/Decel Time	
b5-18	PID Setpoint Selection	
b5-19 <2>	PID Setpoint Value	
b5-20	PID Setpoint Scaling	
b5-34 •◆RUN	PID Output Lower Limit	
b5-35 ◆ RUN	PID Input Limit	
b5-36	PID Feedback High Detection Level	
b5-37	PID Feedback High Detection Time	
b5-38	PID Setpoint User Display	
b5-39	PID Setpoint Display Digits	
b5-40	Frequency Reference Monitor Content during PID	
b5-47	PID Output Reverse Selection 2	
b6-01	Dwell Reference at Start	
b6-02	Dwell Time at Start	
b6-03	Dwell Reference at Stop	
b6-04	Dwell Time at Stop	
b7-01 ◆ RUN	Droop Control Gain	
b7-02 •◆RUN	Droop Control Delay Time	
b7-03	Droop Control Limit Selection	
b8-01	Energy Saving Control Selection	
b8-02 •◆RUN	Energy Saving Gain	
b8-03 ◆ RUN	Energy Saving Control Filter Time Constant	
b8-04	Energy Saving Coefficient Value	
b8-05	Power Detection Filter Time	
b8-06	Search Operation Voltage Limit	
b8-16	Energy Saving Parameter (Ki) for PM Motors	
b8-17	Energy Saving Parameter (Kt) for PM Motors	

No.	Name	User Setting
b9-01	Zero Servo Gain	
b9-02	Zero Servo Completion Width	
C1-01 •◆RUN	Acceleration Time 1	
C1-02	Deceleration Time 1	
C1-03 ◆ RUN	Acceleration Time 2	
C1-04 ◆ RUN	Deceleration Time 2	
C1-05 ⊕RUN	Acceleration Time 3 (Motor 2 Accel Time 1)	
C1-06 ◆ RUN	Deceleration Time 3 (Motor 2 Decel Time 1)	
C1-07 ◆ RUN	Acceleration Time 4 (Motor 2 Accel Time 2)	
C1-08 •◆RUN	Deceleration Time 4 (Motor 2 Decel Time 2)	
C1-09 <2>	Fast-Stop Time	
C1-10	Accel/Decel Time Setting Units	
C1-11	Accel/Decel Time Switching Frequency	
C2-01	S-Curve Characteristic at Accel Start	
C2-02	S-Curve Characteristic at Accel End	
C2-03	S-Curve Characteristic at Decel Start	
C2-04	S-Curve Characteristic at Decel End	
C3-01 •◆RUN	Slip Compensation Gain	
C3-02 ◆ RUN	Slip Compensation Primary Delay Time	
C3-03	Slip Compensation Limit	
C3-04	Slip Compensation Selection during Regeneration	
C3-05	Output Voltage Limit Operation Selection	
C3-21 •◆RUN	Motor 2 Slip Compensation Gain	
C3-22 ◆RUN	Motor 2 Slip Compensation Primary Delay Time	
C3-23	Motor 2 Slip Compensation Limit	
C3-24	Motor 2 Slip Compensation Selection during Regeneration	
C4-01 •⊕RUN	Torque Compensation Gain	
C4-02 •◆RUN	Torque Compensation Primary Delay Time	
C4-03	Torque Compensation at Forward Start	
C4-04	Torque Compensation at Reverse Start	
C4-05	Torque Compensation Time Constant	

No.	Name	User
		Setting
C4-06 C4-07	Torque Compensation Primary Delay Time 2	
◆ RUN	Motor 2 Torque Compensation Gain	
C5-01 ⊕ RUN	ASR Proportional Gain 1	
C5-02 ◆ RUN	ASR Integral Time 1	
C5-03 ♣ RUN	ASR Proportional Gain 2	
C5-04 [*] ◆RUN	ASR Integral Time 2	
C5-05	ASR Limit	
C5-06	ASR Primary Delay Time Constant	
C5-07	ASR Gain Switching Frequency	
C5-08	ASR Integral Limit	
C5-12	Integral Operation during Accel/Decel	
C5-17	Motor Inertia	
C5-18	Load Inertia Ratio	
C5-21 •⊕RUN	Motor 2 ASR Proportional Gain 1	
C5-22 ◆RUN	Motor 2 ASR Integral Time 1	
C5-23 •◆RUN	Motor 2 ASR Proportional Gain 2	
C5-24 ◆ RUN	Motor 2 ASR Integral Time 2	
C5-25	Motor 2 ASR Limit	
C5-26	Motor 2 ASR Primary Delay Time Constant	
C5-27	Motor 2 ASR Gain Switching Frequency	
C5-28	Motor 2 ASR Integral Limit	
C5-32	Integral Operation during Accel/Decel for Motor 2	
C5-37	Motor 2 Inertia	
C5-38	Motor 2 Load Inertia Ratio	
C5-39 <1>	ASR Primary Delay Time Constant 2	
C6-01	Drive Duty Selection	
C6-02	Carrier Frequency Selection	
C6-03	Carrier Frequency Upper Limit	
C6-04	Carrier Frequency Lower Limit	
C6-05	Carrier Frequency Proportional Gain	
C6-09 <1>	Carrier Frequency during Rotational Auto-Tuning	
d1-01 ◆RUN	Frequency Reference 1	
d1-02 ◆ RUN	Frequency Reference 2	
d1-03 ◆ RUN	Frequency Reference 3	

No.	Name	User Setting
d1-04 ◆ RUN	Frequency Reference 4	
d1-05 ◆RUN	Frequency Reference 5	
d1-06 ◆ RUN	Frequency Reference 6	
d1-07 •◆RUN	Frequency Reference 7	
d1-08 ◆RUN	Frequency Reference 8	
d1-09 ◆ RUN	Frequency Reference 9	
d1-10 ◆ RUN	Frequency Reference 10	
d1-11 ◆ RUN	Frequency Reference 11	
d1-12 ◆ RUN	Frequency Reference 12	
d1-13 ◆ RUN	Frequency Reference 13	
d1-14 •◆RUN	Frequency Reference 14	
d1-15 ◆ RUN	Frequency Reference 15	
d1-16 ◆ RUN	Frequency Reference 16	
d1-17 ◆RUN	Jog Frequency Reference	
d2-01	Frequency Reference Upper Limit	
d2-02	Frequency Reference Lower Limit	
d2-03	Master Speed Reference Lower Limit	
d3-01	Jump Frequency 1	
d3-02	Jump Frequency 2	
d3-03	Jump Frequency 3	
d3-04	Jump Frequency Width	
d4-01	Frequency Reference Hold Function Selection	
d4-03 ◆ RUN	Frequency Reference Bias Step (Up/Down 2)	
d4-04 ◆ RUN	Frequency Reference Bias Accel/Decel (Up/Down 2)	
d4-05 ◆RUN	Frequency Reference Bias Operation Mode Selection (Up/Down 2)	
d4-06	Frequency Reference Bias (Up/Down 2)	
d4-07	Analog Frequency Reference Fluctuation Limit (Up/Down 2)	
d4-08 ◆ RUN	Frequency Reference Bias Upper Limit (Up/Down 2)	

No.	Name	User Setting
d4-09 ◆ RUN	Frequency Reference Bias Lower Limit (Up/Down 2)	
d4-10	Up/Down Frequency Reference Limit Selection	
d5-01	Torque Control Selection	
d5-02	Torque Reference Delay Time	
d5-03	Speed Limit Selection	
d5-04	Speed Limit	
d5-05	Speed Limit Bias	
d5-06	Speed/Torque Control Switchover Time	
d5-08	Unidirectional Speed Limit Bias	
d6-01	Field Weakening Level	
d6-02	Field Weakening Frequency Limit	
d6-03	Field Forcing Selection	
d6-06	Field Forcing Limit	
d7-01	Offset Frequency 1	
d7-02 ◆RUN	Offset Frequency 2	
d7-03	Offset Frequency 3	
E1-01	Input Voltage Setting	
E1-03	V/f Pattern Selection	
E1-04	Maximum Output Frequency	
E1-05	Maximum Voltage	
E1-06	Base Frequency	
E1-07	Middle Output Frequency	
E1-08	Middle Output Frequency Voltage	
E1-09	Minimum Output Frequency	
E1-10	Minimum Output Frequency Voltage	
E1-11	Middle Output Frequency 2	
E1-12	Middle Output Frequency Voltage 2	
E1-13	Base Voltage	
E2-01	Motor Rated Current	
E2-02	Motor Rated Slip	
E2-03	Motor No-Load Current	
E2-04	Number of Motor Poles	
E2-05	Motor Line-to-Line Resistance	
E2-06	Motor Leakage Inductance	
E2-07	Motor Iron-Core Saturation Coefficient 1	
E2-08	Motor Iron-Core Saturation Coefficient 2	
E2-09	Motor Mechanical Loss	
E2-10	Motor Iron Loss for Torque Compensation	
E2-11	Motor Rated Power	
E3-01	Motor 2 Control Mode Selection	
E3-04	Motor 2 Maximum Output Frequency	
E3-01		

No.	Name	User Setting
E3-05	Motor 2 Maximum Voltage	
E3-06	Motor 2 Base Frequency	
E3-07	Motor 2 Mid Output Frequency	
E3-08	Motor 2 Mid Output Frequency Voltage	
E3-09	Motor 2 Minimum Output Frequency	
E3-10	Motor 2 Minimum Output Frequency Voltage	
E3-11	Motor 2 Mid Output Frequency 2	
E3-12	Motor 2 Mid Output Frequency Voltage 2	
E3-13	Motor 2 Base Voltage	
E4-01	Motor 2 Rated Current	
E4-02	Motor 2 Rated Slip	
E4-03	Motor 2 Rated No-Load Current	
E4-04	Motor 2 Motor Poles	
E4-05	Motor 2 Line-to-Line Resistance	
E4-06	Motor 2 Leakage Inductance	
E4-07	Motor 2 Motor Iron-Core Saturation Coefficient 1	
E4-08	Motor 2 Motor Iron-Core Saturation Coefficient 2	
E4-09	Motor 2 Mechanical Loss	
E4-10	Motor 2 Iron Loss	
E4-11	Motor 2 Rated Power	
E5-01	Motor Code Selection (for PM Motors)	
E5-02	Motor Rated Power (for PM Motors)	
E5-03	Motor Rated Current (for PM Motors)	
E5-04	Number of Motor Poles (for PM Motors)	
E5-05	Motor Stator Resistance (for PM Motors)	
E5-06	Motor d-Axis Inductance (for PM Motors)	
E5-07	Motor q-Axis Inductance (for PM Motors)	
E5-09	Motor Induction Voltage Constant 1 (for PM Motors)	
E5-11	Encoder Z-pulse Offset (for PM Motors)	
E5-24	Motor Induction Voltage Constant 2 (for PM Motors)	
E5-25	Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors)	
F1-01	PG 1 Pulses Per Revolution	
F1-02	Operation Selection at PG Open Circuit (PGo)	
F1-03	Operation Selection at Overspeed (oS)	
F1-04	Operation Selection at Deviation	
F1-05	PG 1 Rotation Selection	
F1-06	PG 1 Division Rate for PG Pulse Monitor	
F1-08	Overspeed Detection Level	
F1-09	Overspeed Detection Delay Time	
F1-10	Excessive Speed Deviation Detection Level	
F1-11	Excessive Speed Deviation Detection Delay Time	
F1-12	PG 1 Gear Teeth 1	
F1-13	PG 1 Gear Teeth 2	

No.	Name	User Setting
F1-14	PG Open-Circuit Detection Time	
F1-18	dv3 Detection Selection	
F1-19	dv4 Detection Selection	
F1-20	PG Option Card Disconnect Detection 1	
F1-21	PG 1 Signal Selection	
F1-30	PG Option Card Port for Motor 2 Selection	
F1-31	PG 2 Pulses Per Revolution	
F1-32	PG 2 Rotation Selection	
F1-33	PG 2 Gear Teeth 1	
F1-34	PG 2 Gear Teeth 2	
F1-35	PG 2 Division Rate for PG Pulse Monitor	
F1-36	PG Option Card Disconnect Detection 2	
F1-37	PG2 Signal Selection	
F1-50 <1>	Encoder Selection	
F1-51 <1>	PGoH Detection Level	
F1-52 <1>	Communication Speed of Serial Encoder Selection	
F2-01	Analog Input Option Card Operation Selection	
F2-02	Analog Input Option Card Gain	
F2-03 •◆RUN	Analog Input Option Card Bias	
F3-01	Digital Input Option Card Input Selection	
F3-03	Digital Input Option DI-A3 Data Length Selection	
F4-01	Terminal V1 Monitor Selection	
F4-02 ◆ RUN	Terminal V1 Monitor Gain	
F4-03	Terminal V2 Monitor Selection	
F4-04 *◆RUN	Terminal V2 Monitor Gain	
F4-05 ◆ RUN	Terminal V1 Monitor Bias	
F4-06 ◆RUN	Terminal V2 Monitor Bias	
F4-07	Terminal V1 Signal Level	
F4-08	Terminal V2 Signal Level	
F5-01	Terminal M1-M2 Output Selection	
F5-02	Terminal M3-M4 Output Selection	
F5-03	Terminal P1-PC Output Selection	
F5-04	Terminal P2-PC Output Selection	
F5-05	Terminal P3-PC Output Selection	
F5-06	Terminal P4-PC Output Selection	
F5-07	Terminal P5-PC Output Selection	
F5-08	Terminal P6-PC Output Selection	
F5-09	DO-A3 Output Mode Selection	
1 3-07		

No.	Name	User Setting
F6-02	External Fault from Comm. Option Detection Selection	
F6-03	External Fault from Comm. Option Operation Selection	
F6-04	bUS Error Detection Time	
F6-06	Torque Reference/Torque Limit Selection from Comm. Option	
F6-07	Multi-Step Speed Enable/Disable Selection when NefRef/ComRef is Selected	
F6-08	Reset Communication Parameters	
F6-10	CC-Link Node Address	
F6-11	CC-Link Communications Speed	
F6-14	CC-Link bUS Error Auto Reset	
F6-20	MECHATROLINK Station Address	
F6-21	MECHATROLINK Frame Size	
F6-22	MECHATROLINK Link Speed	
F6-23	MECHATROLINK Monitor Selection (E)	
F6-24	MECHATROLINK Monitor Selection (F)	
F6-25	Operation Selection at MECHATROLINK Watchdog Timer Error (E5)	
F6-26	MECHATROLINK bUS Errors Detected	
F6-30	PROFIBUS-DP Node Address	
F6-31	PROFIBUS-DP Clear Mode Selection	
F6-32	PROFIBUS-DP Data Format Selection	
F6-35	CANopen Node ID Selection	
F6-36	CANopen Communication Speed	
F6-45	BACnet Node Address	
F6-46	BACnet Baud Rate	
F6-47	Rx to Tx Wait Time	
F6-48	BACnet Device Object Identifier 0	
F6-49	BACnet Device Object Identifier 1	
F6-50	DeviceNet MAC Address	
F6-51	DeviceNet Communication Speed	
F6-52	DeviceNet PCA Setting	
F6-53	DeviceNet PPA Setting	
F6-54	DeviceNet Idle Mode Fault Detection	
F6-55	DeviceNet Baud Rate Monitor	
F6-56	DeviceNet Speed Scaling	
F6-57	DeviceNet Current Scaling	
F6-58	DeviceNet Torque Scaling	
F6-59	DeviceNet Power Scaling	
F6-60	DeviceNet Voltage Scaling	
F6-61	DeviceNet Time Scaling	
F6-62	DeviceNet Heartbeat Interval	
F6-63	DeviceNet Network MAC ID	
F6-64 to F6-71	Reserved	

No.	Name	User Setting
F7-01	IP Address 1	
F7-02	IP Address 2	
F7-03	IP Address 3	
F7-04	IP Address 4	
F7-05	Subnet Mask 1	
F7-06	Subnet Mask 2	
F7-07	Subnet Mask 3	
F7-08	Subnet Mask 4	
F7-09	Gateway Address 1	
F7-10	Gateway Address 2	
F7-11	Gateway Address 3	
F7-12	Gateway Address 4	
F7-13	Address Mode at Startup	
F7-14	Duplex Mode Selection	
F7-15	Communication Speed Selection	
F7-16	Communication Loss Timeout	
F7-17	EtherNet/IP Speed Scaling Factor	
F7-18	EtherNet/IP Current Scaling Factor	
F7-19	EtherNet/IP Torque Scaling Factor	
F7-20	EtherNet/IP Power Scaling Factor	
F7-21	EtherNet/IP Voltage Scaling Factor	
F7-22	EtherNet/IP Time Scaling	
F7-23 to F7-32	Dynamic Output Assembly Parameters	
F7-33 to F7-42	Dynamic Input Assembly Parameters	
H1-01	Multi-Function Digital Input Terminal S1 Function Selection	
H1-02	Multi-Function Digital Input Terminal S2 Function Selection	
H1-03	Multi-Function Digital Input Terminal S3 Function Selection	
H1-04	Multi-Function Digital Input Terminal S4 Function Selection	
H1-05	Multi-Function Digital Input Terminal S5 Function Selection	
H1-06	Multi-Function Digital Input Terminal S6 Function Selection	
H1-07	Multi-Function Digital Input Terminal S7 Function Selection	
H1-08	Multi-Function Digital Input Terminal S8 Function Selection	
H2-01	Multi-Function Contact Output (terminal M1-M2)	
H2-02	Multi-Function Contact Output 2 (terminal M3-M4)	
H2-03	Multi-Function Contact Output 3 (terminal M5-M6)	
H2-06	Watt Hour Output Unit Selection	
H2-07 <1>	MEMOBUS Register 1 Address Select	
H2-08 <1>	MEMOBUS Register 1 Bit Select	

No.	Name	User Setting
H2-09 <1>	MEMOBUS Register 2 Address Select	
H2-10 <1>	MEMOBUS Register 2 Bit Select	
H3-01	Terminal A1 Signal Level Selection	
H3-02	Terminal A1 Function Selection	
H3-03	Terminal A1 Gain Setting	
H3-04 ◆ RUN	Terminal A1 Bias Setting	
H3-05	Terminal A3 Signal Level Selection	
H3-06	Terminal A3 Function Selection	
H3-07 ◆RUN	Terminal A3 Gain Setting	
H3-08 ⊕RUN	Terminal A3 Bias Setting	
H3-09	Terminal A2 Signal Level Selection	
H3-10	Terminal A2 Function Selection	
H3-11 [™]	Terminal A2 Gain Setting	
H3-12 •⊕RUN	Terminal A2 Bias Setting	
H3-13	Analog Input Filter Time Constant	
H3-14	Analog Input Terminal Enable Selection	
H4-01	Multi-Function Analog Output Terminal FM Monitor Selection	
H4-02 ◆ RUN	Multi-Function Analog Output Terminal FM Gain	
H4-03	Multi-Function Analog Output Terminal FM Bias	
H4-04	Multi-Function Analog Output Terminal AM Monitor Selection	
H4-05 ◆ RUN	Multi-Function Analog Output Terminal AM Gain	
H4-06	Multi-Function Analog Output Terminal AM Bias	
H4-07	Multi-Function Analog Output Terminal FM Signal Level Selection	
H4-08	Multi-Function Analog Output Terminal AM Signal Level Selection	
H5-01	Drive Node Address	
H5-02	Communication Speed Selection	
H5-03	Communication Parity Selection	
H5-04	Stopping Method After Communication Error (CE)	
H5-05	Communication Fault Detection Selection	
H5-06	Drive Transmit Wait Time	
H5-07	RTS Control Selection	
H5-09	CE Detection Time	
H5-10	Unit Selection for MEMOBUS/Modbus Register 0025H	

No.	Name	User Setting
H5-11	Communications ENTER Function Selection	-
H5-12	Run Command Method Selection	
H5-17 <1>	Operation Selection when Unable to Write into EEPROM	
H5-18 <1>	Filter Time Constant for Motor Speed Monitoring	
H6-01	Pulse Train Input Terminal RP Function Selection	
H6-02 ◆ RUN	Pulse Train Input Scaling	
H6-03 ◆RUN	Pulse Train Input Gain	
H6-04 ◆RUN	Pulse Train Input Bias	
H6-05 ◆RUN	Pulse Train Input Filter Time	
H6-06 ◆ RUN	Pulse Train Monitor Selection	
H6-07 ◆RUN	Pulse Train Monitor Scaling	
H6-08	Pulse Train Input Minimum Frequency	
L1-01	Motor Overload Protection Selection	
L1-02	Motor Overload Protection Time	
L1-03	Motor Overheat Alarm Operation Selection (PTC input)	
L1-04	Motor Overheat Fault Operation Selection (PTC input)	
L1-05	Motor Temperature Input Filter Time (PTC input)	
L1-08 <1>	oL1 Current Level	
L1-09 <1>	oL1 Current Level for Motor 2	
L1-13	Continuous Electrothermal Operation Selection	
L2-01	Momentary Power Loss Operation Selection	
L2-02	Momentary Power Loss Ride-Thru Time	
L2-03	Momentary Power Loss Minimum Baseblock Time	
L2-04	Momentary Power Loss Voltage Recovery Ramp Time	
L2-05	Undervoltage Detection Level (Uv1)	
L2-06	KEB Deceleration Time	
L2-07	KEB Acceleration Time	
L2-08	Frequency Gain at KEB Start	
L2-10	KEB Detection Time (Minimum KEB Time)	
L2-11	DC Bus Voltage Setpoint during KEB	
L2-29	KEB Method Selection	
L3-01	Stall Prevention Selection during Acceleration	
L3-02	Stall Prevention Level during Acceleration	
L3-03	Stall Prevention Limit during Acceleration	
L3-04	Stall Prevention Selection during Deceleration	
L3-05	Stall Prevention Selection during Run	
L3-06	Stall Prevention Level during Run	

No.	Name	User Setting
L3-11	Overvoltage Suppression Function Selection	
L3-17	Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention	
L3-20	DC Bus Voltage Adjustment Gain	
L3-21	Accel/Decel Rate Calculation Gain	
L3-22	Deceleration Time at Stall Prevention during Acceleration	
L3-23	Automatic Reduction Selection for Stall Prevention during Run	
L3-24	Motor Acceleration Time for Inertia Calculations	
L3-25	Load Inertia Ratio	
L3-26	Additional DC Bus Capacitors	
L3-27	Stall Prevention Detection Time	
L3-34 <1>	Torque Limit Delay Time	
L3-35 <1>	Speed Agree Width at Intelligent Stall Prevention during Deceleration	
L4-01	Speed Agree Detection Level	
L4-02	Speed Agree Detection Width	
L4-03	Speed Agree Detection Level (+/-)	
L4-04	Speed Agree Detection Width (+/-)	
L4-05	Frequency Reference Loss Detection Selection	
L4-06	Frequency Reference at Reference Loss	
L4-07	Speed Agree Detection Selection	
L5-01	Number of Auto Restart Attempts	
L5-02	Auto Restart Fault Output Operation Selection	
L5-04	Fault Reset Interval Time	
L5-05	Fault Reset Operation Selection	
L6-01	Torque Detection Selection 1	
L6-02	Torque Detection Level 1	
L6-03	Torque Detection Time 1	
L6-04	Torque Detection Selection 2	
L6-05	Torque Detection Level 2	
L6-06	Torque Detection Time 2	
L6-08	Mechanical Weakening Detection Operation	
L6-09	Mechanical Weakening Detection Speed Level	
L6-10	Mechanical Weakening Detection Time	
L6-11	Mechanical Weakening Detection Start Time	
L7-01	Forward Torque Limit	
L7-02	Reverse Torque Limit	
L7-03	Forward Regenerative Torque Limit	
L7-04	Reverse Regenerative Torque Limit	
L7-06	Torque Limit Integral Time Constant	
L7-07	Torque Limit Control Method Selection during Accel/ Decel	
L7-16	Torque Limit Process at Start	
L8-01 <1>	Internal Dynamic Braking Resistor Protection Selection (ERF type)	

No.	Name	User Setting
L8-02	Overheat Alarm Level	
L8-03	Overheat Pre-Alarm Operation Selection	
L8-05	Input Phase Loss Protection Selection	
L8-07	Output Phase Loss Protection	
L8-09	Output Ground Fault Detection Selection	
L8-10	Heatsink Cooling Fan Operation Selection	
L8-11	Heatsink Cooling Fan Off Delay Time	
L8-12	Ambient Temperature Setting	
L8-15	oL2 Characteristics Selection at Low Speeds	
L8-18	Software Current Limit Selection	
L8-19	Frequency Reduction Rate during Overheat Pre-Alarm	
L8-27	Overcurrent Detection Gain	
L8-29	Current Unbalance Detection (LF2)	
L8-32	Cooling Fan Failure Selection	
L8-35	Installation Method Selection	
L8-38	Carrier Frequency Reduction Selection	
L8-40	Carrier Frequency Reduction Off-Delay Time	
L8-41	High Current Alarm Selection	
L8-55 <1>	Internal Braking Transistor Protection	
L8-78	Power Unit Output Phase Loss Protection	
L8-93	LSo Detection Time at Low Speed	
L8-94	LSo Detection Level at Low Speed	
L8-95	Average LSo Frequency at Low Speed	
L9-03 <1>	Carrier Frequency Reduction Level Selection	
n1-01	Hunting Prevention Selection	
n1-02	Hunting Prevention Gain Setting	
n1-03	Hunting Prevention Time Constant	
n1-05	Hunting Prevention Gain while in Reverse	
n2-01	Speed Feedback Detection Control (AFR) Gain	
n2-02	Speed Feedback Detection Control (AFR) Time Constant 1	
n2-03	Speed Feedback Detection Control (AFR) Time Constant 2	
n3-01	High-Slip Braking Deceleration Frequency Width	
n3-02	High-Slip Braking Current Limit	
n3-03	High-Slip Braking Dwell Time at Stop	
n3-04	High-Slip Braking Overload Time	
n3-13	Overexcitation Deceleration Gain	
n3-14	High Frequency Injection during Overexcitation Deceleration	
n3-21	High-Slip Suppression Current Level	
n3-23	Overexcitation Operation Selection	
n5-01	Feed Forward Control Selection	
n5-02	Motor Acceleration Time	
n5-03	Feed Forward Control Gain	

No.	Name	User Setting
n6-01	Online Tuning Selection	
n6-05	Online Tuning Gain	
n8-01	Initial Rotor Position Estimation Current	
n8-02	Pole Attraction Current	
n8-11 <1>	Induction Voltage Estimation Gain 2	
n8-14 <1>	Polarity Compensation Gain 3	
n8-15 <1>	Polarity Compensation Gain 4	
n8-21 <1>	Motor Ke Gain	
n8-35	Initial Rotor Position Detection Selection	
n8-36 <1>	High Frequency Injection Level	
n8-37 <1>	High Frequency Injection Amplitude	
n8-39 <1>	Low Pass Filter Cutoff Frequency for High Frequency Injection	
n8-45	Speed Feedback Detection Control Gain (for PM Motors)	
n8-47	Pull-In Current Compensation Time Constant (for PM Motors)	
n8-48	Pull-In Current (for PM Motors)	
n8-49	d-Axis Current for High Efficiency Control (for PM Motors)	
n8-51	Acceleration/Deceleration Pull-In Current (for PM Motors)	
n8-54	Voltage Error Compensation Time Constant	
n8-55	Load Inertia	
n8-57	High Frequency Injection	
n8-62	Output Voltage Limit (for PM Motors)	
n8-65	Speed Feedback Detection Control Gain during ov Suppression	
n8-69	Speed Calculation Gain	
n8-72 <1>	Speed Estimation Method Selection	
n8-84	Initial Polarity Estimation Timeout Current	
01-01 •◆RUN	Drive Mode Unit Monitor Selection	
01-02 ◆RUN	User Monitor Selection After Power Up	
01-03	Digital Operator Display Selection	
01-04	V/f Pattern Display Unit	
01-05 <1>	LCD Contrast Control	
o1-10	User-Set Display Units Maximum Value	
01-11	User-Set Display Units Decimal Display	
02-01	LO/RE Key Function Selection	
02-02	STOP Key Function Selection	
02-03	User Parameter Default Value	
02-04	Drive Model Selection	
02-05	Frequency Reference Setting Method Selection	

E.3 User Setting Table

No.	Name	User Setting
02-06	Operation Selection when Digital Operator is Disconnected	
o2-07	Motor Direction at Power Up when Using Operator	
o2-19 <1>	Selection of Parameter Write during Uv	
03-01	Copy Function Selection	
03-02	Copy Allowed Selection	
04-01	Cumulative Operation Time Setting	
04-02	Cumulative Operation Time Selection	
04-03	Cooling Fan Maintenance Operation Time Setting	
04-05	Capacitor Maintenance Setting	
04-07	DC Bus Pre-charge Relay Maintenance Setting	
04-09	IGBT Maintenance Setting	
04-11	U2, U3 Initialize Selection	
04-12	kWh Monitor Initialization	
04-13	Number of Run Commands Counter Initialization	
q1-01 to q6-07	DriveWorksEZ Parameters	
r1-01 to r1-40	DWEZ Connection Parameter 1 to 20 (upper/lower)	
T1-00	Motor 1/Motor 2 Selection	
T1-01	Auto-Tuning Mode Selection	
T1-02	Motor Rated Power	
T1-03	Motor Rated Voltage	
T1-04	Motor Rated Current	
T1-05	Motor Base Frequency	
T1-06	Number of Motor Poles	
T1-07	Motor Base Speed	

No.	Name	User Setting
T1-08	PG Number of Pulses Per Revolution	
T1-09	Motor No-Load Current (Stationary Auto-Tuning)	
T1-10	Motor Rated Slip (Stationary Auto-Tuning)	
T1-11	Motor Iron Loss	
T2-01	PM Motor Auto-Tuning Mode Selection	
T2-02	PM Motor Code Selection	
T2-03	PM Motor Type	
T2-04	PM Motor Rated Power	
T2-05	PM Motor Rated Voltage	
T2-06	PM Motor Rated Current	
T2-07	PM Motor Base Frequency	
T2-08	Number of PM Motor Poles	
T2-09	PM Motor Base Speed	
T2-10	PM Motor Stator Resistance	
T2-11	PM Motor d-Axis Inductance	
T2-12	PM Motor q-Axis Inductance	
T2-13	Induced Voltage Constant Unit Selection	
T2-14	PM Motor Induced Voltage Constant	
T2-15	Pull-In Current Level for PM Motor Tuning	
T2-16	PG Number of Pulses Per Revolution for PM Motor Tuning	
T2-17	Encoder Z Pulse Offset	
T3-01	Test Signal Frequency	
T3-02	Test Signal Amplitude	
T3-03	Motor Inertia	
T3-04	System Response Frequency	

<1> Not available in models 4A0930 and 4A1200.

<2> Parameter setting cannot be changed while the drive is operating the motor in models 4A0930 and 4A1200.

_		AFR Time Constant 2	413
	153	AI-A3	518
		AI-A3 Settings	309
+		Air Filter Replacement	509
+1	153	Alarm Outputs for Maintenance Monitors	482
+2	153	Alarm Register 007FH Contents	743
+3	153	Alarms and Errors	3
+V	165	Allowable Frequency Fluctuation	554
Numerics		ALM LED Light	181
	510	Altitude	54
24 V Power Supply		AM	165
2-Wire Initialization		Ambient Temperature	54
3-Wire Initialization		Ambient Temperature and Installation Method Derating	572
3-Wire Sequence		Ambient Temperature Setting	571, 643
3-Wire Sequence Wiring Diagram		Analog Filter Time Constant	
5th Most Recent Fault	665	Analog Frequency Reference Fluctuation Limit	
A		Analog Frequency Reference Sample/Hold	
A/D Conversion Error	424	Analog Input Card Settings.	
A1		Analog Input Filter Time Constant	
A1000 Models.		Analog Input Option Card Bias	
A1-01		Analog Input Option Card Gain	
A1-02 (Motor 1 Control Mode) Dependent Parameters		Analog Input Option Card Operation Selection	
A1-03		Analog Inputs / Pulse Train Input	
A1-04, A1-05: Password and Password Setting		Analog Input Terminal Enable Selection	
A2		Analog Monitor Card Settings	
A2-01		AO-A3	
A2-32		AO-A3 Settings	
A2-33		Application Presets	
A3		Application Selection	
AC		ASR	
Accel/Decel Rate Calculation Gain		ASR Gain Auto-Tuning.	
Accel/Decel Time		ASR Gain Switching Frequency	
Accel/Decel Time Setting Units		ASR Integral Limit	
Accel/Decel Time Switching Frequency		ASR Integral Time.	
Acceleration/Deceleration Pull-In Current (for PM Motors)		ASR Limit	
Acceleration Error		ASR Primary Delay Time Constant	
Acceleration Time		ASR Proportional Gain	
Acceleration Time Pull-In Current (for PM Motors)	650	ASR Response Frequency	
Access Level Selection.		Attachment for External Heatsink	
AC Reactor		Automatic Reduction for Stall Prevention during Run	
Action Selection below Minimum Output Frequency		Automatic Speed Regulator	
Additional DC Bus Capacitors		Auto Restart Fault Output Operation Selection	
Adjusted Slip Calculation Error		Auto Restart Operation Selection	
Adjusting the ASR Parameters.		Auto-Tuning	
AEr.		Auto-Tuning Codes.	
AFR Gain		Auto-Tuning Errors.	
AFR Time Constant 1		Auto-Tuning Fault Codes	
		-	

Auto-Tuning Fault Detection	297	Carrier Frequency Derating	32
Auto-Tuning Fault Solutions	457	Carrier Frequency during Rotational Auto-Tuning	277
Auto-Tuning for Induction Motors	201	Carrier Frequency Lower Limit	276
Auto-Tuning for Permanent Magnet Motors	202	Carrier Frequency Proportional Gain	276
Auto-Tuning Input Data	202, 203, 204, 205	Carrier Frequency Reduction	644
Auto-Tuning Interruption and Fault Codes			
Auto-Tuning Mode Selection		* *	
-	,	Carrier Frequency Selection	
В		Carrier Frequency Setting Error	
B1		Carrier Frequency Upper Limit	
B2		CC-Link bUS Error Auto Reset.	
b6-01 through b6-04	417	CC-Link Communication Speed.	
Backing Up Parameter Values	218	CC-Link Node Address	
BACnet Baud Rate	317	CC-Link Parameters.	
BACnet Device Object Identifier 0	317	CE	
BACnet Device Object Identifier 1	317	CE Detection Time	
BACnet Node Address	317	CE Low Voltage Directive Compliance	
BACnet Parameters	316	CE mark	
Baseblock	443		
Base Frequency		CF	
Base Voltage		Changing Parameter Settings or Values	
Basic Auto-Tuning Preparations		Circulation Fan	·
Basic Start-up and Motor Tuning		Clock Fault	
bb		Closed-Loop Crimp Terminal Size	
Bi-Directional Speed Search Selection		Closed Loop Vector control	
boL		Closed Loop Vector Control for PM Motors	
Braking circuit protective cover	· · · · · · · · · · · · · · · · · · ·	Coast to stop	
		Coast to Stop with Timer	235
Braking Resistor		CoF	424
Braking Resistor Fault		Comm. option card connection error (CN5-A)	432
Braking Resistor Overheat.		Command Messages from Master to Drive	723
Braking Resistor Overheat Protection		Communication Error	462
Braking Resistor Overload Protection		Communication Fault Detection Selection	719
Braking Torque		Communication Option Card	312
Braking Transistor		Communication Option Card Reference	667
Braking Transistor Overload Fault		Communication Parity Selection	719
Broadcast Messages		Communications Enter Function Selection	721
bUS	•	Communications Error Operation Selection	
bUS Error Detection Time	314	Communication Speed of Serial Encoder Selection	
C		Communication Speed Selection	
C1-02	190	Communications Timing	
C2-01 through C2-04		Comparing Parameter Settings	
C2-01 through C2-04		Component Names	
	,	Compressor Application	
C3-02		Conduit Bracket.	
C4-01		Conduit bracket	
C4-02	,	Conduit Bracket Dimensions for IP20/NEMAType 1	
C4-06		Conduit bracket front cover	
C6-01		Connecting a DC Link Choke	
C6-02		Connecting an AC Reactor	
Cable Length Between Drive and Motor			
CALL		Connecting a Noise Filter.	
Cannot Reset		Connecting a Suppression Diode	
CANopen Communication Speed		Connecting a Surge Absorber	
CANopen Node ID Selection		Connecting Braking Units in Parallel	
CANopen Parameters		Connecting Peripheral Devices	
Capacitor Maintenance		Connecting to a PC (USB).	
Capacitor Maintenance Setting		Connection of a Motor PTC	
Capacitor Maintenance Time	447	Continuous Electrothermal Operation Selection	
Carrier Frequency	275	Control Board Connection Error.	· · · · · · · · · · · · · · · · · · ·
Carrier Frequency and Current Derating	563, 565	Control Circuit Error	· · · · · · · · · · · · · · · · · · ·
		Control Circuit Fault	425

Control Circuit Input Terminals	164	Cumulative Operation Time Setting	403, 654
Control Circuit Output Terminals	165	Current Alarm	446
Control Circuit Terminal Block Functions	164	Current Detection Error	459
Control Fault	423	Current Detection Speed Search	242
		Current Fault	
Control Method Selection Error	453	Current Offset Fault	424
Control Mode.	225, 661	Current Unbalance	441
Control Mode Dependent Parameter Default Values	671	Current Unbalance Detection (LF2)	384, 644
Control Mode Mismatch	462	Cyc.	444
Control Modes and their Features	32	Cyclic Redundancy Check.	724
Control Mode Selection.	32	D	
Control Power Supply Voltage Fault	442		
Conveyor Application	199	d3-01 through d3-04	
Cooling Fan	, 46, 47, 48, 49	Daily Inspection.	
Cooling Fan Maintenance		d-Axis ACR Output	
Cooling Fan Maintenance Setting (Operation Time)		d-Axis Current for High Efficiency Control (for PM Motors)	
Cooling Fan Maintenance Time		DC bus circuit protective cover	
Cooling Fan Operation Time		DC Bus Overvoltage	
Cooling Fan Operation Time Setting		DC Bus Pre-Charge Relay Maintenance Setting	
CoPy	462	DC Bus Undervoltage	
Copy Allowed Selection		DC Bus Voltage	
Copy Function		DC Bus Voltage Adjustment Gain	
Copy Function Errors		DC Bus Voltage at Previous Fault	
Copy Function Selection		DC Bus Voltage Setpoint during KEB	
Copy Unit Error		DC Injection Braking Current	
CopyUnitManager		DC Injection Braking Input Timing Diagram	328
CPEr		DC Injection Braking Start Frequency	233
CPF02		DC Injection Braking Time at Start	234
CPF03		DC Injection Braking Time at Stop	241
CPF06		DC Injection Braking to Stop	234
CPF07		DC link choke	518
CPF08		DC Link Chokes for IEC/EN 61000-3-2 Compliance	755
CPF11		D Control	249
CPF11 to CPF14		Deceleration Rate Calculation Gain	639
CPF12		Deceleration Time	263
CPF13		Deceleration Time at Stall Prevention during Acceleration	367, 639
CPF14		Defaults by Drive Model Selection (o2-04) and ND/HD (C6-01	1) 206
CPF16		Delay Timers	248
CPF16 to CPF19		Derivative Time (D)	252
CPF17		Desired DC Bus Voltage during KEB	637
CPF18		dEv	426, 444
CPF19		DeviceNet Baud Rate Monitor	318
CPF20		DeviceNet Communication Speed	317
CPF21		DeviceNet Heartbeat Interval	
CPF22		DeviceNet Idle Mode Fault Detection	318
CPF23		DeviceNet MAC Address.	317
CPF24		DeviceNet Network MAC ID	319
CPF25		DeviceNet Parameters	317
CPF26 to CPF35		DeviceNet PCA Setting	
CPF40 to CPF45		DeviceNet PPA Setting	318
CPyE		DeviceNet Scaling Factors	
CRC-16		dFPS	
CRC-16 Checksum Calculation Example		DI-A3	518
CrST		DI-A3 Settings	
CSEr		Diagnosing and Resetting Faults	
Cumulative Operation Time		Digital Input Card Settings	
Cumulative Operation Time at 5th Most Recent Fault		Digital Input Option Card Input Selection	
Cumulative Operation Time at 3th Most Recent Fault Cumulative Operation Time at Most Recent Fault		Digital Input Option DI-A3 Data Length Selection	
Cumulative Operation Time at Previous Fault		Digital Input Reading	
Cumulative Operation Time Selection		Digital Operator	
Variable of Christian IIII Chelectivii	+0.2. (1.14		

		Droop Control Delay Time		
Digital Operator Display Selection	399, 652	Droop Control Gain		259
Digital Operator Installation Methods and Required Tools	59	During Frequency Output Time Chart		339
Digital Operator Keypad Functions	400	During Run Time Chart		332
Digital Operator Menu and Screen Structure				
Digital Operator Remote Installation				
digital operator remote usage				
Digital Output Card Settings				
Digital Output Option Card Terminal Function Selection				
Dimensions for IP00/Open Type Enclosure: 200 V Class				
Dimensions for IP00/Open Type Enclosure: 400 V Class				
Dimensions for IP00/Open Type Enclosure: 600V Class				
Dimensions for IP20/NEMA Type 1 Enclosure: 200 V Class				
Dimensions for IP20/NEMA Type 1 Enclosure: 400 V Class				
Dimensions for IP20/NEMA Type 1 Enclosure: 600 V Class				
DIP Switch S1				
DIP Switch S1 Settings				
DIP Switch S2	50	DWEZ Version Control Monitor 1 to 3		670
DIP switch S4	50	dWF1		428
DIP Switch S4 Settings	172	dWFL		428
DM	165	Dynamic Braking Options		532
DM+				
dnE				
DO-A3	518	E		
DO-A3 Output Mode Selection		E (G)		
DO-A3 Settings	312	E1-08		
Down Arrow Key		E1-10	412,	413
Drive/kVA Selection		E2-01	412,	775
Drive Capacity Setting Fault	452	E2-02		412
Drive Cooling Fans	470	E2-03	412,	458
Drive Cooring Fans		E3-01 (Motor 2 Control Mode) Dependent Parameters		674
		E5		
Drive Derating Data		EDM Switch Settings		
Drive Disabled		EEPROM Memory Data Error		
Drive Duty Mode Selection		EEPROM Memory DriveWorksEZ Data Error		
Drive Mode		EEPROM Write Error.		
Drive Model Mismatch		EF		
Drive Models and Types		EFO		
Drive Model Selection			428,	
Drive Mode Unit Monitor Selection	377, 032			
Drive Operation Status at Previous Fault		EF2		
Drive Overheat Warning	448	EF3	-	
Drive Overload	436	EF4	-	
Drive Protection 2	387	EF5	-	
Drive Ready		EF6	-	
Drive Replacement		EF7		
Drive Slave Address	719	EF8		
Drive Specifications		Electromotive Force Parameter Tuning		
Drive Status.		EMC Filter and Drive Installation for CE Compliance		756
Drive Transmit Wait Time		EMC Filter Installation.		754
Drive Unit Signal Fault		EMC Filters.		754
Drive Watt Loss Data		EMC Guidelines		750
Drive Watt Loss Data DriveWizard Industrial		EMC Guidelines Compliance		
		Enclosure Types		
DriveWorksEZ		Encoder Selection.		
DriveWorksEZ Connection Parameters		Encoder Z-Pulse Offset		
DriveWorksEZ Custom Monitor 1 to 10		Encoder Z-Pulse Offset (for PM Motors)		
DriveWorksEZ Fault		End		
DriveWorksEZ Function Selection		End1		
DriveWorksEZ Monitors				
DriveWorksEZ Parameters		End2		
DriveWorksEZ Pro Monitors	670	End3		45/

End4	457	Fast Stop Sequence	3	2:
		Fast Stop Time		
End6	457	Fault Causes and Solutions	4	.2:
End7	458	Fault Detection	4	2.
EnDat Encoder	518	Fault Displays	4	.23
		Fault History		
e. c		Fault Relay Output.		
Energy Saving Control Filter Time Constant	261	Fault Reset Interval Time	376, 6	4(
Energy Saving Control Selection	260	Fault Reset Methods	4	1
Energy Saving Gain	260	Fault Reset Operation Selection	376, 6	4(
Energy Savings Constants Error	455	Fault Restart	3	38
Enter Command	721	Faults	418, 4	-19
Enter command necessary	721	Fault Trace	406, 4	6
		FbH		
		FbL		
Enter Command Types	744	Feed Forward Control	392, 4	.1′
Enter Data from the Motor Nameplate	207	Feed Forward Control Diagram	3	92
ENTER Key	181	Feed Forward Control Gain	3	9.
		Feed Forward Control Selection		
Er-02	458	Ferrule Dimensions	1	6
Er-03	458	Ferrule Terminal Types and Sizes	1	6
Er-04	458	Ferrule-Type Wire Terminals	1	6
Er-05	458	Field Forcing	2	9
Er-08.	459	Field Forcing Limit	2	9.
		Field Forcing Selection		
		Field Weakening		
		Field Weakening Frequency Limit		
		Field Weakening Level		
		Fine-Tuning Advanced Open Loop Vector Control for PM Mo		
		Fine-Tuning Closed Loop Vector Control.		
		Fine-Tuning Closed Loop Vector Control for PM Motors		
		Fine-Tuning Open Loop Vector Control		
		Fine-Tuning Open Loop Vector Control for PM Motors		
		Fine-Tuning V/f Control and V/f Control with PG		
		FJOG/RJOG Operation		
		FLASH Memory Fault		
		FM		
Er-25.	4.54	Forward/Reverse Run Command Input Error		
		Forward Regenerative Torque Limit		
		Forward Torque Limit.		
		Frequency Accuracy (Temperature Fluctuation)		
		Frequency Control Range.		
<u> </u>		Frequency Detection 1 Time Chart.		
•		Frequency Detection 2 Time Chart		
		Frequency Detection 3 Example with a Positive L3-04 Value.		
<u> </u>				
		Frequency Detection 4 Example with Positive L3-04 Value Frequency Gain at KEB Start		
		Frequency Reduction Rate during Overheat Pre-Alarm Frequency Reference		
		* *		
		Frequency Reference at Previous Fault		
		Frequency Reference at Reference Loss		
External interfock	1/5			
F		Frequency Reference Bias (Up/Down 2)		
FAn	429	Frequency Reference Bias Accel/Decel		
FAn Alarm Location Monitor		Frequency Reference Bias Lower Limit.		
Fan Bracket		Frequency Reference Bias Operation Mode Selection		
Fan Cover		Frequency Reference Bias Step		
Fan Finger Guard	,	Frequency Reference Bias Upper Limit		
Fan Guard		Frequency Reference from MEMOBUS/Modbus Comm		
	, ., .,,	Frequency Reference Hold Function Selection	2	X

Frequency Reference Loss Detection Selection			
Frequency Reference Lower Limit	280	High-Slip Braking Current Limit	647
Frequency Reference Monitor Content During PID	257	High Slip Braking Deceleration Frequency Width	1389
Frequency Reference Selection	580	High-Slip Braking Deceleration Frequency Width	n647
Frequency Reference Selection 1	231	High Slip Braking Dwell Time at Stop	390
Frequency Reference Selection 2	238	High-Slip Braking Dwell Time at Stop	647
Frequency Reference Setting / Decimal Display	652	High-slip Braking oL	437
Frequency Reference Setting and User-Set Display	652	High Slip Braking Overload Time	390
Frequency Reference Setting Hierarchy	278	High-Slip Braking Overload Time	647
Frequency Reference Setting Method Selection	402, 653	High Slip Suppression Current Level	391
Frequency Reference Source Selection	666	High-Slip Suppression Current Level	647
Frequency Reference Upper Limit	280	Humidity	54
Frequency Setting Resolution	556	Hunting Prevention	388
Frequency Setting Signal	556	Hunting Prevention Gain	
Front Cover	1, 45, 46, 47, 48, 49	Hunting Prevention Gain Setting	388, 646
Front Cover Screw43	3, 45, 46, 47, 48, 49	Hunting Prevention Gain while in Reverse	388, 646
Function Code	724	Hunting Prevention Selection	388, 646
Functions for Terminals S1 to S8	320	Hunting Prevention Time Constant	388, 646
Fuse	538	HVAC Fan Application	
Fuse Selection		* *	
		_	
G		I	
Gate Drive Board Undervoltage			
General Safety Information			
GF			
Ground Fault			
Ground Terminal			
Ground Wiring	162		
Н		IGBT Maintenance Setting	
++ H1	164	IGBT Maintenance Time (50%)	
H1 Multi-Function Digital Input Selections		IGBT Maintenance Time (90%)	
		Induced Noise	
H2		Induced Voltage Constant Unit Selection	
H3-02		Induction Voltage Error	
H3-09		Induction Voltage Estimation Gain 2	394
H3-13		Inertia Detection Error	
H3 Multi-Function Analog Input Settings		Inertia Tuning	
Hbb		Inertia Tuning Frequency Reference	
HbbF		Inertia Tuning Reference Amplitude	214
HC		Initialization	
HCA		Initialization Required	
HDHD and ND		Initialize Parameters	
		Initial Operation.	
Heatsink		Initial Polarity Estimation Timeout	
Heatsink Cooling Fan Off-Delay Time		Initial Rotor Position Detection Selection	
Heatsink Cooling Fan Operation Delay Time		Initial Rotor Position Estimation Current	394
Heatsink Cooling Fan Operation Selection		Input Fuses	538, 540, 750, 771, 773
Heatsink Overheat	-	Input Phase Loss	438
Heatsink Temperature		Input Phase Loss Protection Selection	
Heavy Duty		Input Pulse Monitor	
Heavy Duty Ratings		Input Terminals	191
High Current Alarm Selection		Input Terminal Status	661
High Frequency Injection		Input Terminal Status at Previous Fault	664
High Frequency Injection Amplitude		Input Voltage Setting	
High Frequency Injection during Overexcitation Decele		Inrush Prevention Relay Fault	
High Frequency Injection Level		Inrush Prevention Relay Maintenance Setting	
High Frequency Injection Parameter Tuning		Inspection	
High Frequency Injection Parameter Tuning Error		Installation Area	
High Performance Operation Using OLV or CLV		Installation Environment.	
High Slip Braking	389	Installation Method Selection	

Installation Orientation.	54	L7-06	. 417
		L7-07	
		L8-12	
		L8-35	
		Language Selection	
		LCD Contrast Control.	
		LCD Display	
		Leakage Inductance Alarm	
		Leakage Inductance Error	
		LED Check	
` , , ,	•	LED Operator	
		LF	
C 1		LF2	
		LF3	
e e		Line-to-Line Motor Resistance Online Tuning	
		Line-to-Line Resistance Error.	
		LO/RE 183, 191	
S 1,7		LO/RE (LOCAL/REMOTE) Key Function Selection	-
		LO/RE LED	
		LO/RE Light	
		LO/RE Selection Key	
		Load Inertia 397	
* *		Load Inertia Ratio	
		LOCAL DEMOTE V. D. C. C. L. C.	
IP20/NEMA Type I Kit Selection	71	LOCAL/REMOTE Key Function Selection	
J		LOCAL/REMOTE Run Selection	
Jog Frequency Reference	278	Loopback Test.	
Jumper S5		Loss of Reference Function	
Jump Frequency.		Low Pass Filter Cutoff Frequency for High Frequency Injection	
Jump Frequency Width		Low Voltage Directive	
Jump Frequency Width		Low Voltage Wiring for Control Circuit Terminals	
K		LSo	
KEB Acceleration Time		LSo Fault.	
KEB Deceleration Time	365, 637	LT-1	. 447
KEB Detection Time	366	LT-2	. 447
KER Function Palated Adjustments	364	LT-3	. 447
KEB Method Selection.	366	L1-4	. 447
KEB Operation Using a KEB Input	361	M	
KEB Operation Using L2-02, Without KEB Input		M1	164
KEB Operation Using L2-02 and KEB Input	362	M2	
KEB Operation Using L2-10, Without KEB Input	363	M3	
KEB Operation Using L2-10 and KEB Input	363	M4	
KEB Operation Wiring Example	363	M5	
KEB Ride-Thru End Detection	361	M6	
KEB Ride-Thru Function	328	MA	
KEB Ride-Thru Start	361		
KEB Start Output Frequency Reduction		Magnetic Flux Compensation Value	
Keys and Displays on the Digital Operator		Main Circuit Connection Diagram	
kWh		Main Circuit Terminal	
kWh, Lower 4 Digits		Main Circuit Terminal and Motor Wiring	
kWh, Upper 5 Digits		Main Circuit Terminal Block Configuration	
kWh Monitor Initialization		Main Circuit Terminal Functions	
kWh Monitor Initial Value Selection		Main Circuit Terminal Wiring	
		Main Circuit Wiring	
L		Main Power Circuit Voltage Adjustment Gain	
L3-01 through L3-06		Maintenance 338	-
L3-02		Maintenance Alarms	
L3-04		Maintenance Monitors	
L3-11		Maintenance Monitor Settings	
L7-01 through L7-04	417	Master Speed Reference Lower Limit	. 28

Maximum Output Frequency	296	Motor 1 Parameters		297
Maximum Voltage	296	Motor 2 ASR Gain Switching Frequency		274
MB	165	Motor 2 ASR Integral Limit		274
		Motor 2 ASR Integral Time		
Mechanical Weakening Detection	338	Motor 2 ASR Limit		274
Mechanical Weakening Detection 1	437, 449	Motor 2 ASR Primary Delay Time Constant		274
Mechanical Weakening Detection 2	441	Motor 2 ASR Proportional Gain		274
Mechanical Weakening Detection Operation	378, 642	Motor 2 Base Frequency		300
Mechanical Weakening Detection Speed Level	379, 642	Motor 2 Base Voltage		301
Mechanical Weakening Detection Start Time	379, 642	Motor 2 Control Mode Selection		300
Mechanical Weakening Detection Time	379, 642	Motor 2 Inertia		275
		Motor 2 Iron Loss.		
MECHATROLINK Comm. Cycle Setting Error	444	Motor 2 Leakage Inductance		302
		Motor 2 Line-to-Line Resistance		
		Motor 2 Load Inertia Ratio		
*		Motor 2 Max Output Frequency		
		Motor 2 Max Voltage		
		Motor 2 Mechanical Loss.		
•		Motor 2 Mid Output Frequency.		
		Motor 2 Mid Output Frequency 2		
		Motor 2 Mid Output Frequency Voltage		
		Motor 2 Mid Output Frequency Voltage 2		
		Motor 2 Minimum Output Frequency Voltage 2		
		Motor 2 Minimum Output Frequency Voltage		
		1 1 2		
-		Motor 2 Motor Iron-Core Saturation Coefficient 1		
*		Motor 2 Motor Iron-Core Saturation Coefficient 2		
		Motor 2 Motor Poles		
		Motor 2 Parameters		
- ·		Motor 2 Rated Current		
•		Motor 2 Rated No-Load Current.		
- · · · · · · · · · · · · · · · · · · ·		Motor 2 Rated Power		
		Motor 2 Rated Slip		
		Motor 2 Slip Compensation Gain.		
		Motor 2 Slip Compensation Limit		
		Motor 2 Slip Compensation Primary Delay Time		
		Motor 2 Slip Compensation Selection during Regeneration.		
Mid Output Voltage A		• •		
Minimum KEB Time	366	Motor Acceleration Time		392
Minimum Output Frequency	296	Motor Acceleration Time for Inertia Calculations	372,	639
Minimum Output Frequency Voltage	297	Motor Base Frequency	. 208, 210,	656
Minimum Output Voltage	412	Motor Base Speed	210,	656
Minimum Wait Time for Sending Messages	723	Motor Code Selection (for PM Motors)		303
		Motor Data Error.		
Minor Fault	458	Motor d-Axis Current at Previous Fault		664
Minor Fault and Alarm Displays	421	Motor d-Axis Inductance (for PM Motors)		304
Minor Faults	419	Motor Direction at Power Up when Using Operator	402,	653
		Motor Direction Error		
Model, Voltage Class, Capacity Mismatch	463	Motor Does Not Rotate		467
		Motor Excitation Current (ld)		
		Motor Feedback Resolver Interface		
		Motor Hunting and Oscillation Control Parameters		
		Motor Induction Voltage Constant 1 (for PM Motors)		
		Motor Induction Voltage Constant 2 (for PM Motors)		
*		Motor Inertia		
		Motor Iron-Core Saturation Coefficient		
		Motor Iron-Core Saturation Coefficient 1		
		Motor Iron-Core Saturation Coefficient 2		
•		Motor Iron Loss		
		Motor Iron Loss for Torque Compensation		
		Motor Ke Gain		
IVIOLOI 1/IVIOLOI 2 SCIECLIOII		IVIOLOI NO UAIII		273

Motor Leakage Inductance	298	Multi-Function Digital Output Terminal Settings		331
Motor Line-to-Line Resistance	298	Multi-Function Input Selection Error		452
Motor Mechanical Loss	299	Multiple Drive Installation		55
Motor No-Load Current.	210, 298	Multiple Drive Wiring		163
		Multi-Step Speed Selection.		232
Motor Overheat (NTC Input)	,	L1-01		776
Motor Overheat Alarm (PTC Input)				//(
Motor Overheat Alarm Operation Selection	356, 635	N		
Motor Overheat Fault (PTC Input)		n1-02		412
Motor Overheat Fault Operation Selection		n2-01		413
Motor Overload	435	n2-02		413
Motor Overload Estimate (oL1)		n2-03		413
Motor Overload Protection Selection	338, 635, 776	Nameplate		35
Motor Overload Protection Time		ND		
Motor Parameters	293	ndAT		463
Motor Performance Fine-Tuning	412	NetRef/ComRef Function Selection.		313
Motor PG Feedback Line Driver Interface	518	Network Termination		716
Motor PG Feedback Open Collector Interface	518	No-Load Current Alarm		458
Motor Poles	208	No-Load Current Error		458
Motor Protection	352	No-Load Operation		215
Motor Protection Using a PTC Thermistor	346	No-Load Operation Test Run		215
Motor PTC Characteristics	356	Normal Duty		275
Motor q-Axis Current at Previous Fault	664	Normal Duty Ratings		275
Motor q-Axis Inductance (for PM Motors)	304	Notes on Inertia Tuning and ASR Gain Auto-Tuning		
Motor Rated Current	297, 656, 775	Notes on Rotational Auto-Tuning		
Motor Rated Current (for PM Motors)	304	Notes on Stationary Auto-Tuning		
Motor Rated Power	209, 299, 656	nSE		
Motor Rated Power (for PM Motors)	304	Number of Auto Restart Attempts		
Motor Rated Slip	210, 297	Number of Motor Poles		
Motor Rated Voltage	208, 209, 656	Number of Motor Poles (for PM Motors)		
Motor Rotates in One Direction Only	468	Number of PM Motor Poles		
Motor Secondary Current (Iq)		Number of Run Commands		
Motor Selection	325	Number of Run Commands Counter Initialization.		
Motor Selection 1/2	656	Number of Speed Search Restarts		
Motor Speed	661			
Motor Speed at Previous Fault	664	0		
Motor Speed Error 2	460	02-03		218
Motor Speed Fault	459	02-04		412
Motor Stator Resistance (for PM Motors)	304	oC		43
Motor Switch during Run	450	oFA00		432
Motor Temperature (NTC		oFA01		
Motor Temperature Input Filter Time	356, 635	oFA03 to oFA06		
Motor Wiring		oFA10		
Mounting Hole		oFA11		
Mounting hole	42	oFA12 to oFA17		432
MP		oFA30 to oFA43		432
Multi-Function Analog Input Selection Error		oFb00		433
Multi-Function Analog Input Terminal Settings		oFb01		433
Multi-Function Analog Outputs		oFb02		
Multi-Function Analog Output Terminal AM Bias		oFb03 to oFb11		433
Multi-Function Analog Output Terminal AM Gain		oFb12 to oFb17		433
Multi-Function Analog Output Terminal AM Monitor Selecti		oFC00		
Multi-Function Analog Output Terminal AM Signal Level Se		oFC01		
Multi-Function Analog Output Terminal FM Bias		oFC02		
Multi-Function Analog Output Terminal FM Gain		oFC03 to oFC11		434
Multi-Function Analog Output Terminal FM Monitor Selection		oFC12 to oFC17		
Multi-Function Analog Output Terminal FM Signal Level Se		oFC50 to oFC55		434
Multi-Function Digital Inputs		Offset Frequency	292,	669
Multi-Function Digital Input Terminal Settings		oH	-	
Multi-Function Digital Output		oH1		434

оН2	448	Option Card External Fault	428,	445
oH3	435, 448	Option Card Fault at Option Port CN5-A		
oH4		•		
oH5				
oH Alarm Location Monitor		Option Communication Error		
oL1				
oL1 Current Level		*		
oL1 Current Level for Motor 2				
oL2				
oL2 Characteristics Selection at Low Speeds	-	<u> </u>		
oL3oL4		Output Current 1 During Smood Sourch		
oL5	-	Output Current 1 During Speed Search		
oL7	,	Output Current Imbalance		
Online Tuning Gain				
Online Tuning Gain				
oPE				
oPE01				
oPE02				
oPE03		Output Ground Fault Detection Selection		
oPE04		Output of speed control (ASR) (for Simple V/f PG)		
oPE05		Output Phase Loss		
oPE06	453	Output Phase Loss Protection		
oPE07	454	Output Phase Loss Protection Selection		
oPE08		•		
oPE09	454	Output Power at Previous Fault		664
oPE10	455	Output Short Circuit or IGBT Fault		439
oPE11	455	Output Terminal Status		662
oPE13	455	Output Terminal Status at Previous Fault		664
oPE15	455	Output Voltage at Previous Fault		664
oPE16				
oPE18				
oPE20				
oPE Fault Parameter				
Open Loop Vector Control	-			
Open Loop Vector Control for IPM Motors		1 0		
Open Loop Vector Control for PM Motors				
Open Loop Vector Control Mode Tuning				
Open Loop Vector Control Mode Tuning Parameters 413, 4				
Operating with the Load Connected				
Operation Errors				
Operation Selection at Overspeed (oS)		*		
Operation Selection at PG Open Circuit (PGo)				
Operation Selection at watchdog Error (E3)			-	
Operation Status Monitors		-		
Operation Status Monitors				
Operation with remained Magnet Motors				
Operator Related Settings.		*	-	
oPr				
Optional 24 V DC power supply connector cover 42, 43, 44				
Option card connection error (CN5-A)				
Option Card Connection Error at Option Port CN5-A				
Option Card Connection Error at Option Port CN5-C		•		
Option card connector (CN5-A)		•		
Option card connector (CN5-B)				
Option card connector (CN5-C)				
Option card error occurred at option port CN5-A				
Option card error occurred at option port CN5-B				
Option card error occurred at option port CN5-C	434	ov Suppression Function Selection		638

P		PID Feedback Low Detection Level	
Parameter Access Level.	218	PID Feedback Low Detection Time.	
Parameter Range Setting Error		PID Fine Tuning	
Parameters Changed with Motor Code Selection (PM Motors)		PID Function Setting	
Parameter Selection Error		PID Input (feedback)	
Parameter Settings		PID Input Limit	
Parameters for KEB Ride-Thru		PID Monitors	
Parameters to Minimize Motor Hunting and Oscillation		PID Offset Adjustment.	
PASS		PID Output	668
Password		PID Output Gain Setting	253
Password Setting.	,	PID Output Level Selection	253
Password Settings.		PID Output Limit	253
P Control		PID Output Lower Limit	256
Peak Hold Current		PID Output Reverse Selection	253
Peak Hold Output Frequency		PID Output Reverse Selection 2	257
Performance Life		PID Primary Delay Time Constant	253
Performance Life Monitors Maintenance Monitors		PID Setpoint	668
Periodic Inspection		PID Setpoint Display Digits	
Periodic Maintenance		PID Setpoint Input Methods	
Permanent Magnet Motor Control.		PID Setpoint Scaling	
		PID Setpoint Selection	
PF		PID Setpoint User Display	
PG 1 Division Rate for PG Pulse Monitor		PID Setpoint Value	
PG 1 Gear Teeth 1		PID Sleep	
PG 1 Gear Teeth 2		PID Sleep Delay Time	
PG 1 Pulses Per Revolution		PID Sleep Function Start Level	
PG 1 Rotation Selection		PM Inductance Error	
PG 1 Signal Selection		PM Motor Auto-Tuning Mode Selection	
PG 2 Division Rate for PG Pulse Monitor		PM Motor Base Frequency	
PG 2 Gear Teeth 1		PM Motor Base Speed	
PG 2 Gear Teeth 2		PM Motor Code	
PG 2 Pulses Per Revolution			
PG 2 Rotation Selection		PM Motor Code Selection	
PG 2 Signal Selection		PM Motor Control Tuning.	
PG-B3		PM Motor d-Axis Inductance	
PG Disconnect (for any control modes using a PG option card).		PM Motor Induced Voltage Constant	
PG Disconnect (for Control Mode with PG)		PM Motor Parameter Settings.	
PG-F3	518	PM Motor q-Axis Inductance	212
PG Hardware Fault (detected when using a PG-X3 option card)	439, 450	PM Motor Reted Power	212
PG Number of Pulses Per Revolution.	210	FIVI WIGHT Rated Fower	
PG Number of Pulses Per Revolution for PM Motor Tuning	213	PM Motor Rated Voltage	
PGo	439, 449	PM Motor Settings	
PGoH	439, 450	PM Motor Stator Resistance	
PGoH Detection Level	309	PM Motor Type	
PG Open-Circuit Detection Time	306	PM Rotational Auto-Tuning	
PG Option Card Disconnection Detection 1	308	PM Stationary Auto-Tuning	
PG Option Card Disconnection Detection 2		PM Stationary Auto-Tuning for Stator Resistance	
PG Option Card Port for Motor 2 Selection		Polarity Compensation Gain 3	395
PG-RT3		Polarity Compensation Gain 4	395
PG-X3		Polarity Switch for Initial Polarity Estimation Timeout	
Phase Order Selection.		Pole Attraction Current	394
PID Accel/Decel Time		Power Detection Filter Time	261
PID Block Diagram.		Powering Up the Drive.	197
PID Control.		Power Ratings (Three-Phase 200 V Class)	548, 549
PID Feedback		Power Ratings (Three-Phase 400 V Class)	551, 552
PID Feedback High Detection Level.		Power Ratings (Three-Phase 600 V Class)	554, 555
PID Feedback High Detection Time		Power Unit Output Phase Loss 3	430
PID Feedback Input Methods		Predefined V/f Patterns	
PID Feedback Loss		Preface	
PID Feedback Loss Detection Selection		Preparing the Ends of Shielded Cables	
1 1D 1 COUDIUM DOSS DESCRION DESCRION	434	Preset Reference Timing Diagram	

	((2	n i i d n i	510
		Replacing the Drive	
		Reset Communication Parameters	
		RESET Key.	
		Resistance Tuning Error	
		Response Messages from Drive to Master	
		Reverse Direction Output Example Time Chart	
		Reverse Operation Selection	
		Reverse Prohibited Error.	
		Reverse Regenerative Torque Limit	
		Reverse Torque Limit	
		rH	
		Rotational Auto-Tuning	
- · · · · · · · · · · · · · · · · · · ·		Rotational Auto-Tuning for V/f Control	
		RP	
<u> </u>			
		RS-422 Interface RS-485 Interface	
		RTS Control Selection	
		Rubber Bushing	
* *		rUn.	
•		Run Command/Frequency Reference Source Selection Error	
		Run Command at Power Up	
		Run Command Selection 1	
· -		Run Command Selection 2	
•		Run command selection while in Programming Mode	
· ·		RUN Key	
Pulse ITam Monitor Selection	331	RUN LED.	
Q		RUN Light	
q-axis ACR Output	669	Run Speed after Soft Starter at Previous Fault	
R.		Rx to Tx Wait Time	
			317
R		S	
R/L1		S	166
R+		S/L2	
R1-L11		S+	166
Radiated and Radio Frequency Noise		S1	164
RAM Fault		S1-L21	153
Ramp to stop		S2	164
Rated Current Depending on Carrier Frequency		S3	164
Rated Current Setting Alarm		S4	164
Rated Slip Error		S5	164
rdEr		S6	
READ		S7	164
rEAd		S8	164
Reading Drive MEMOBUS/Modbus Register Contents		Safe Disable Circuit	779
Reading Parameter Settings		Safe Disable Function Wiring Example (SINK Mode)	780
Reattaching the Digital Operator		Safe Disable Input Function	173
Reattaching the Front Cover		Safe Disable Inputs	164
Reattaching the Protective Cover		Safe Disable Monitor Output Function and Digital Operator Display.	781
Reattaching the Terminal Cover	-	Safe Disable Signal Input	446
REMOTE		Safety Hazard Definitions	
Removing the Cooling Fan		Safety Information	
Removing the Digital Operator		Safety Input and EDM Terminal Status	781
Removing the Front Cover		Safety Monitor Output	165
Removing the Protective Cover		SC	4, 439
Removing the Terminal Cover		S-Curve Characteristics	5, 417
Replacement Parts	481	SE	450

Search Operation Voltage Limit			
Self-Diagnostics		Speed Limit	
SEr		Speed Limitation	
Serial Communications Cable Connection Terminals (TB5)		•	
Serial Communication Terminals.		Speed Limit Selection	
Serial Communication Transmission Error		Speed Response	
Serviceable Parts		Speed Search	
Setup Group		•	
Setup Group Parameters		Speed Search Deceleration Time	
Setup Mode		Speed Search Delay Time	
Shielded Twisted-Pair Cables		*	
Short Circuit Brake Time at Start		*	
· · · · · · · · · · · · · · · · · · ·		Speed Search Restart Current Level.	
		Speed Search Restart Detection Time.	
•		Speed Search Selection at Start	
· · · · · · · · · · · · · · · · · · ·		Speed Search Wait Time.	
· ·		SSR1 Series IPM Motor Settings695, 696, 697, 698, 699, 700,	
		SST4 Series IPM Motor Settings 703, 704, 705, 706, 707, 707	
Simplified Setup Using the Setup Group			712
Single Drive KEB Ride-Thru 1		Stall Prevention	-
Single Drive KEB Ride-Thru 2			
Sink/source jumper S3			
Sinking/Sourcing Mode for Digital Inputs			
Slave Address		Stall Prevention Limit during Acceleration	
Slip Compensation.		Stall Prevention Selection during Acceleration	
Slip Compensation Gain		Stall Prevention Selection during Deceleration	
Slip Compensation Limit		Stall Prevention Selection during Run	
Slip Compensation Primary Delay Time		Standard	
Slip Compensation Selection during Regeneration			
SMRA Series SPM Motor Settings		Start Condition Selection at Closed Loop Vector Control	
SN		Starting Torque	
Soft Charge Bypass Relay Maintenance		•	
Soft Charge Bypass Relay Maintenance Time		Station Address Setting Error	
Soft CLA Selection		Stationary Auto-Tuning	
Software Current Limit Selection		Stationary Auto-Tuning 1	
Software No. (Flash)		Stationary Auto-Tuning 2. Stationary Auto-Tuning 3.	
Software No. (PWM)		Stationary Auto-Tuning 5	
Software No. (ROM)	663	Stator Resistance Error	
		Status Display	
		STo	
		STOP button Input	
		STOP Key	
Speed Agree Detection Level			
Speed Agree Detection Level (+/-)		Stopping Method after Communication Error	
Speed Agree Detection Level (+/-)		Stopping Method Selection	
Speed Agree Detection Width		Storage Temperature	
Speed Agree Detection Width (+/-)			
		SvE	
Speed Control Accuracy		Switching Between LOCAL and REMOTE	
Speed Control Integral Time 1			
Speed Control Loop Auto-1 uning			
		System KEB Ride-Thru 2	
Speed Control Range Speed Deviation			
-		T	
Speed Estimation Type Speed Search		T/L3	153
Speed Feedback Detection Control (AFR) Gain		T1-03	208
Speed Feedback Detection Control (AFR) Time Constant 2		T1-04	208
Speed Feedback Detection Control (AFR) Time Constant 2 Speed Feedback Detection Control Gain (for PM Motors)		T1-05	208
SUCCU ECCUDACK DELECTION CONTROL CIANT FIOLENCIONS			

Γ1-06	208	Torque Compensation Primary Delay Time	269,	412
Γ1-07	208	Torque Compensation Primary Delay Time 2		269
Γ1-L31	153	Torque Compensation Primary Delay Time Constant 1		413
Target DC Bus Voltage for ov Suppression and Stall Preve	ention 371	Torque Compensation Primary Delay Time Constant 2		413
Γask Complete	462	Torque Compensation Time Constant		269
Геmperature Derating	383	Torque Control		287
Γerminal A1 Bias Setting	342	Torque Control Block Diagram		287
Γerminal A1 Function Selection	342	Torque Control Input Value Selection		287
Γerminal A1 Gain Setting	342	Torque Control Reference Sources		287
Ferminal A1 Signal Level Selection	341	Torque Control Selection		290
Terminal A2 Bias Setting	343	Torque Control Setting Error		455
Terminal A2 Function Selection	343	Torque Control Signal Polarity		288
Terminal A2 Gain Setting	343	Torque Detection		335
Γerminal A2 Signal Level Selection	343	Torque Detection Level 1	378,	641
Terminal A3 Bias Setting	343	Torque Detection Level 2.	378,	641
		Torque Detection Selection 1		
Ferminal A3 Gain Setting	343	Torque Detection Selection 2	377,	641
		Torque Detection Time 1		
Terminal Block Configuration	145	Torque Detection Time 2	378,	641
Terminal Board	, 48, 49, 50, 511	Torque Limit	346,	556
		Torque Limit Control Method Selection during Accel/Decel		
		Torque Limit Delay Time		
		Torque Limit Integral Time Constant		
		Torque Limit Process at Start		
		Torque Limits		
		Torque Reference		
		Torque Reference / Torque Limit Selection from Comm. Optio		
		Torque Reference at Previous Fault		
		Torque Reference Delay Time		
		Torque Saturation Error		
		Torque Specifications, Three Phase 200 V Class		
*		Torque Specifications, Three Phase 400 V Class		
*		Torque Specifications, Three Phase 600 V Class		
*		Troubleshooting without Fault Display		
*		TrPC		
*		Tuning Errors.		
*		Types of Alarms, Faults, and Errors		
		Types of Auto-Tuning for Induction Motors		201
		Types of Auto-Tuning for Permanent Magnet Motors		
Ferminal V1 Signal Level				
Ferminal V2 Monitor Bias		\mathbf{U}		
Ferminal V2 Monitor Gain		U/T1		
Ferminal V2 Monitor Selection.		U1-07		
Γerminal V2 Signal Level		U1-09		
Γest Run20		U2, U3 Initialization.		
Fest Run Checklist.		U2, U3 Initial Value Selection		
Γest Run with Load Connected		U2-02		
Γhermistor Disconnect		U2-03 through U2-17		
ГНо		U4-05		
Γightening Torque		UL3	441,	450
Γimer Function Off-Delay Time		UL4	441,	450
Γimer Function On-Delay Time		UL5		
Fiming Fault		UL and CSA Standards		
Γοο Many Speed Search Restarts		UL Standards Compliance.		155
Γop Protective Cover		UnbC		
Γop protective Cover		Undertorque Detection 1		
Forque Compensation		Undertorque Detection 2		
Forque Compensation at Forward Start		Undertorque Detection Operation		
Forque Compensation at Reverse Start		Undervoltage		
Forque Compensation Gain		Undervoltage 3		442

Undervoltage 3 (Soft-Charge Bypass Relay Fault)			397
Undervoltage Detection Level (Uv1)	365, 637	vrFy	463
Undervoltage Protection	557	W	
Unexpected Noise from Connected Machinery		••	152
Unidirectional Speed Limit Bias		W/T3	
Unit Code	401	Warranty Information	
Unit Selection for MEMOBUS/Modbus Register 0025H	720	Watchdog Circuit Exception	
Up/Down 2 Function	282	Water Supply Pump Application	
Up/Down 2 Operations	329	Watt Hour Output Example	
Up/Down Command Operation		Watt Hour Output Unit Selection	
Up/Down Frequency Reference Limit Selection		Watt Loss 200 V Class Three Phase Models	
Up Arrow Key		Watt Loss 400 V Class Three Phase Models	
USB Copy Unit		Watt Loss Three-Phase 600 V Class Models	559
USB port (type-B)		Wire Gauge, Three Phase 200 V Class	155, 760
User Defaults		Wire Gauge, Three Phase 400 V Class	157, 763
User Monitor Selection after Power Up		Wire Gauge, Three Phase 600 V Class	160, 766
User Parameter Automatic Selection		Wire Gauges	155
		Wiring Checklist	
User Parameter Default Value	-	Wiring Diagram for 2-Wire Sequence	
User Parameters		Wiring Distance	
User Parameters 1 to 32		Wiring the Control Circuit Terminal	
User-Set Display Units Decimal Display		WRITE	
User-Set Display Units Maximum Value			
User Set Speed Agree 1 Time Chart	333	Writing Parameter Settings	
User Set Speed Agree 2 Example with a Positive L3-04 Value	ie 336	Writing to Multiple Registers	
Using Braking Units in Parallel	534	Z	
Using the Pulse Train Output	171	Zero Servo	262
Using the Safe Disable Function.	779	Zero Servo Completion Width	
Uv		Zero Servo Fault	
Uv1		Zero Servo Gain.	
Uv2			
Uv3		Zero-Speed Time Chart	
Uv4		Z Pulse Correction Error	
011		Z Pulse Fault	
-		Z Pulse Noise Fault Detection	
-V	165	Z Pulse Offset Tuning	202
V			
V/f Characteristics	556		
V/f Control.			
V/f Control Mode Tuning			
-			
V/f Control Mode Tuning Parameters			
V/f control using motor speed feedback			
V/f Control with Simple Speed Feedback			
V/f Data Setting Error			
V/f Gain During Speed Search			
V/f Pattern Defaults			
V/f Pattern Display Unit			
V/f Pattern for Motor 1			
V/f Pattern for Motor 2	300		
V/f Pattern Selection	293		
V/T2	153		
vAEr	463		
VERIFY	403		
Verifying Parameter Changes	186		
Verify Menu			
vFyE			
voF			
voF Alarm Location Monitor	,		
Voltage Class, Capacity Mismatch			
Voltage drop calculation formula			
. c.mpe are p enterior terminan			

Revision History

The revision dates and the numbers of the revised manuals appear on the bottom of the back cover.

Date of Publication	Revision Number	Section	Revised Content
January 2014	4>-1	Chapter 1	Revision: Corrected figure and legend for Front View of Drives.
		All	Revision: Reviewed and corrected entire documentation. Upgraded drive software version to PRG: 1018, PRG: 1019, and PRG: 1020.
October 2013	4	Chapter 2	Addition: NEMA Type 1 and NEMA Type 12 External Heatsink Mounting data
		Back Cover	Revision: Address
		Front Cover	Revision: New format
			Chapter 8
		Appendix A	Addition: Single-Phase Derating data
May 2012	3>	Appendix D	Revision: Factory Recommended Branch Circuit Protection data
	·	All	Revision: Reviewed and corrected entire documentation. Upgraded drive software version to PRG: 1016 and PRG: 1017.
		Back Cover	Revision: New format and address
November 2010	2>	All	Addition: Larger drive capacities added along with corresponding data. Three-Phase 600 V Class: 5A0125 to 5A0242 Revision: Reviewed and corrected documentation.
July 2010	1	All	Addition: Larger drive capacities added along with corresponding data. Three-Phase 400 V Class: 4A0930 and 4A1200 Three-Phase 600 V Class: 5A0041 to 5A0099 Revision: Reviewed and corrected entire documentation. Added software revision PRG: 1015.
April 2010	-	-	First Edition. This manual supports drive software versions VSA90504□ and VSA901014.

YASKAWA AC Drive-A1000

High Performance Vector Control Drive **Technical Manual**

YASKAWA AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax: 1-847-887-7310 http://www.yaskawa.com

DRIVE CENTER (INVERTER PLANT) 2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan Phone: 81-930-25-3844 Fax: 81-930-25-4369 http://www.yaskawa.co.jp

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone: 81-3-5402-4502 Fax: 81-3-5402-4580 http://www.yaskawa.co.jp

YASKAWA ELÉTRICO DO BRASIL LTDA. Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brasil Phone: 55-11-3585-1100 Fax: 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstrasse 185, 65760 Eschborn, Germany Phone: 49-6196-569-300 Fax: 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
9F, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea
Phone: 82-2-784-7844 Fax: 82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.151 Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore Phone: 65-6282-3003 Fax: 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (CHINA) CO., LTD. 12F, Carlton Bld., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China Phone: 86-21-5385-2200 Fax: 86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No. 1 East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: 86-10-8518-4086 Fax: 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION 9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwan

Phone: 886-2-2502-5003 Fax: 886-2-2505-1280

YASKAWA INDIA PRIVATE LIMITED

#17/A Electronics City, Hosur Road Bangalore 560 100 (Karnataka), India Phone: 91-80-4244-1900 Fax: 91-80-4244-1901 http://www.yaskawaindia.in

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2010-2013 YASKAWA ELECTRIC CORPORATION. All rights reserved.